首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The genus Euthymiceras is considered as the junior synonym of the genus Neocosmoceras. Four species N. euthymi, N. cf. transfigurabilis, N. minutus sp. nov., and N. giganteus sp. nov. from the Berriasian deposits of the Crimean Mountains are described for the first time. The biostratigraphic unit formerly termed the “Euthymiceras-Neocosmoceras Beds” is ranked now as the Neocosmoceras euthymi Subzone with a synonymous index species. The subzone is correlated to the following biostratigraphic units: the synonymous subzone of the northern Caucasus, the Neocosmoceras-Septaliphoria semenovi (upper part) and Buchia volgensis local zones of Mangyshlak, the upper part of the Riasanites rjasanensis Zone in the East European platform, and the paramimounum Subzone of the boissieri Zone in the standard zonation of the Tethyan ammonites.  相似文献   

2.
Biostratigraphy of the Berriasian Stage in the Crimean Mountains is specified and substantiated. Fragments of all the standard stage zones (jacobi, occitanica, and boissieri) are distinguished based on the found index species, and position of the Jurassic-Cretaceous boundary is targeted. According to verified distribution of ammonites, the jacobi Zone is divided into the jacobi and grandis subzones crowned by the Malbosiceras chaperi Beds. The Tirnovella occitanica-Retowskiceras retowskyi Beds and overlying Dalmasiceras tauricum Subzone are recognized in deposits of the occitanica Zone. The upward succession of biostratigraphic units established in the boissieri Zone includes the Euthymiceras-Neocosmoceras Beds, Riasanites crassicostatus Subzone, Symphythyris arguinensis and Jabronella sf. paquieri-Berriasella callisto Beds. The last biostratigraphic unit is suggested in this work instead the former Zeillerina baksanensis Beds. Except for the jacobi Zone, the substantiated ammonoid zonation is practically identical to the Berriasian biostratigraphic scale of the northern Caucasus, although the Berriasian-Valanginian boundary has not been defined in the Crimean Mountains based on ammonites. Several marker levels of bivalve mollusks and four biostratigraphic subdivisions of brachiopod scale are distinguishable here. As for the latter, these are (from the base upward) the Tonasirhynchia janini, Belbekella airgulensis-Sellithyris uniplicata, Symphythyris arguinensis, and Zeillerina baksanensis beds.  相似文献   

3.
Based on ammonites, Upper Kimmeridgian sediments are first established in the Crimean Mountains. The Kimmeridgian-Tithonian boundary recognizable in a continuous section is placed inside the Dvuyakomaya Formation of uniform largely clayey sediments. Assemblages of Kimmeridgian ammonites Lingulaticeras cf. procurvum (Ziegler), Pseudowaagenia gemmellariana Oloriz, Euvirgalithacoceras cf. tantalus (Herbich), Subplanites sp.) and Tithonian forms (?Lingulaticeras efimovi (Rogov), Phylloceras consaguineum Gemmellaro, Oloriziceras cf. schneidi Tavera, and Paraulacosphinctes cf. transitorius (Oppel) are described. A new biostratigraphic scheme proposed for the upper Tithonian-Berriasian of the Crimean Mountains includes the following new biostratigraphic units: the Euvirgalithacoceras cf. tantalus Beds of the upper Kimmeridgian, ?Lingulaticeras efimovi Beds of the lower Tithonian, and Oloriziceras cf. schneidi and Paraulacosphinctes cf. transitorius beds of the upper Tithonian. The middle Tithonian is proposed to consist of the fallauxi and semiforme (presumably) zones. The ammonities found determine the early Kimmeridgian-Berriasian age of the Dvuyakornaya Formation that is most likely in tectonic contact with the underlying Khutoran Formation.  相似文献   

4.
This paper contains the results of a comprehensive study of the standard Rarecostites subarietis Subzone of the upper Bajocian Parkinsonia parkinsoni Zone in sections on the Kyafar River (a tributary of the Bolshoi Zelenchuk River, Karachay-Cherkessia, Russia). The subzone is represented by shales with marl interbeds and sideritic concretions of the upper member of the Djangura Formation. The taxonomic composition and distribution of ammonites, foraminifers, ostracodes, dinoflagellate cysts, and miospores are established. The characteristic assemblages recognized of microfauna and palynomorphs enabled the recognition of foraminiferal and dinocyst biostratigraphic units for this Middle Jurassic interval. The index fossils are illustrated.  相似文献   

