首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
华北和圣弗朗西斯科克拉通前寒武纪地质对比   总被引:1,自引:0,他引:1       下载免费PDF全文
一些学者提出华北克拉通在新元古代早期之前与圣弗朗西斯科克拉通(圣弗朗西斯科-刚果克拉通)相邻,但缺少证据;本文总结两个古陆地质记录,为评价这一古构造格局模型提供线索。两个古陆陆壳生长的峰期均为~2.7 Ga前;不同之处是,华北古陆经历了显著的~2.5 Ga前的陆壳生长和改造,而圣弗朗西斯科克拉通则似乎没有。华北古陆2.4~2.2 Ga期间发育少量变质火山-沉积岩系和花岗岩,~2.1 Ga前后广泛发育裂谷火山-沉积建造及侵入岩,2.0~1.9 Ga发育超高温变质作用和类似弧岩浆活动,导致两个克拉通(东、西华北克拉通)拼合形成统一的华北古陆;同一时期,圣弗朗西斯科克拉通南、北缘发育2.4~2.0 Ga岩浆作用,指示长期处于大陆边缘弧或者岛弧背景,~2.0 Ga还发育超高温变质作用。两个古陆都发育~2.0 Ga前类似大陆边缘弧特点的岩浆活动,只是圣弗朗西斯科克拉通时代稍早。1.8 Ga以来,两个古陆均发育多期岩墙群,部分基本同期,如~1.78 Ga岩墙群、~1.7 Ga岩墙群和~0.92 Ga岩墙群等;不同的是,华北古陆发育约1.3~1.2 Ga岩床/墙群,而圣弗朗西斯克拉通发育~1.5 Ga岩墙群。1.8~0.8 Ga,两个古陆上都断续发育(火山)-沉积建造:1.8~1.6 Ga以及1.4~1.2 Ga,两者的沉积建造同样以石英砂岩等碎屑岩为主,碳酸盐岩较少;1.2~1.0 Ga前,两者的记录均较少,或暂不能确定;1.0~0.8 Ga,两者均发育碎屑岩和碳酸盐岩;1.6~1.4 Ga,华北古陆发育碳酸盐岩建造,而圣弗朗西斯科克拉通则发育碎屑岩建造。华北古陆新元古界地层中碎屑锆石常显示~1.5 Ga的峰值,该期岩浆岩鲜少报道于华北古陆,但却见于圣弗朗西斯科克拉通。两个陆块都发育太古宙-古元古代条带状铁建造铁矿、古元古代石墨矿、中新元古代沉积-喷流型铅锌矿等。不过,华北古陆发育的古元古代硼矿、菱镁矿,中元古代碳酸岩型稀土矿等在圣弗朗西斯科不发育;而后者发育的绿岩带型相关金矿、镍矿、祖母绿宝石矿等,华北似乎不发育。另外,0.7~0.5 Ga,圣弗朗西斯科克拉通周边广泛发育泛非期造山带,而华北古陆并没有这一事件的明确记录;显生宙,圣弗朗西斯科克拉通相对稳定,中生代与刚果克拉通分离;但华北古陆内部经历强烈的构造-岩浆活动(峰期在中生代)。华北与圣弗朗西斯科克拉通前寒武纪是否相邻还需进一步地质对比和古地磁工作,尤其应关注约2.0~1.9 Ga岩浆-变质(造山)事件、约1.8~1.7 Ga岩浆-沉积(裂谷)事件以及约0.9 Ga岩浆-沉积(裂谷)事件。从地质记录的相似性角度来看,华北东南缘与圣弗朗西斯科南缘的地质记录相似性最大,可延续性最强,最可能相邻。  相似文献   

