首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 687 毫秒
1.
祁连山老虎沟12号冰川积雪化学特征及环境意义   总被引:7,自引:5,他引:2  
2012年6月在祁连山老虎沟12号冰川采集雪坑和表层雪样品, 结合相关分析法、 海盐示踪法、 气团轨迹法等方法, 对冰川积雪的主要化学离子特征、 来源及环境意义进行分析研究.结果表明, 积雪中平均离子浓度Ca2+>SO42->NH4+>NO3->Cl->Na+>Mg2+>K+. 雪坑中Ca2+是主要的阳离子, SO42-是主要的阴离子; 各种离子在雪坑中的平均浓度要远大于表层雪, 而且雪坑中的化学离子浓度峰值与污化层有着很好的对应性.同时, 与青藏高原、 中亚天山、 阿尔泰山以及北半球其他区域高海拔雪冰化学特征进行比较, 发现祁连山老虎沟12号冰川区积雪化学特征受亚洲粉尘源区陆源矿物影响较大.然而, 雪坑中的离子(尤其是Na+和Cl-)除了陆源矿物粉尘之外, 部分还来源于海洋源.结合NOAA Hysplit模型对冰川区积雪化学离子来源进行了后向轨迹反演验证.  相似文献   

2.
王攀  靳孟贵  路东臣 《地球科学》2020,45(6):2232-2244
地下水是河南省永城市重要的供水水源,浅层地下水水质污染严重制约了该市经济发展和居民生活质量的提高.在实地调查采样分析的基础上,运用水化学图解法、数理统计法、地球化学模拟法等方法综合分析了永城市浅层地下水的水化学特征和形成机制,探讨了该市浅层地下水污染来源和主要影响因素.结果表明:随含水介质和人类活动影响强度的变化,浅层地下水中K+、Ca2+、NO3-、Cl-、SO42-的浓度和COD(chemical oxygen demand)随深度增加而减少,而Na+、F-、Mg2+、HCO3-的浓度和TDS(total dissolved solids)随深度增加而上升.在煤矿区及煤化工区浅层地下水中SO42-浓度大于250 mg/L,远远高于其他区域的SO42-浓度,而在农业区浅层地下水中NO3-浓度大于30 mg/L,远远高于其他区域的NO3-浓度.综合分析表明:煤矿及其化工业废水和生活污水排放、过量使用化肥农药是永城市浅层地下水污染的主要因素.   相似文献   

3.
喀斯特区域的水化学不稳定性——以黔中地区为例   总被引:2,自引:0,他引:2       下载免费PDF全文
黔中地区是岩溶作用发育的喀斯特区域.1993年秋和1994年春末采自该地区不同类型水样的水化学分析表明:碳酸盐岩裂隙泉水呈中偏碱性,为[C]Ca-Ⅱ型;秋季离子总量、HCO3-及Ca2+浓度大于春季.裂隙泉水流经地表一定距离后,HCO3-降低,pH及SO42-、Cl-、K+、Na+明显增高.黄果树的天星桥、水帘洞及落水潭三个部位河水的SO42-、Na+以及Fe3+、NO3-等浓度的季节性变化也更加明显.春季因瀑布暴气,CO2的逸出,钙华生成更强烈一些.红枫湖作为喀斯特区域地表水的汇集地,HCO3-与SO42-的当量比值仅2.1~2.4;Ca2+与Mg2+比值上升为2.4~4.2,Cl-浓度较碳酸盐岩裂隙泉水增高1倍;Na+浓度增高一个数量级.说明流域内地表土层溶蚀及人为污染影响的增强.土层孔隙水属强矿化水,而湖水呈现过渡特征.碳酸盐沉淀作用、硫酸盐矿化作用及固氮氨化作用,导致水质组成的显着差异.  相似文献   