5.
Ammonite Fauriella boissieri (Pictet), the index species of the Berriasian upper zone, is described for the first time as taxon occurring in the Crimean Mountains. In the Berriasian sections of the central Crimea and Chatyr-Dag massif, species F. boissieri are encountered only in association with upper Berriasian ammonites. The Berriasian-Valanginian boundary has not been identified based on ammonites in the Crimean Mountains. Consequently, there is no reason to include the otopeta Zone into the boissieri Zone in the rank of its upper subzone.  相似文献   

6.
The study of ammonites from the upper part of the upper Bajocian and lower part of the lower Bathonian in the sections of the basin of the Bolshoi Zelenchuk (Karachay-Cherkessia) allowed the recognition of Beds with Parkinsonia djanelidzei (approximate equivalent of the middle part of the Parkinsonia parkinsoni Chronozone) and Beds with Oraniceras scythicum (lower part of the Zigzagiceras zigzag Chronozone). The taxonomic composition and distribution of foraminifers, ostracodes, dinoflagellate cysts, and miospores were studied in the samples from these deposits (upper part of the upper member of Djangura Formation). The recognized characteristic assemblages of microfauna and palynomorphs allowed ostracode and dinocyst subdivisions to be proposed for the Bajocian–Bathonian boundary beds of the Northern Caucasus for the first time. The most important taxa, including ammonites, foraminifers, ostracodes, and dinocysts, are illustrated.  相似文献   

7.
Section of the middle and upper Volgian substages and basal Boreal Berriasian in the Cape Urdyuk-Khaya (Nordvik Peninsula) is largely composed of dark argillites substantially enriched in Corg. Characteristic of the section is a continuous succession of ammonite, foraminiferal, ostracode, and dinocyst zones known also in the other Arctic areas. Boundaries of the upper Volgian Substage are recognizable only based on biostratigraphic criteria. The succession of the middle Volgian Taimyrosphinctes excentricus to basal Ryazanian Hectoroceras kochi zones is characterized. The range of the substage is revised. The lower Exoticus Zone, where ammonites characteristic of the Nikitini Zone upper part in the East European platform have been found, is referred to the middle Volgian Substage. Newly found ammonites are figured. Two possible positions of the Jurassic-Cretaceous boundary in the Arctic region, i.e., at the lower and upper boundaries of the Chetae Zone at the top of the upper Volgian Substage, are discussed.  相似文献   

8.
Reexamination of the Barremian–Aptian planktonic foraminifers from three sections (Verkhoirechie, mountain Krasnaya, and Marino) allowed the biostratigraphic scheme for Southwest and Central Crimea to be refined and updated. The following standard zones are recognized in the studied sections: Blowiella blowi (upper Barremian), Hedbergella excelsa (upper Barremian–lower Aptian), Leupoldina cabri (lower Aptian), H. luterbacheri, Globigerinelloides ferreolensis, Gl. barri, Gl. algerianus, Hedbergella trocoidea, Paraticinella rohri (upper Aptian). Beds with Hedbergella ruka are recognized in the B. blowi Zone. Foraminifers from the Partizanskoe section, representing the lower Aptian L. cabri and H. luterbacheri zones, are studied. The recognized strata are correlated with ammonite and nannoplankton zones and paleomagnetic data.  相似文献   

9.
The first data on the distribution of planktonic foraminifers and radiolarians in the Mt. Ak-Kaya section, the central Crimean Mountains, are considered. According to the analyzed distribution of foraminifers, the Upper Cretaceous deposits of the section are subdivided into three biostratigraphic units: the Marginotruncana austinensis-Globotruncana desioi (presumably upper Coniacian), Sigalia carpatica (uppermost Coniacian-lower Santonian), and Contusotruncana fornicata-Marginotruncana marginata (upper Santonian) beds. Subdivisions substantiated by distribution of radiolarians are the Alievium praegallowayi-Crucella plana (upper Coniacian-lower Santonian), Alievium gallowayi-Crucella espartoensis (the upper Santonian excluding its uppermost part), and Dictyocephalus (Dictyocryphalus) (?) legumen-Spongosaturninus parvulus (the uppermost Santonian) beds. The Contusotruncana fornicata-Marginotruncana marginata Beds are concurrent to the middle part of the Marsupites laevigatus Zone coupled with the Marsupites testudinarius Zone (the uppermost Santonian). The Alievium gallowayi-Crucella espartoensis Beds are correlative with the upper part of the Alievium gallowayi Zone in the Californian radiolarian zonation. The cooccurring assemblages of planktonic foraminifers and radiolarians provide a possibility to correlate the Coniacian-Santonian deposits within the Crimea-Caucasus region.  相似文献   

