首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty acids are generally the most abundant lipid molecules in plankton, and thus play a central role in the cycling of organic matter in the upper ocean. These fatty acids are primarily derived from intact polar diacylglycerolipids (IP-DAGs), which compose cell membranes in plankton. The molecular diversity of IP-DAGs in the upper ocean remains to be fully characterized, and the advent of high performance liquid chromatography/electrospray ionization-mass spectrometry (HPLC/ESI-MS) approaches have now provided the opportunity to readily analyze IP-DAGs from marine planktonic communities. We used HPLC/ESI-MS to determine the concentrations of three classes of phospholipids (phosphatidlyglycerol (PG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC)), three classes of betaine lipids (diacylglyceryl trimethylhomoserine (DGTS), diacylglyceryl hydroxymethyl-trimethyl-β-alanine (DGTA), and diacylglyceryl carboxyhydroxymethylcholine (DGCC)), and three classes of glycolipids (monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG)) in plankton filtered (>0.2 μm) from seawater collected within the euphotic zone of the eastern South Pacific. The distributions of these IP-DAGs along the cruise transect provided important new insights on their tentative planktonic sources. Complementary data from our cruise, a principle components analysis of our IP-DAG concentrations, observed fatty acid compositions of IP-DAG classes and published IP-DAG distributions in pure cultures of plankton suggest that heterotrophic bacteria were the dominant sources of PG and PE, while MGDG and SQDG originated primarily from Prochlorophytes. The origins of the other classes of IP-DAGs were less clear, although it is likely that PC, DGTS, DGTA, and DGCC were derived primarily from eukaryotic phytoplankton. The molecular distributions of fatty acids attached to the different classes of IP-DAGs were generally distinct from one another, and suggest that reported distributions of total fatty acids (as analyzed by gas chromatography) in the literature should be regarded as homogenized mixtures of distinct molecular pools of fatty acids.  相似文献   

2.
Picoplankton abundance and distribution in the Mississippi River plume and its adjacent waters were studied during two cruises in April (high discharge) and October (low discharge) 2000 using flow cytometry. Concentrations of photosynthetic picoplankton,Synechococcus and picoeukaryotes were low in the turbid plume water but high in the coastal waters—i.e., the green waters resulting from mixing of river and oceanic waters. In this region, three types ofSynechococcus, characterized by their phycoerythrin chromophore composition, were found:Synechococcus cells with a low phycourobilin to phycoerythrobilin ratio (PUB:PEB) occurred throughout the region and dominated the totalSymechococcus abundance during both seasons; high PUB:PEB cells, which are the dominant strains in the open or blue ocean, occurred only at the outer shelf stations; and PEB-onlySynechococcus were abundant in most of the surveyed area during april, but were not observed during October.Prochlorococcus cyanobacteria only occurred at the oceanic stations, but extended farther inshore in October compared to April. This was a consequence of the reduced discharge and plume size during October. Picophytoplankton were a less important component of total phytoplankton biomass in the turbid river water and more important in the oligotrophic Gulf water. Seasonally, the contribution of picophytoplankton to total phytoplankton biomass in the surveyed area was higher during low discharge in October than during high discharge in April, even though the spring 2000 river discharge was unusually low and might not present a typical high discharge scenario. The abundance of heterotrophic bacteria was weakly correlated to chlorophylla (chla) concentration, but better correlated to picophytoplankton biomass. A higher proportion of High DNA bacteria occurred in the river-impacted regions during both seasons, with the ratio of High DNA bacteria to Low DNA bacteria significantly higher in April.  相似文献   