4.
为揭示洞穴系统中SO42-和NO3-离子来源及其对洞穴碳酸盐溶解的影响,通过对麻黄洞6个水点自2018年8月至2019年7月进行为期一个完整水文年的系统监测,对于监测结果进行综合分析.结果表明:(1)麻黄洞洞穴水水化学类型为HCO3-Ca·Mg以及HCO3·SO4-Ca·Mg型;(2)通过实地调查与元素比值法综合分析可知,麻黄洞NO3-与SO42-各水点来源存在一定差异,其中麻黄洞NO3-主要源于农业活动和大气N沉降,而SO42-主要以农业活动、石膏溶解为主要来源,SO42-和NO3-均参与了岩溶作用,加速了基岩的溶蚀,这一过程主要受离子浓度、径流大小以及补给模式影响;(3)基于水化学计量法和稳定同位素技术估算可知,SO42-和NO3-洞穴水DIC的贡献为0.05~0.61,释放DIC的同时改变了水中离子浓度,对于岩溶作用形成扰动,总体呈现出旱季>雨季、滴水>裂隙水的特征.同样,由于岩溶区的复杂和不可知,在对其进行系统研究时应当注重多种方法的结合与比较,提高研究精度与可信度.   相似文献   

5.
慕士塔格卡尔塔马克冰川作用区的水文与水化学特征   总被引:9,自引:2,他引:7  
利用2003年6月1日~8月25日实测的水文数据,分析了慕士塔格峰卡尔塔马克冰川融水径流的变化特征.卡尔塔马克冰川融水径流主要集中在6~8月,其存在着明显的日变化过程,融水径流受控于温度及降水要素.同时,对8月10~23日采集的冰川径流样品及部分降水样品的pH、EC(电导率)和主要离子(Na+,K+,Ca2+,Mg2+,Cl-,NO3-,SO42-,未检测降水样品的离子含量)的测定结果进行了分析讨论.径流样品略偏碱性,pH和EC呈正相关关系.SO42-和Ca2+是所测离子中主导的阴阳离子.除NO3-外,样品中各离子含量具有一致的变化特征;各离子浓度与流量或水位具有相反的变化趋势.初步讨论了离子的来源,结果表明冰川融水中化学物质组分主要来源于地表.  相似文献   

6.
青藏高原中部各拉丹冬峰雪冰记录特征   总被引:1,自引:0,他引:1  
2005年10~11月在青藏高原唐古拉山脉各拉丹冬峰冰川区不同海拔采集了3个雪坑样品,分析结果表明,雪坑中δ18O和主要离子浓度具有明显的季节变化特征.夏季风期间降水中δ18O低于其它季节,表明该地区夏季δ18O的"降水量效应"仍然存在.雪坑中主要离子在非季风期的浓度高于夏季风期.主要离子的相关分析表明,除NH4+、NO3-外,雪坑中其它离子浓度之间均存在较好的正相关性.各拉丹冬峰冰川区仍受到南亚季风的影响,但因其位于夏季风影响的边缘区域,其影响程度相对于高原南部较弱;同时也受到大陆性气候的影响,在冬春季节具有较高的粉尘气溶胶沉降.  相似文献   

7.
李耕  韩志伟  申春华  曾祥颖 《地球科学》2019,44(9):2899-2908
岩溶流域水环境极易受到人为活动的影响,而硝酸盐污染是岩溶流域面临的最突出最普遍的问题之一,把握岩溶流域中硝酸盐的来源及其在不同水体中的分布特征与成因,可为岩溶流域硝酸盐污染的防治提供依据.以贵州普定后寨河流域为研究对象,于2017年5月采集地下水和地表水样品共53件,测定主要水化学参数,分析NO3-来源,并结合区域土地利用类型,沿流动路径阐明其影响.结果表明,研究区主要阴、阳离子浓度从大到小依次为HCO3- > SO42- > NO3- > Cl-、Ca2+ > Mg2+ > Na+ > K+,水化学类型以HCO3-Ca型为主.水体NO3-的主要来源为化肥,有6个采样点水体明显受到硝酸盐污染,NO3-浓度变化主要受混合过程控制,硝化作用和反硝化作用影响不明显.流域水体NO3-浓度受土地利用方式影响明显,流经以农田或村寨为主的区域时NO3-浓度升高,流经以林地灌木等自然植被繁茂的区域时NO3-浓度降低.   相似文献   