10.
The Oxfordian Stage of West Siberia contains Boreal ammonites Cardioceratidae. The authors’ bank of paleontological data includes ~ 500 definitions of Cardioceratinae, permitting a considerable refinement of the official Oxfordian regional zonal scale. The lower substage is divided into the Cardioceras (Scarburgiceras) obliteratum, C. (S.) scarburgense, and C. (S.) gloriosum Zones instead of beds with C. (S.) spp., whereas the C. (Cardioceras) percaelatum and C. (C.) cordatum Zones are recognized instead of beds with C. (C.) spp. We have found new ammonites typical of the Middle Oxfordian C. (Subvertebriceras) densiplicatum and C. (Miticardioceras) tenuiserratum Zones. The first of these zones is divided into two subzones. The Upper Oxfordian includes the Amoeboceras glosense and A. serratum Zones instead of beds with A. spp., and the A. regulare Zone and beds with A. rosenkrantzi are recognized instead of the A. ex gr. regulare Zone. The genus Ringsteadia (Aulacostephanidae) is observed only in the northwestern part of the region, along the eastern slope of the North Urals; therefore, two upper units of the biostratigraphic scale correspond to beds with Ringsteadia marstonensis.In the Oxfordian, West Siberia and northern Siberia belonged to the North Siberian province of the Arctic realm. Only in the latest Oxfordian did the northwestern West Siberian basin become part of the Boreal-Atlantic realm, as evidenced by the distribution of Ringsteadia on the eastern slope of the Cis-Polar Urals.  相似文献   

11.
The distribution of calcareous nannofossils and foraminifers occurring in the Callovian-Oxfordian deposits in the southwest of Moscow is studied. Nannoplankton-bearing beds and foraminiferal zones are distinguished. The Retecapsa incompta Beds correspond in range to the Ophthalmidium sagittum-Epistomina volgensis and Ophthalmidium strumosum-Lenticulina brestica foraminiferal zones as well as the lower part of Epistomina uhligi-Lenticulina russiensis Zone. The Watznaueria manivitae, Crepidolithus perforata, and Watznaueria fossacincta (lowermost part) beds span interval of the Epistomina uhligi-Lenticulina russiensis Zone. The Watznaueria fossacincta Beds are concurrent to the Lenticulina ponderosa-Flabellamina lidiae Zone of the foraminiferal scale.  相似文献   

12.
13.
The Late Tithonian ammonites Paraulacosphinctes cf. transitorius (Oppel) and P. cf. senoides Tavera from the Feodosiya section boundary Tithonian-Berriasian beds of the Crimea are described. These species allow the correlation of the beds with P. cf. transitorius recognized in the Crimea with the Upper Tithonian Substage of the Western European scale. Based on magnetostratigraphic data, these beds supposedly correlate with the Durangites Zone.  相似文献   