3.
Seepage of asphalt forms the basis of a cold seep system at 3000 m water depth at the Chapopote Knoll in the southern Gulf of Mexico. Anaerobic microbial communities are stimulated in the oil-impregnated sediments as evidenced by the presence of intact polar membrane lipids (IPLs) derived from archaea and Bacteria at depths up to 7 m below the seafloor. Detailed investigation of stable carbon isotope composition (δ13C) of alkyl and acyl moieties derived from a range of IPL precursors with distinct polar head groups resolved the complexity of carbon metabolisms and utilization of diverse carbon sources by uncultured microbial communities. In surface sediments most of the polar lipid-derived fatty acids with phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG) head groups could be tentatively assigned to autotrophic sulfate-reducing bacteria, with a relatively small proportion involved in the anaerobic oxidation of methane. Derivatives of phosphatidyl-(N)-methylethanolamine (PME) were abundant and could be predominantly assigned to heterotrophic oil-degrading bacteria. Archaeal IPLs with phosphate-based hydroxyarchaeols and diglycosidic glyceroldibiphytanylglyceroltetraethers (GDGTs) were assigned to methanotrophic archaea of the ANME-2 and ANME-1 cluster, respectively, whereas δ13C values of phosphate-based archaeols and mixed phosphate-based and diglycosidic GDGTs point to methanogenic archaea. At a 7 m deep sulfate-methane transition zone that is linked to the upward movement of gas-laden petroleum, a distinct increase in abundance of archaeal IPLs such as phosphate-based hydroxyarchaeols and diglycosidic archaeol and GDGTs is observed; their δ13C values are consistent with their origin from both methanotrophic and methanogenic archaea. This study reveals previously hidden, highly complex patterns in the carbon-flow of versatile microbial communities involved in the degradation of heavy oil including hydrocarbon gases that would not have been evident from classical compound-specific isotope analyses of either bulk IPL or apolar lipid derivatives.  相似文献   

4.
Due to its ecological context, the Toulon bay represents a site of scientific interest to study temporal plankton distribution, particularly pico- and nanophytoplankton dynamics. A monthly monitoring was performed during a two-year cycle (October 2013–December 2015) at two coupled sampling sites, referred to as Little and Large bays, which had different morphometric characteristics and human pressures. Flow cytometry analyses highlighted the fact that pico- and nanophytoplankton were more abundant in the eutrophic Little bay. Furthermore, it evidenced two community structures across the Toulon bays: at times, a co-dominance of picoeukaryotes, nanoeukaryotes, Synechococcus 1-like cells and Prochlorococcus-like cells was found, and at other times, a Synechococcus 1-like dominated community existed. The alternation of one structure or the other can be explained by a combined action of temperature regime, nutrient conditions and degree of contamination. This study showed that pico- and nanophytoplankton dynamics were mainly driven by temperature in both sites, as in other temperate Mediterranean regions. Thus, the community was mainly composed of picoeukaryotes and Prochlorococcus-like cells in the winter (<?15 °C), while it was dominated by Synechococcus 1-like cells in the summer (>?20 °C). Additionally, the multiple human stressors in the Little bay seemed to affect the increase in abundance of Synechococcus 1-like cells as they were preferentially observed in the Large bay.  相似文献   

5.
Porewater advection stimulates nutrient exchange and microbial activity in shallow marine sediments, whereas element cycling in deeper diffusion-dominated sediments is comparatively slow due to limited nutrient supply. We studied the vertical distribution of microbial communities and organic matter (OM) cycling in these contrasting porewater regimes down to 5 m depth at an intertidal flat of the southern North Sea. Archaea, Bacteria and Eukarya were targeted, combining intact polar lipid (IPL) analysis with qualitative and quantitative molecular biological techniques. The largely sandy section 1 of the core (<75 cm) is characterized by rapid burial of fresh marine OM and intense porewater advection. This supply fuels heterotrophic microbes, as evident from the 13C isotopic composition of total organic carbon and IPL derivatives. Major sources of OM are algae and cyanobacteria, as suggested by the elevated amount of eukaryotic 18S rRNA gene copies and phosphate-free IPLs. The relative abundance of most phospholipids remained largely constant over the entire core, except for diphosphatidylglycerol, which represented about half of total IPL abundance in the lower part of section 1 (>50 cm) and the diffusion-dominated section 2 (75–490 cm). This suggests bacteria adapting their membranes in response to increasing physicochemical stress and starvation in the nutrient limited, fine grained sediments of section 2 with less bioavailable, predominantly terrestrial, OM. Relative amounts of bacterial acyl ether and diether phospholipids increased in this lower section and were assigned to sulfate reducers and yet uncultured myxobacteria. Archaea were an order of magnitude less abundant than Bacteria, and were affiliated mainly with Methanosarcinales and Methanomicrobiales. Accordingly, the archaeal IPL composition was typical for a methanogenic community. IPLs not exclusively derived from in situ microbial production emphasize that these biomarkers have to be interpreted with caution in sediments with complex hydrogeology. Our results demonstrate that contrasting subsurface flow regimes significantly impact on the vertical zonation of biogeochemical properties and microorganisms in marine sediments.  相似文献   