8.
根据珠穆朗玛峰东侧东绒布冰川海拔6450 m处长度为80.36 m的冰芯1886个样品的δ18O与主要离子浓度资料,研究了1844 AD以来珠穆朗玛峰地区大气环境在季节及年际尺度上的变化特征.结果表明:δ18O与Na+、K+和Cl-相关不明显,与Ca2+、Mg2+、SO42-、NO3-和NH4+具有较强的相关性.据相关分析及因子分析的结果,可以把8种主要离子分成5组来研究,它们主要表现为:海盐离子Na+可反映印度夏季风强弱变化;K+和Cl-在一定程度上可以反映印度等南亚地区生物质燃烧量的变化;陆源Ca2+和Mg2+离子表现为春季的峰值和夏季的低值,冬春季高浓度的Ca2+和Mg2+可能主要来自南亚的塔尔沙漠,以及西亚的干燥少雨的高原地区,或更遥远的北非撒哈拉沙漠,同时,青藏高原本身也可能是一个重要的沙尘源区;NO3-和SO42-离子浓度表现出高频的季节变化特征,存在春季的峰值和夏季的低值,20世纪70年代初期至90年代初期,NO3-和SO42-离子浓度一直维持在较高的水平;NH4+浓度在20世纪40年代以来的大幅度上升可能是世界大战后,社会趋于稳定,南亚地区农业迅速发展而大量使用化学肥料的结果.  相似文献   

9.
为研究无机水化学离子在降雨径流示踪中的可能性,在实验流域实测降雨、地面径流、壤中流、地下水径流过程和流域内17个测孔的地下水过程中,施测了Na+,K+,Ca2+,Mg2+,Cl-,SO42-,HCO3-+CO32-,NO3-,F-,NH4-,PO42-,SiO2和pH,EC,18O的同步过程,还施测了少数土壤水水样。结果是:①在Ca2+与Cl-/SO42-和EC与Na+/(Na++Ca2+)的关系中以及除NO3-,NH4-,PO42-外的所有离子,都可识别出上述各种径流组分;②径流离子过程均与降雨离子过程相仿,随径流组分从地面到地下而渐趋坦化;③除个例外,离子浓度过程均以降雨为最小并从地面径流到地下水径流渐次增大;④降雨和地下水离子过程表现为径流离子过程的两端元;⑤在降雨和各径流组分中,18O过程与大部分离子过程有一定的同步性。从以上结果认为,降雨并不是流域径流离子输出的主要来源,然而却是形成它的主要控制因素。此外,有关试验结果还对应用Cl-进行地下水补给的估算方法提出了问题。  相似文献   

10.
为了研究祁连山西段冰川末端地区大气PM2.5细粒子中可溶性无机离子组分的变化特征,于2011年采集了一批大气PM2.5的Telfon滤膜样品,并应用离子色谱对可溶性离子进行了分析。样品采用超纯水超声萃取各种水溶性离子,优化的萃取溶液体积为25 mL,萃取时间为30 min,萃取液用0.45μm纤维滤膜过滤,各种离子在一定浓度范围内线性关系良好,相关系数r>0.999。所测样品的阴阳离子中,SO42-、NO3-、Ca2+、和NH4+的质量浓度约占到水溶性离子总量的88%。可溶性离子浓度呈现出春夏高、秋冬低的季节变化特征,夏季可溶性离子浓度最高。  相似文献   

11.
基于2012年消融期6~9月在祁连山老虎沟12号冰川采集冰川融水径流样品,分析探讨冰川融水中粉尘颗粒物对融水理化性质的影响。结果表明,粉尘特征在消融期的变化很好地反映了冰川消融过程,融水中粉尘浓度和粒径众数在冰川强烈消融期的7月份表现为最高。粉尘体积粒径分布主要包括大气气溶胶超细颗粒(0~3.0 μm,主要为PM 2.5),大气粉尘颗粒(3.0~20 μm),以及局地源的粗颗粒(20~100 μm);对雪冰消融释放的粉尘部分(3.0~20 μm)粒径分布正态拟合结果说明,融水中粉尘颗粒物有很大部分来源于积雪中的粉尘运移所致。同时,融水中化学离子相对组成及其浓度消融期变化都与粉尘有较好的一致性,意味着粉尘对融水化学要素有重要影响。此外,pH值和电导率(EC)消融期的变化也反映了粉尘对融水物理指标的影响。在粉尘浓度较高时,融水pH值和电导率也表现出高值;融水径流中的悬移质颗粒物(SPM)浓度和溶解质固体(TDS)浓度具有较为一致的变化过程,反映了粉尘对于融水中溶解质含量也有较大影响。  相似文献   