2.
《Precambrian Research》2006,144(1-2):92-125
This paper presents a plate tectonic model for the evolution of the Australian continent between ca. 1800 and 1100 Ma. Between ca. 1800 and 1600 Ma episodic orogenesis occurred along the southern margin of the continent above a north-dipping subduction system. During this interval multiple orogenic events occurred. The West Australian Craton collided with the North Australian Craton (ca. 1790–1770 Ma), the Archaean nucleus of the Gawler Craton amalgamated with the North Australian Craton (ca. 1740–1690 Ma), and numerous smaller terranes accreted along the western Gawler Craton and the southern Arunta Inlier (ca. 1690–1640 Ma). The pattern of accretion suggests southward migration of the plate margin, which occurred due to a combination of slab rollback and back stepping of a subduction system behind the accreted continental blocks. Coeval with subduction a series of continental back-arc basins formed in the interior of the North Australian Craton and parts of the South Australian Craton, which were attached to the North Australian Craton prior to 1500 Ma. Extension of the North Australian Craton led to the opening of an oceanic basin along the eastern margin of the continent at ca. 1660 Ma. Continuing divergence was accommodated by oceanic spreading whereas the continental basins thermally subsided resulting in the development of sag-phase basins throughout the North Australian Craton. This oceanic basin was subsequently consumed during convergence, which ultimately led to development of a ca. 1600–1500 Ma orogenic belt along the eastern margin of Proterozoic Australia. Between ca. 1470 and 1100 Ma, the South Australian Craton, consisting of the Curnamona Province and the Gawler Craton rifted from the North Australian Craton and was re-attached in its present configuration during episodic ca. 1330–1100 Ma orogenesis, which is preserved in the Albany-Fraser Belt and the Musgrave Block.  相似文献   

3.
扬子克拉通保存的独特拉伸纪晚期碎屑岩建造为研究新元古代中期演化提供了绝佳素材,内部丰富的凝灰岩夹层和同位素年龄也为扬子克拉通新元古代中期演化提供有效的年代学约束。然而扬子克拉通拉伸系莲沱组内部演化缺少年代学约束,制约了拉伸纪晚期扬子克拉通的沉积演化研究。本研究通过野外地质调查,采用LA-ICP-MS技术获取莲沱组底界(神农架)凝灰岩锆石U-Pb谐和年龄为763.1±6.2 Ma,莲沱组下部陆相地层中获得(鹤峰)的凝灰岩锆石U-Pb谐和年龄761.8±7.1 Ma,莲沱组中下部海陆过渡段获得通山(764.1±3.5 Ma)、长阳(751.5±6.3 Ma)、神农架(752.1±6.5 Ma)三组凝灰岩锆石U-Pb谐和年龄。莲沱组顶部海相地层获得729.6±9.2 Ma(皖南休宁组)、722.4±4.5 Ma(神农架)凝灰岩锆石U-Pb谐和年龄,以及城口龙潭河组凝灰岩锆石U-Pb谐和年龄(712.4±6.4 Ma)。这些凝灰岩锆石年龄数据和地层序列表明:820~770 Ma扬子克拉通普遍处于暴露剥蚀环境,770~750 Ma开始沉积陆相-海陆过渡相莲沱组,750 Ma之后扬子克拉通过渡到海...  相似文献   

4.
The Archaean and Early–Middle Proterozoic (1.8–1.5 Ga) terranes of the North Australian Craton and the South Australian Craton are separated by 400 km of ca. 1.33–1.10-Ga orogenic belts and Phanerozoic sediments. However, there is a diverse range of geological phenomena that correlate between the component terranes of the two cratons and provide evidence for a shared tectonic evolution between approximately 1.8 and 1.5 Ga. In order to honour these correlations, we propose a reconstruction in which the South Australian Craton is rotated 52° counterclockwise about a pole located at 136°E and 25°S (present-day coordinates), relative to its current position. This reconstruction aligns the ca. 1.8–1.6-Ga orogenic belts preserved in the Arunta Inlier and the Gawler Craton and the ca. 1.6–1.5-Ga orogenic belts preserved in the Mount Isa Block and the Curnamona Province. Before 1.5 Ga, the South Australian Craton was not a separate entity but part of a greater proto-Australian continent which was characterised by accretion along a southward-migrating convergent margin (ca. 1.8–1.6 Ga) followed by convergence along the eastern margin (ca. 1.6–1.5 Ga). After 1.5 Ga, the South Australian Craton broke away from the North Australian Craton only to be reattached in its current position during the ca. 1.33–1.10 Ga-Albany–Fraser and Musgrave orogenies.  相似文献   