14.
Eight zonal dinocyst assemblages and three bio stratigraphic units ranked as “beds with flora” are first distinguished in the Danian—lower Lutetian interval of the Paleogene succession, penetrated by the reference borehole Novousensk no. 1, where eight standard and one local nannoplankton zones are simultaneously recognized. The direct correlation of nannoplankton and dinocyst zones is used to refine the paleon-tological substantiation and stratigraphic position of regional lithostratigraphic units, ranges of hiatuses, and the correlation with the general stratigraphie scale. The nannoplankton of the Danian NP2 Cruciplacolithus tenuis and NP3 Chiasmolithus danicus zones is characteristic of the Algai Formation (Fm). The nannoplankton of the NP4 Coccolithus robustus Zone and dinocysts of the D3a Alterbidinium circulum Zone from the Tsyganovo Fm characterizes the Danian top. The Lower Syzran Subformation (Subfm) corresponds to the upper part of the NP4 Coccolithus robustus Zone (Neochiastizygus junctus local zone) and to the D3b (part) Cerodinium depressum Zone of the Selandian dinocysts. The latter spans part of the Upper Syzran Subformation, whose characteristic nannofossils are the nannoplankton of the NP5 Fasciculithus tympaniformis Zone and the dinocysts of the D3b (part) Isabelidinium? viborgense Zone of the Selandian. The Novouzensk Fm is represented by a succession of the dinocyst Cerodinium markovae Beds and the standard D4c Apectodinium hyperacanthum Zone of the upper Thanetian. The coccolitophorids of the lower Thanetian NP6 Heliolithus kleinpelli Zone occur at the formation base. The Bostandyk Fm includes successive bio stratigraphie units of the Ypresian. In the dinocyst scale, these are the D5a Apectodinium augustum Zone, the Pterospermella Beds (DEla Zone of the North Sea scale), and zones DBlb-c Deflandrea oebisfeldensis, D7c Dracodinium varielon-gitudum, and D8 Dracodinium politum—Charlesdowniea coleothrypta, while units of the nannoplankton scale correspond to the NP12 Martasterites tribrachiatus and NP13 Discoaster lodoensis zones. The Kopterek Fm yields Lutetian nannofossils: the nannoplankton of the NP14 Discoaster sublodoensis Zone and the dinocysts of the Wetzeliella coronata—Areosphaeridium diktyoplokum Beds. Three meaningful hiatuses are established at the Danian base, Selandian top, and in the lower Ypresian.  相似文献   

15.
The biotic turnover in the Pliensbachian-Toarcian transition and changes in assemblages of bivalves, ostracodes, foraminifers, dinocysts, spores, and pollen are described. Only five of 24 bivalve genera and two of four ostracode genera cross the Pliensbachian-Toarcian boundary so that composition of genera and families to be entirely renewed at the base of the Harpoceras falciferum Zone. In the interval of three ammonite zones, diversity of foraminifers is reducing from 27 genera in the Amaltheus margaritatus Zone (upper Pliensbachian) to 17 and then to 15 genera in the Tiltoniceras antiquum (lower Toarcian) and Harpoceras falciferum zones, respectively. Single dinocysts of the Pliensbachian are replaced by their abundant specimens at the base of the Toarcian, and substantial changes in composition of palynological assemblages are simultaneously established. Factors responsible for “mass extinctions” of marine invertebrates are suggested to be the paleogeographic reorganization, anoxic events, eustatic sea-level changes, and climatic fluctuations. The biotic turnover in the Arctic region is interrelated mainly with thermal changes, which caused the southward displacements of taxa distribution areas during a rapid cooling and their gradual return to former habitat areas in the period of warming, rather than with extinction events.  相似文献   

16.
Bryozoan assemblages from the lower part of the Middle Devonian of the western Altai-Sayan Folded Area are studied because of the recent discovery of Eifelian ammonoids (Cabrieroceras crispiforme Zone) in the Safonovo Formation, which had been previously dated as Givetian. The bryozoan collection (21 species) was sampled from six sections of the Mamontovo Regional Substage (“Horizon”) of the Eifelian Stage, seven sections of the Safonovo formation of Salair, and one section of the upper part of the Melnichnaya Formation of Rudnyi Altai. Two groups of bryozoans with different species composition are recognized, one of which occurs in the Malaya Salairka Beds of the Mamontovo Horizon, whereas the other occurs in the Safonovo Formation immediately below the Cabrieroceras crispiforme Zone. Two local biostratigraphic zones are recognized on the basis of these groups (Eridotrypella distributa and Leptotrypa spinosa zones), characterizing the lower and upper parts of the Eifelian Stage of the western Altai-Sayan Folded Area.  相似文献   