6.
This study identifies isotope signatures associated with autotrophic and heterotrophic microbial communities that may provide a means to determine carbon cycling relationships in situ for acid mine drainage (AMD) sites. Stable carbon isotope ratios (δ13C) of carbon sources, bulk cells, and membrane phospholipids (PLFA) were measured for autotrophic and heterotrophic microbial enrichment cultures from a mine tailings impoundment in northern Ontario, Canada, and for pure strains of the sulfur oxidizing bacteria Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The autotrophic enrichments had indistinguishable PLFA distributions from the pure cultures, and the PLFA cyc-C19:0 was determined to be a unique biomarker in this system for these sulfur oxidizing bacteria. The PLFA distributions produced by the heterotrophic enrichments were distinct from the autotrophic distributions and the C18:2 PLFA was identified as a biomarker for these heterotrophic enrichments. Genetic analysis (16S, 18S rRNA) of the heterotrophic cultures indicated that these communities were primarily composed of Acremonium fungi.Stable carbon isotope analysis revealed that bulk cellular material in all autotrophic cultures was depleted in δ13C by 5.6–10.9‰ relative to their atmospheric CO2 derived carbon source, suggesting that inorganic carbon fixation in these cultures is carbon limited. Individual PLFA from these autotrophs were further depleted by 8.2–14.6‰ compared to the bulk cell δ13C, which are among the largest biosynthetic isotope fractionation factors between bulk cell and PLFA reported in the literature. In contrast, the heterotrophic bulk cells were not significantly fractionated in δ13C relative to their carbon source and heterotrophic PLFA ranged from 3‰ enriched to 4‰ depleted relative to the isotopic composition of their total biomass. These distinct PLFA biomarkers and isotopic fractionations associated with autotrophic and heterotrophic activity in this laboratory study provide potential biomarkers for delineating autotrophic and heterotrophic carbon cycling in AMD environments.  相似文献   

7.
Eight sulfate-reducing Desulfovibrio strains isolated from intertidal sediments of the North Sea were investigated for their intact polar lipid (IPL) composition. They contained two types of IPLs, phospholipids and aminolipids. The dominating phospholipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and, in lower concentration, diphosphatidylglycerol (DPG). Aminolipids formed a significant IPL fraction in all strains and high resolution tandem mass spectrometry assigned them as phosphate-free ornithine lipids (OLs). In intertidal flat sediments microorganisms may face strong temperature change on varying timescales and it is crucial for the microbes to maintain constant membrane fluidity, e.g. by modification of their membrane lipid composition. We therefore investigated whether or not these strains employ the same strategies for adjusting their membrane composition to growth temperature and, in particular, how OLs are modified. In all strains the relative OL content was found to be higher at higher growth temperature, in most cases at the expense of PE content and less often PG content. The fatty acid (FA) side chains of the main PE and PG species were similar, i.e. both were dominated by C17 or C18, whereas C15 FAs were additionally found as major OL side chains. The temperature-related side chain variation was similar for all IPLs: unsaturated FA content was lower at higher temperature. The corresponding FA patterns after hydrolysis revealed elevated branched FA content and anteiso/iso ratio at higher growth temperature. As the temperature-related changes in the IPL side chains were similar for all strains, we conclude that side chain modification plays a major role in the maintenance of membrane fluidity at higher temperature and that alternative roles of OLs in the membrane adaptation of Desulfovibrio spp. other than melting point adjustment are possible.  相似文献   

8.
Using stable isotope tracer techniques in 4-h bottle incubations, the importance of organic matter transfer from phytoplankton to heterotrophic bacteria (bacteria) has been re-evaluated in the Delaware Estuary, considering carbon (C) and nitrogen (N) cycles separately. The hypothesis is that the transfer of C and N from phytoplankton to bacteria varies both temporally and spatially along estuarine gradients in response to variation in factors such as terrestrial organic C supply, inorganic N speciation and concentrations, and extracellular release of dissolved organic matter by phytoplankton. The percentage of autochthonous dissolved organic C being assimilated by bacteria varied between 3% and 10% of primary production and was not related to the rate of primary production. The transfer of N was considerably more variable when compared to C transfer, averaging ca. 20% of phytoplankton N assimilation; individual experiments yielded rates as high as 50%. Unlike C, autochthonous dissolved organic N transfer appears to vary with the magnitude of primary production, and its assimilation by bacteria accounted for 0–56% of the total measured bacterial N uptake. The results highlight the importance of separate consideration of C and N elemental cycles in evaluating sources of organic matter to the estuarine microbial loop.  相似文献   