5.
U–Pb zircon analyses from a series of orthogneisses sampled in drill core in the northern Gawler Craton provide crystallisation ages at ca 1775–1750 Ma, which is an uncommon age in the Gawler Craton. Metamorphic zircon and monazite give ages of ca 1730–1710 Ma indicating that the igneous protoliths underwent metamorphism during the craton-wide Kimban Orogeny. Isotopic Hf zircon data show that 1780–1750 Ma zircons are somewhat evolved with initial εHf values –4 to +0.9, and model ages of ca 2.3 to 2.2 Ga. Isotopic whole rock Sm–Nd values from most samples have relatively evolved initial εNd values of –3.7 to –1.4. In contrast, a mafic unit from drill hole Middle Bore 1 has a juvenile isotopic signature with initial εHf zircon values of ca +5.2 to +8.2, and initial εNd values of +3.5 to +3.8. The presence of 1775–1750 Ma zircon forming magmatic rocks in the northern Gawler Craton provides a possible source for similarly aged detrital zircons in Paleoproterozoic basin systems of the Gawler Craton and adjacent Curnamona Province. Previous provenance studies on these Paleoproterozoic basins have appealed to the Arunta Region of the North Australian Craton to provide 1780–1750 Ma detrital zircons, and isotopically and geochemically similar basin fill. The orthogneisses in the northern Gawler Craton also match the source criteria and display geochemical similarities between coeval magmatism in the Arunta Region of the North Australian Craton, providing further support for paleogeographic reconstructions that link the Gawler Craton and North Australian Craton during the Paleoproterozoic.  相似文献   

6.
The Gawler Craton forms the bulk of the South Australian Craton and occupies a pivotal location that links rock systems in Antarctica to those in northern Australia. The western Gawler Craton is a virtually unexposed region where the timing of basin development and metamorphism is largely unknown, making the region ambiguous in the context of models seeking to reconstruct the Australian Proterozoic.Detrital zircon data from metasedimentary rocks in the central Fowler Domain in the western Gawler Craton provide maximum depositional ages between 1760 and 1700 Ma, with rare older detrital components ranging in age up to 3130 Ma. In the bulk of samples, ?Nd(1700 Ma) values range between ?4.3 and ?3.8. The combination of these data suggest on average, comparatively evolved but age-restricted source regions. Lu–Hf isotopic data from the ca 1700 Ma aged zircons provide a wide range of values (?Hf(1700 Ma) +6 to ?6). Monazite U–Pb data from granulite-grade metasedimentary rocks yield metamorphic ages of 1690–1670 Ma. This range overlaps with and extends the timing of the widespread Kimban Orogeny in the Gawler Craton, and provides minimum depositional age constraints, indicating that basin development immediately preceded medium to high grade metamorphism.The timing of Paleoproterozoic basin development and metamorphism in the western Gawler Craton coincides with that in the northern and eastern Gawler Craton, and also in the adjacent Curnamona Province, suggesting protoliths to the rocks within the Fowler Domain may have originally formed part of a large ca 1760–1700 Ma basin system in the southern Australian Proterozoic. Provenance characteristics between these basins are remarkably similar and point to the Arunta Region in the North Australian Craton as a potential source. In this context there is little support for tectonic reconstruction models that: (1) suggest components of the Gawler Craton accreted together at different stages in the interval ca 1760–1680 Ma; and (2) that the North Australian Craton and the southern Australian Proterozoic were separate continental fragments between 1760 and 1700 Ma.  相似文献   

7.
中国南方二叠纪海平面变化及升降事件   总被引:20,自引:5,他引:15  
王成善  李祥辉 《沉积学报》1999,17(4):536-541
在对中国南方二叠纪层序地层、充填特征及沉积演化认识基础上,通过研究海平面升降变化及事件后认为:华南二叠纪相对海平面升降旋回与其层序数量一致,升降型式可有两种且互成影像;二级海平面升降包括“二分式”和“单分式”,前者以扬子区为代表,后者典型见于华夏区;海平面升降事件发生在栖霞早期、茅口早期、茅口末期、吴家坪早期及长兴中后期;二级、三级海平面变化在升降样式、数量、相位上与欧美各地有所不同,其成因与所处构造域有关。  相似文献   

8.