12.
针对煤矸石山在降水淋滤作用下对矿区周边地下水造成污染的严重问题,用实验模拟法对包头石拐区一废弃煤矿进行饱和状态下煤矸石的淋滤实验研究。结果表明:煤矸石中Ca、Mg、Fe、Cu、Zn、NO3-、SO42-、Cl-的淋滤过程都遵循浓度先升高再降低到稳定值的基本规律,只是NO3-、SO42-、Cl-的淋出速率明显大于重金属的淋出速率,Ca和Mg、SO42-和Cl-、Pb和Cr、Cd有相似的淋出机制;重金属最强淋出率从大到小的顺序是Mg>Cd>Ca>Cu>Zn>Cr>Fe>Pb;Hg和As等含量甚微,均未检出。   相似文献   

13.
贵州六盘水矿区地表水-地下水交换频繁,是重要的生活和工、农业用水水源,为保障该地区用水安全和可持续性,以六盘水典型矿业集中开发区为研究对象,于2015年9月共采集水样33件.运用水化学、相关性分析和离子比值法等进行了综合研究,结果表明:地下水化学类型大多为Ca-HCO3型,部分为Ca-SO4型;地表水大多为Ca-HCO3、Ca-SO4型;矿井水为NaHCO3,而酸性矿山排水为Ca-SO4型.水体中Ca2+、Mg2+和HCO3-呈显著正相关性,主要由碳酸盐岩溶解控制,Na+和K+主要为硅酸盐岩溶解,Cl-主要来源于城镇生活污水,NO3-主要受农业生产影响,SO42-来源多样.矿业活动、城镇化和农业生产影响了水体离子组成,矿业活动还会加速碳酸盐岩的溶解,三者使水体水化学类型发生明显变化.喀斯特岩溶关键带人类活动复合影响下,矿业活动是岩溶水系统中水化学特征变化的关键驱动因子.   相似文献   

14.
在分析南极乔治王岛冰帽大冰穹顶部降水和成冰条件的基础上,利用冰芯上部层物理特征参数确定的5个年层及其附近气象站相应的降水记录,结合多年降水资料将大冰穹45m冰芯划分为15个年层.应用此年层剖面,证实了微粒含量的两个异常峰值分别对应于1987年Deception岛和1980年的SealNunataks两次火山喷发.乔治王岛冰帽属于温性冰帽,大、小冰穹冰芯阴阳离子受沉积后融水渗浸淋溶作用的影响.对冰芯阴阳离子的淋溶次序分析显示,大冰穹为SO42->Mg2+>Ca2+>K+>Cl->Na+>NO3->Br-,而小冰穹为Mg2+>Ca2+>SO42->K+>Cl->Br->Na+.  相似文献   

15.
浅层地下水是江汉平原东部地区重要的供水水源,但面临着污染及天然水质异常等问题.基于水化学与氢氧同位素结果,并运用数理统计和因子分析等方法,查明了研究区浅层地下水的化学特征、控制过程以及影响因素.结果显示,浅层地下水的化学类型主要为HCO3-Ca型;其中潜水中Ca2+和Mg2+含量与承压水接近,Fe、As和NH4+含量低于承压水,而Cl-、SO42-、Mn和NO3-含量高于承压水.浅层地下水主要为大气降水补给,其中潜水经历了一定程度的蒸发以及与地表水的混合.在影响浅层地下水化学特征的因素中,地质成因在总体上可能起主导作用;人类活动的输入显著地改变着潜水的化学特征,而浅层承压水则主要受径流过程中水-岩相互作用的影响.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号