9.
Here we show a discernibly unique biosilicification pattern for live, metabolically active Synechococcus cyanobacterial cell surfaces compared to dead Synechococcus cells under identical experimental conditions. The live cell treatments showed signs of cell division and the growth of fimbriae indicating metabolic activity during the 5-day silicification experiment. Live treatment cells were also recultivable after the experiments confirming their continued viability. The metabolically active live cyanobacteria treatment bound twice the amount of colloidal SiO2 and held it more tightly compared to the dead cell treatment. Further, biosilicification of the live, actively metabolizing bacteria was unipolar, leaving the core surface largely unencrusted. In contrast, biosilicification of the dead cells was heterogeneous, occurring across the entire cell surface with no observable localized pattern. The directed biosilicification localization of live cell surfaces is likely a bacterial strategy to protect the cell functionality against the potentially inhibitory effects of mineral encrustation. Localization of silica biominerals to the polar end of the cell is also consistent with reported bacteria regulated cell polarity, which, under the experimental pH of 3, would enable localized differential attraction between the charged colloidal silica (+) particles and the bacterial cell polar surface (−). Our results show a novel metabolically-linked distinct colloidal SiO2 biomineralization fingerprint, suggesting a putative biomineralization signature.  相似文献   

10.
张翠云  张胜  何泽  殷密英  宁卓 《地球学报》2014,35(2):223-229
本次研究的目的是利用传统的培养技术和现代的磷脂脂肪酸PLFA(Phosphor Lipid Fatty Acid)技术、Biolog技术、16 S rRNA基因变性梯度凝胶电泳DGGE(Denaturing Gradient Gel Electrophoresis)及测序技术,调查石家庄市南部污灌区厚近30 m包气带微生物含量、分布、活性和多样性,评价污灌区厚层包气带污染物自然衰减的微生物作用潜力。包气带沉积物样品通过岩芯钻探获得,用于物理、化学和微生物分析。结果显示,土壤层(5~20 cm)微生物含量高,活性高,代谢类型多,可培养的异养菌与自养菌、好氧异养菌、兼性厌氧异氧菌和专性厌氧异养菌共存;土壤层下伏包气带微生物含量较低,活性降低,代谢类型减少,可培养的细菌主要是好氧性异养菌、兼性厌氧异养菌和好氧自养菌,而且随岩性而变化,在砂层和重粘土层含量低,活性低,而在亚粘土层含量和活性大。研究结果指示土壤层具有很高的污染物生物自然衰减潜力,而且下伏包气带仍有这种潜力,特别是下部溶解有机碳DOC(Dissolved Organic Carbon)含量高的层位潜力更大。  相似文献   

11.
Structural diversity and fate of intact polar lipids in marine sediments   总被引:1,自引:0,他引:1  
Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.  相似文献   

12.
Many aquatic ecosystems are experiencing a decline in their oxygen (O2) content and this is predicted to continue. Implications of this change on several properties of bacterioplankton (heterotrophic prokaryotes) remain however are poorly known. In this study, oxic samples (~170 μM O2?=?controls) from an oligohaline region of the Scheldt Estuary were purged with N2 to yield low-O2 samples (~69 μM O2?=?treatments); all were amended with 13C-glucose and incubated in dark to examine carbon incorporation and cell size of heterotrophic prokaryotes, and relationships between organic matter (OM) degradation and phosphate (P) availability in waters following O2 loss. Stable isotope (13C) probing of phospholipid fatty acids (PLFA) and flow cytometry were used. In samples that have experienced O2 loss, PLFA biomass became higher, prokaryotic cells had significantly larger size and higher nucleic acid content, but P concentrations was lower, compared to controls. P concentration and OM degradation were positively related in controls, but uncoupled in low-O2 samples. Moreover, the dominant PLFA 16:1ω7c (likely mainly from Gram-negative bacteria) and the nucleic acid content of heterotrophic prokaryotic cells in low-O2 samples explained (62–72 %) differences between controls and low-O2 samples in P amounts. Shortly after incubations began, low-O2 samples had consistently lower bacterial PLFA 13C-enrichments, suggesting involvement of facultatively anaerobic metabolism in carbon incorporation, and supporting the view that this metabolic pathway is widespread among pelagic bacteria in coastal nutrient-rich ecosystems. Estimates based on 13C-enrichment of PLFAs indicated that grazing by protozoa on some bacteria was stronger in low-O2 samples than in controls, suggesting that the grazing pressure on some heterotrophic prokaryotes may increase at the onset of O2 deficiency in nutrient-rich aquatic systems. These findings also suggest that physiological responses of heterotrophic prokaryotes to O2 loss in such ecosystems include increases in cell activity, high carbon incorporation, and possibly phosphorus retention by cells that may contribute to reduce phosphate availability in waters.  相似文献   