High thorium euhedral, twinned and elongate zircons from the felsic part of a mafic dyke located in the Archaean Yilgarn Craton approximately 30 km northeast of Perth and approximately 2 km east of the Darling Fault, have consistent 207 Pb/ 206 Pb ages of 1214 ± 5 Ma. This age is interpreted as the age of dyke emplacement and is identical, within the uncertainties, with other U–Pb dyke ages reported for the southwest Yilgarn Craton. The present result extends the known occurrence of ca 1210 Ma dykes to the western margin of the Yilgarn Craton and confirms earlier conclusions that a major mafic dyke emplacement occurred throughout the southern Yilgarn Craton during a short‐lived magmatic pulse at ca 1210 Ma.  相似文献   

9.
《China Geology》2018,1(1):109-136
The mainland of China is composed of the North China Craton, the South China Craton, the Tarim Craton and other young orogenic belts. Amongst the three cratons, the North China Craton has been studied most and noted for its widely-distributed Archean basement rocks. In this paper, we assess and compare the geology, rock types, formation age and geochemical composition features of the Archean basements of the three cratons. They have some common characteristics, including the fact that the crustal rocks prior to the Paleoarchean and the supracrustal rocks of the Neoarchean were preserved, and Tonalite-Trondhjemtite-Granodiorite (TTG) magmatism and tectono-magmatism occurred at about 2.7 Ga and about 2.5 Ga respectively. The Tarim Craton and the North China Craton show more similarities in their early Precambrian crustal evolution. Significant findings on the Archean basement of the North China Craton are concluded to be: (1) the tectonic regime in the early stage (>3.1 Ga) is distinct from modern plate tectonics; (2) the continental crust accretion occurred mostly from the late Mesoarchean to the early Neoarchean period; (3) a huge linear tectonic belt already existed in the late Neoarchean period, suggesting the beginning of plate tectonics; and (4) the preliminary cratonization had already been completed by about 2.5 Ga. Hadean detrital zircons were found at a total of nine locations within China. Most of them show clear oscillatory zoning, sharing similar textures with magmatic zircons from intermediate-felsic magmatic rocks. This indicates that a fair quantity of continental material had already developed on Earth at that time.  相似文献   

10.
Rodinia超级大陆演化作为前寒武纪重要科学问题,一直备受关注.古生物地理区系作为解决古板块地理位置重建的有效手段,在Rodinia超级大陆恢复方面应用较少.龙凤山生物群是新元古代早期宏观藻类代表性生物群之一,其以Chuaria-Tawuia-Longfengshania为组合特征的宏观藻类在新元古代早期(1 000~780 Ma)广泛分布在赤道及低纬度地区的温暖滨海静水环境中.根据全球现有可靠的生物群落资料,进行了古生物地理分析,结果表明:此时期宏观藻类可划分为一个赤道附近低纬度地区宏观藻类生物域,域内包括以含底栖固着Longfengshania为特征的华北-加拿大(Chuaria-Tawuia-Longfengshania)区和仅有简单浮游藻类为特征的扬子-印度(Chuaria-Tawuia)区;古生物地理分布特征表明青白口纪Rodinia超级大陆中华北板块与劳伦古陆相邻、位于超大陆东缘,而扬子克拉通靠近印度板块、位于超大陆西部.   相似文献   