17.
Benthic foraminifers from borehole sections recovered by drilling in the Yamal Peninsula, West Siberia, characterize the Ceratobulimina cretacea Beds (the upper Campanian-lower Maastrichtian) and the Spiroplectammina variabilis-Gaudryina rugosa spinulosa and Spiroplectammina kasanzevi-Bulimina rosenkrantzi regional zones of the lower and upper Maastrichtian, respectively. The Danian Stage is missing from the sections, which include marine deposits of the Selandian Stage attributed to the Ceratolamarckina tuberculata Beds. Foraminiferal assemblages of the beds include the Siberian endemic species associated with Paleocene foraminifers of the Midway-type fauna of subglobal distribution range. Occurrence of the latter suggests that warm-water surface currents from the North Atlantic reached southern areas of the Kara Sea.  相似文献   

18.
石炭纪时期有孔虫具有演化快、分布广、数量丰富、分异度高的特点,对于地层的划分对比具有极为重要的意义。与全球其他重要的石炭纪沉积区相比,华南有孔虫生物地层划分精度相对较低。本文首次较为系统地报道了华南石炭系代表性岩石地层单位旧司组和上司组下部丰富的有孔虫化石及其在剖面上的分布情况,并综合现有关于华南的有孔虫化石资料,将华南维宪阶划分为7个有孔虫化石带,自下而上分别为Eoparastaffella simplex带、Viseidiscus/Planoarchaediscus带、Paraarchaediscus带、Pojarkovella nibelis带、Koskinotextularia带、Bradyina带和Janischewskina带。这些有孔虫带可与全球其他典型的石炭纪沉积区进行很好的对比,从而为相关的研究提供一个较为精细的地层格架。通过对黔南上司地区有孔虫的研究,提议中国石炭系区域性年代地层单位上司阶底界可用有孔虫Bradyina的首现定义,并将上司阶与西欧的Warnantian亚阶中上部和俄罗斯的Aleksinian亚阶—Venevian亚阶对比,对应国际维宪阶上部,为全球石炭系年代地层对比提供了可靠的化石依据。  相似文献   

19.
Distribution of belemnites and benthic foraminifers in the Campanian-Maastrichtian boundary layers of the Aktulagai section, one of Upper Cretaceous reference sections in the east of the European paleobiogeographic region (EPR) is discussed. The base of Lanceolata Beds defined by A.D. Arkhangelsky in 1912 is well-substantiated biostratigraphic level corresponding to boundary between the Campanian and Maastrichtian stages. In spacious outcrops of Upper Cretaceous deposits in the Aktulagai Plateau (Aktyubinsk region, Kazakhstan Republic), “primitive Belemnella forms” (two rostra plates) appearing above that base distinctly replace the genus Belemnitella dominant in the Campanian. Seven successive zonal assemblages of benthic foraminifers (one plate) are established in the boundary interval. The Aktulagai reference section of Upper Cretaceous sediments can be used to trace the Campanian-Maastrichtian boundary from the eastern EPR to Boreal regions of Russia based on abundant micro-and nannofossils.  相似文献   

20.
Outcrops of the Upper Cretaceous (Coniacian-Campanian) Chico Formation, exposed along the east flank of California's northern Great Valley, have yielded a highly diverse, well-preserved molluscan fauna. Previously uncollected deposits, as well as classic localities, have been stratigraphically collected to determine the Santonian-Campanian succession of important ammonites and inoceramid bivalves.Five megafossil zones are readily identifed in outcrops of the Chico Formation. These are, in ascending stratigraphic order, the zones of Hyphantoceras venustum, Baculites capensis, Bostrychoceras elongatum, Inoceramus schmidti and Baculites chicoensis.Two of the zones, Bostrychoceras elongatum and I. schmidti, are missing at the type locality of the Chico Formation because of a stratigraphic disconformity. As a result, previous conceptions about the ranges of some important ammonites and inoceramids in California are in error.Lowest exposures of the H. venustum Zone in the Chico Formation are probably latestConiacian in age. Recent palaeomagnetic sampling of Cretaceous strata of the Great Valley (Ward et al., 1983) has confirmed that the Baculites chicoensis Zone is indicative of the lowest Campanian. The age of the I. schmidti Zone in California is therefore latest Santonian.This molluscan sequence enables precise correlation of Chico strata with other Upper Cretaceous outcrop in the Great Valley; in addition, lowermost deposits of the Upper Cretaceous Nanaimo Group of British Columbia can now be firmly correlated with California strata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号