13.
In the hypersaline lagoon at Laguna Figueroa vertically stratified diverse communities of microorganisms thrive. The modern sediments of Baja California at Laguna Figueroa contain cyanobacterial communities and sedimentary structures produced by these blue greens that have already been studied by Horodyski and his colleagues. This paper provides an introduction to the complex microbial communities, primarily those that underlie the laminated Microcoleus mats. They are composed of anaerobic photosynthetic and heterotrophic bacteria.The following genera of cyanobacteria at least are components of these mat communities: Lyngbya, Microcoleus, Entophysalis, Phormidium, Pseudoanabaena, Anabaena and Schizothrix. Among the photosynthetic bacteria several species of Thiocapsa-like microbes formed major surface components of certain mats and scums; rhodospirilli, rhodopseudomonads, chromatis and others were seen.The following nonphotosynthetic bacteria were identified: Nocardia sp., three types of spirilli, two types of Spirochaeta sp., two types of Desulfovibria sp., a new strain of red Beneckea and four distinctive unidentified coccoid and filamentous bacteria. Reasons are given for believing several of the species are new to science and that the microbial diversity is far greater than the approximately twenty species reported here. Eukaryotes are extremely rare. Only one species of animal, a herpachtechoid copepod, was ever seen in the 8-km long microbial communities of the hypersaline basin. Dunaliella salina, a chlorophyte and Aspergillus sydowi, an ascomycetous fungus were the only eukaryotes that were observed to be regular components of mat communities. Ciliates, amoebae (including a chrysarchnion-like microbe) and diatom tests, mostly empty, were the only other eukaryotes observed. Attempts to enrich for eukaryotic microorganisms were not successful whereas attempts to enrich for bacteria, especially anaerobes led to such a profusion of forms that to continue detailed study of them was beyond our means. Unidentified small rods and cocci constituted the largest fraction of individuals in the subsurface community. The microbes isolated from mats are adapted for alternating dry and wet conditions as well as high concentrations of salt and low concentrations of oxygen.  相似文献   

14.
Pyrite oxidation occurring in solutions containing iron oxidizing autotrophic bacteria, Acidithiobacillus ferrooxidans (A. ferrooxidans), and/or heterotrophic bacteria, Acidiphilium acidophilum (A. acidophilum), has been investigated. Under the conditions used, the amount of pyrite oxidized in the presence of both species was similar to the amount oxidized in the presence of A. ferrooxidans alone over a period of 30 days. Pretreatment of pyrite with the phospholipid, [1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (23:2 Diyne PC)], to form an adsorbed organic layer reduced the amount of pyrite oxidation in the absence of bacteria and in the presence of A. ferrooxidans. The addition of lipid to pyrite prior to its exposure to a mixed A. ferrooxidans/A. acidophilum solution also showed initial oxidation suppression. However, after 4-5 days the effectiveness of the lipid in suppressing pyrite oxidation was lost and oxidation of the mineral proceeded at a rate that was similar to lipid-free pyrite in the presence of both microbial populations. If, however, lipid/pyrite was pretreated with UV radiation to induce cross-linking of the lipid tails (via polymerization of diacetylene groups in the tails), the lipid layer showed a strong suppression of pyrite oxidation for up to at least 30 days in the presence of both microbial populations. It was also shown with in situ atomic force microscopy (AFM) that the introduction of lipid to pyrite with colonized A. ferrooxidans led to the displacement of a fraction of surface bound bacteria. This lipid-induced displacement was confirmed by ex situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).  相似文献   