11.
Felsic magmatism associated with ocean–ocean and ocean–continent subduction processes provide important evidence for distinct episodes of crust-generation and continental lithospheric evolution. Rhyolites constitute an integral component of the tholeiitic to calc-alkaline basalt–andesite–dacite–rhyolite (BADR) association and contribute to crustal growth processes at convergent plate margins. The evolution of the Dharwar Craton of southern peninsular India during Meso- to Neoarchean times was marked by extensive development of greenstone belts. These granite-greenstone terranes have distinct volcano-sedimentary associations consistent with their geodynamic setting. The present study deals with geochemistry of rhyolites from the Chitradurga-Shimoga greenstone belts of western (WDC) and the Gadwal-Kadiri greenstone belts of eastern (EDC) sectors of Dharwar Craton to compare and evaluate their petrogenesis and geodynamic setting and their control on the continental lithospheric evolution of the Dharwar Craton. At a similar range of SiO2, Al2O3, Fe2O3, the rhyolites of WDC are more potassic, whereas the EDC rhyolites are more sodic and less magnesian with slight increase in TiO2. Minor increase in MgO content of WDC rhyolites reflects their ferromagnesian trace elements which are comparatively lower in the rhyolites of EDC. The relative enrichment in LILE (K, Rb) and depletion in HFSE (Nb, Ta, Zr, Hf) marked by negative Nb–Ta, Zr–Hf and Ti anomalies endorse the convergent margin processes for the generation of rhyolites of both the sectors of Dharwar Craton. The high silica potassic rhyolites of Shimoga and Chitradurga greenstone belts of WDC showing prominent negative Eu and Ti anomalies, flat HREE patterns correspond to Type 3 rhyolites and clearly point towards their generation and emplacement in an active continental margin environment. The geochemical characteristics of Gadwal and Kadiri rhyolites from eastern Dharwar Craton marked by aluminous compositions with low and fractionated HREE patterns and minor negative Eu anomalies are in conformity with Type 1 rhyolites and suggest that they were erupted in an intraoceanic island arc system. The overall geochemical systematics of the rhyolites from both the sectors of Dharwar Craton suggest a change in the geodynamic conditions from intraoceanic island arc of eastern Dharwar Craton and an active continental margin of western Dharwar marked by ocean–ocean subduction and migration of oceanic arc towards a continent followed by arc-continent collision that contributed for the evolution of continental lithosphere in the Dharwar Craton.  相似文献   

12.
华北克拉通中部在古元古代时是一个造山带吗?   总被引:4,自引:3,他引:1  
张旗 《岩石学报》2011,27(4):1029-1036
文中报道了笔者对华北古元古代花岗岩研究的初步结果,指出在2.0Ga前,华北东西两块地壳厚度明显不同,大体以太原为界,东部地壳很薄,中部很厚,西部较厚;至1.9~1.8Ga,在华北北部可能存在一个地壳加厚的区域,大体是东西向(或NEE向)展布的;至1.8Ga以后,华北克拉通整体垮塌了。笔者分析了现有资料,认为华北晚太古代和古元古代期间存在洋壳的依据不足,华北中部带为一造山带和碰撞带的见解也是值得进一步商榷的。  相似文献   

13.
Zircon U–Pb ages of the Mesoproterozoic dyke swarms (Lakhna dyke swarm) at the interface between the Eastern Ghats Mobile Belt and Bastar Craton of the Indian Peninsula are reported here to decipher the tectonic evolution of the region. The dyke swarm, which is dominantly N–S in orientation, has intruded the Bastar Craton at ca. 1450 Ma. The dykes vary in composition from dolerite to trachyte and rhyolite and have been emplaced in a continental anorogenic setting. The above age puts a lower time constraint on the sedimentary sequences of the Purana basin (Khariar basin) that have been deposited unconformably over the Bastar Craton. The shale member of the Khariar basin shows evidence of synsedimentary shearing suggesting that the sedimentation probably continued up to 517 Ma, the age of shearing and overthrusting of the granulite nappes of the Eastern Ghats Mobile Belt on the Craton. Further, the compression accompanying thrusting of the nappes, uplifted the Purana basins during inversion.  相似文献   

14.
Despite representing one of the largest cratons on Earth, the early geological evolution of the Amazonia Craton remains poorly known due to relatively poor exposure and because younger metamorphic and tectonic events have obscured initial information. In this study, we investigated the sedimentary archives of the Carajás Basin to unravel the early geological evolution of the southeastern Amazonia Craton. The Carajás Basin contains sedimentary rocks that were deposited throughout a long period spanning more than one billion years from the Mesoarchean to the Paleoproterozoic. The oldest archives preserved in this basin consist of a few ca. 3.6 Ga detrital zircon grains showing that the geological roots of the Amazonia Craton were already formed by the Eoarchean. During the Paleoarchean or the early Mesoarchean (<3.1 Ga), the Carajás Basin was large and rigid enough to sustain the formation and preservation of the Rio Novo Group greenstone belt. Later, during the Neoarchean, at ca. 2.7 Ga, the southeastern Amazonia Craton witnessed the emplacement of the Parauapebas Large Igneous Province (LIP) that probably covered a large part of the craton and was associated with the deposition of some of the world largest iron formations. The emplacement of this LIP immediately preceded a period of continental extension that formed a rift infilled first by iron formations followed by terrigenous sediments. This major change of sedimentary regime might have been controlled by the regional tectonic evolution of the Amazonia Craton and its emergence above sea-level. During the Paleoproterozoic, at ca. 2.1 Ga, the Rio Fresco Group, consisting of terrigenous sediments from the interior of the Amazonia Craton, was deposited in the Carajás Basin. At that time, the Amazonian lithosphere could have either underwent thermal subsidence forming a large intracratonic basin or could have been deformed by long wavelength flexures that induced the formation of basins and swells throughout the craton under the influence of the growing Transamazonian mountain belt.  相似文献   

15.
近年来,随着扬子克拉通埃迪卡拉系陡山沱组页岩气勘探获得重大突破,深入和细化陡山沱期构造-岩相古地理就显得迫在眉睫。基于大量野外露头和最新钻井资料,结合前人研究成果,作者对陡山沱期构造-岩相古地理进行了分析、研究和图件编制。研究认为: 扬子克拉通埃迪卡拉纪陡山沱期,受控处于罗迪尼亚超大陆西北边缘的古地理位置和超大陆大规模裂解之后的热沉降作用初期的成盆构造环境,其古地理特征总体呈现出西高东低、北高南低,四古陆剥蚀区(汉南、康滇、牛首山和江南古陆)、三台地区(上扬子、中下扬子和浙北台地)与四盆地区(扬子东南缘与北缘坳陷、万源—达州和湘鄂西内裂陷)相间的沉积面貌和格局。其中,台地区以局限—开阔台地,盆地区以台缘斜坡、陆棚和半深海等为主要优势相。4个古陆是扬子陡山沱组主要的碎屑物源区,下伏裂谷盆地构造和陡山沱期发育的同沉积断裂,共同控制了埃迪卡拉系陡山沱组构造-沉积特征。提出陕南、川东北、鄂西和湘黔渝临区是最有利的陡山沱组烃源岩分布区,其次是浙北—皖南地区。有利烃源岩分布区及其邻区是扬子深层—超深层常规天然气或页岩气勘探值得高度关注的区域。  相似文献   