15.
Intact polar membrane lipids (IPLs) are frequently used as markers for living microbial cells in sedimentary environments. The assumption with these studies is that IPLs are rapidly degraded upon cell lysis and therefore IPLs present in sediments are derived from in situ microbial production. We used a theoretical approach to assess whether IPLs in surface sediments can potentially represent fossilized IPLs derived from the upper part of the water column and whether IPLs can be preserved during sediment burial. Previous studies which examined the degradation kinetics of IPLs show that phospholipids, i.e. ester-linked lipids with a phosphor-containing head group, degrade more rapidly than glycosidic ether lipids, i.e. ether-linked lipids with a glycosidically bound sugar moiety. Based on these studies, we calculate that only a minor fraction of phospholipids but a major fraction of glycosidic ether lipids biosynthesized in the upper part of the water column can potentially reach deep-sea surface sediments. Using a simple model and power law kinetic degradation parameters reported in the literature, we also evaluated the degradation of IPLs during sediment burial. Our model predicts a log-log relationship between IPL concentrations and depth, consistent with what has been observed in studies of IPLs in subsurface sediments. Although our results do not exclude production of IPLs in subsurface sediment, they do suggest that IPLs present in the deep biosphere may contain a substantial fossil component potentially masking in situ IPL production.  相似文献   

16.
The combined effects of nutrient enrichment and grazing by isopods and amphipods on abundances of seagrass epiphytes were tested inZostera marina L. (eelgrass) microcosms. Using epifluorescence microscopy, densities of epiphytic diatoms, cyanobacteria, heterotrophic flagellates, and heterotrophic bacteria were enumerated after 1 mo and 2 mo of treatment. In general, numbers of diatoms decreased, in the presence of grazers and showed little response to nutrient enrichment, whereas numbers of cyanobacteria increased with nutrient enrichment and showed little response to grazing. Thus, macrofaunal grazing maintained a photoautotrophic community domainated by cyanobacteria, particularly under nutrient enriched conditions. Following 2 mo of treatment, dense macroalgal growth under nutrient-enriched conditins with grazers absent appeared to limit populations of both epiphytic autotrophs. Patterns of abundance of heterotrophic bacteria suggested that the original bacteria population was nutrient limited. Bacteria populations may have been limited by organic carbon supplies at the end of the experiment. Abundances of heterotrophic flagellates and bacteria were strongly correlated on both sampling dates. Results suggest that heterotrophic flagellates might serve as a link between heterotrophic bacterial production and higher trophic levels in seagrass epiphyte food webs.  相似文献   

17.
Dark CO2 fixation has been shown to rival the importance of oxygenic photosynthesis in the global carbon cycle, especially in stratified environments, such as salt wedge estuaries. We investigated this process in the Columbia River estuary using a variety of techniques including functional gene cloning of cbbL (the large subunit of form I RuBisCO), quantitative real-time PCR (qPCR) estimations of cbbL abundance, and analyses of stimulated 14C-bicarbonate assimilation. A diversity of red-type cbbL genes were retrieved from clone libraries, with 28 unique operational taxonomic units determined from 60 sequences. The majority of the sequences formed two clusters that were distinct from the major clusters typically found in soil environments, revealing the presence of a unique community of autotrophic or facultatively autotrophic/mixotrophic microorganisms in the Columbia River estuary. qPCR estimates indicated that roughly 0.03–0.15 % of the microbial population harbored the cbbL gene, with greater numbers of total bacteria and cbbL gene copies found in the estuarine turbidity maxima (ETM) compared to non-ETM events. In vitro incubations with radiolabeled bicarbonate indicated maximum stimulation by thiosulfate and also suggested that a diversity of other potential electron donors may stimulate CO2 fixation, including nitrite, ammonium, and Mn(II). Taken together, these results highlight the diversity of the microbial metabolic strategies employed and emphasize the importance of dark CO2 fixation in the dynamic waters of the Columbia River estuary despite the abundance of organic material.  相似文献   

18.
Lechuguilla Cave is a deep, extensive, gypsumand sulfur-bearing hypogenic cave in Carlsbad Caverns National Park, New Mexico, most of which (>90%) lies more than 300 m beneath the entrance. Located in the arid Guadalupe Mountains, Lechuguilla's remarkable state of preservation is partially due to the locally continuous Yates Formation siltstone that has effectively diverted most vadose water away from the cave. Allocthonous organic input to the cave is therefore very limited, but bacterial and fungal colonization is relatively extensive: (1)Aspergillus sp. fungi and unidentified bacteria are associated with iron-, manganese-, and sulfur-rich encrustations on calcitic folia near the suspected water table 466 m below the entrance; (2) 92 species of fungi in 19 genera have been identified throughout the cave in oligotrophic (nutrient-poor) soils and pools; (3) cave-air condensate contains unidentified microbes; (4) indigenous chemoheterotrophicSeliberius andCaulobacter bacteria are known from remote pool sites; and (5) at least four genera of heterotrophic bacteria with population densities near 5×105 colony-forming units (CFU) per gram are present in ceiling-bound deposits of supposedly abiogenic condensation-corrosion residues. Various lines of evidence suggest that autotrophic bacteria are present in the ceiling-bound residues and could act as primary producers in a unique subterranean microbial food chain. The suspected autotrophic bacteria are probably chemolithoautotrophic (CLA), utilizing trace iron, manganese, or sulfur in the limestone and dolomitic bedrock to mechanically (and possibly biochemically) erode the substrate to produce residual floor deposits. Because other major sources of organic matter have not been detected, we suggest that these CLA bacteria are providing requisite organic matter to the known heterotrophic bacteria and fungi in the residues. The cavewide bacterial and fungal distribution, the large volumes of corrosion residues, and the presence of ancient bacterial filaments in unusual calcite speleothems (biothems) attest to the apparent longevity of microbial occupation in this cave.  相似文献   

19.
The bio-weathering of basalt, granite and gneiss was experimentally investigated in this study. These rock-forming minerals weathered more rapidly via the ubiquitous psychrotrophic heterotrophic bacteria. With indigenous bacteria of Bacillus spp. from sediments of Lake Baikal, we traced the degradation process of silicate minerals to understand the weathering processes occurring at the change temperature in the subsurface environment with organic input. The bacteria mediated dissolution of minerals was monitored with solution and solid chemistry, X-ray analyses as well as microscopic techniques. We determined the impact of the bacteria on the mineral surface and leaching of K, Ca, Mg, Si, Fe, and Al from silicate minerals. In the samples the release of major structural elements of silicates was used as an overall indicator of silicate mineral degradation at 4°C and 18°C from five medium exchanges over 255?days of rock bioleaching. The increase of temperature importantly affected the efficiency of Fe extraction from granite and basalt as well as Si extraction from granite and gneiss. In comparison with elemental extraction order at 4°C, Ca was substituted first by Fe or Si. It is evident that temperature influences rock microbial weathering and results in a change of elements extraction.  相似文献   

20.
The efficiency of inorganic fertilizers as stimulating agents for the bioremediation of oil-polluted environments can be increased with the addition of selected biostimulating compounds. In this study, the efficacy of different biostimulation treatments in the remediation of diesel-polluted soil in purpose-built microcosms has been evaluated. The treatments involved combinations of inorganic fertilizer with (a) Ivey surfactant, (b) Biorem organic fertilizer and (c) ethanol. Microbial activity was evaluated by monitoring the growth of heterotrophic and degrading bacteria and their dehydrogenase activity and carbon dioxide production. Hydrocarbon degradation was monitored by gas chromatography/mass spectrometry. The results showed that all treatments enhanced microbial activity in comparison with natural attenuation and also that the combined treatments generally enhanced hydrocarbon biodegradation in comparison to both natural attenuation and the single inorganic fertilizer treatment. The inorganic fertilizer plus Ivey? surfactant was the most efficient treatment in terms of Total Petroleum Hydrocarbon and light and heavy n-alkanes, showing an index of degradation of 1.4 and 1.3, respectively. Furthermore, biodegradation of heavy and branched n-alkanes was higher in microcosms treated with inorganic fertilizer plus ethanol (Index of degradation values of 1.6 and 1.5, respectively) indicating that combined treatments can be very effective in restoration of contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号