16.
Recently,great breakthroughs have been obtained in shale gas exploration in the Ediacaran Doushantuo Formation in the Yangtze Craton. Thus,the tectonic-lithofacies palaeogeography of the Yangtze Craton during the Doushantuo depositional period was in urgent need to be further studied. Based on a large number of outcrop sections,latest drilling data,numerous previous studies,we reconstructed the tectonic-lithofacies palaeogeography of the Yangtze Craton. The results indicated that,during the Ediacaran Doushantuo Period,the tectonic background of the Yangtze Craton was not only controlled by its palaeogeographic location(at the northwest of the supercontinent Rodinia),but also by the thermal sedimentation after the continental rifting. The tectonic-lithofacies palaeogeography of the Yangtze Craton generally showed higher terrain in the west and the north,and lower in the east and the south,with four oldlands developed namely the Hannan,Kangdian,Niushoushan and Jiangnan oldlands. The sedimentary pattern was featured by three platforms(in the Upper Yangtze,Middle-Lower Yangtze,and northern Zhejiang regions)alternated with four basins(in the Wanyuan-Dazhou,west Hubei-Hunan,southeastern and northern Yangtze margins). The three platforms were dominated by restricted-open platform facies; the four basins were dominated by platform margin slope,shelf and bathyal facies. The four oldlands(provided the main detrital provenance),together with the syn-depositional faults and the palaeostructure of the underlying rift basins,controlled the tectonic-sedimentary characteristics of the Yangtze Craton during the Ediacaran Doushantuo Period. The paper has proposed that the southern Shaanxi,northeastern Sichuan,western Hubei,and the adjacent area of the Hunan,Guizhou and Chongqing are the most favorable distribution areas of the Doushantuo source rocks;the northern Zhejiang and southern Anhui areas are the secondary favorable distribution areas. These favorable distribution areas and their adjacent areas are considered to be favorable regions for deepening the deep natural gas exploration in the Yangtze Craton.  相似文献   

17.
苏皖地块--特提斯演化阶段独立的构造单元   总被引:31,自引:1,他引:31       下载免费PDF全文
基于苏皖地区的基底性质、晚元古代-中生代特征的沉积-火成建造、区域成矿和构造专属性,结合古地磁资料,提出了苏皖地块是特提斯演化阶段独立的构造单元的观点。它以苏鲁洋与华北克拉通间隔。震旦纪-早古生代的建造及变形特征与扬子克拉通有差异。石炭纪末和早二叠世的沉积和生物群表明它当时是古特提斯洋域里的一个中间地块,此时它已独立于扬子克拉通之外。三叠纪时苏鲁洋发生过大规模的消减但未闭合,因而苏皖地块的晚三叠世植物群与扬子克拉通有较明显区别。苏皖地块与华北克拉通(指胶辽地块)碰撞可能发生在早白垩世,该地区超高压变质岩的折返与之有关。之后,苏皖地块成为亚洲大陆雏形的一部分。  相似文献   

18.
Rhyodacite and rhyolite blocks found in numerous moraines on the Terre Adélie Craton in Antarctica are samples of a high‐temperature high‐K calc‐alkaline to alkali‐calcic igneous suite emplaced at ca 1.60 Ga. They comprise lavas and pyroclastic rocks, including ignimbritic varieties, chemically representative of anorogenic and post‐orogenic igneous suites. The eruptive centres are probably close to the coast according to radar satellite images that show the trace of the ice streams. The volcanic suite is similar in age, petrography and chemical composition (major and trace elements as well as Nd isotopes) to the Gawler Range Volcanics from the Gawler Craton of South Australia. These similarities strengthen correlations previously established between the Gawler Craton and the Terre Adélie Craton (Mawson Continent). Moreover, the present petrological, geochemical and geochronological data give a new insight into the last major thermal event affecting the Mawson Continent. The results also highlight the useful contribution of moraines to our knowledge of Antarctic geology.  相似文献   

19.
The hypothesis that much of the lithosphere of the Archaean Tanzania Craton was hydrated, by the dehydration of a buoyant subduction 2 Ga ago is presented in this study. Buoyant subduction is a potential mechanism for thermal erosion and metasomatism of extensive regions of the cold overlying continental lithosphere. This hypothesis could explain why the Tanzania Craton forms an undeformed island within the intensely deformed mobile belts. Furthermore, it would explain the formation of the eclogite and lherzolite bearing kimberlites within the Tanzania Craton far away from the trench. A buoyant, slow subduction is required because this would provide sufficient cooling from the overlying cratonic lithosphere and therefore the dipping slab could retain hydrous minerals such as antigorite in hydrated aureoles in peridotites. To test this hypothesis, the release of water during prograde metamorphism of a flat-subducting plate was modeled. It is shown that water can be transported ~800 km laterally, inboard of the trench, which is close to the north-south extension of the Archaean Tanzania Craton.  相似文献   

20.
内蒙古狼山地区宝音图地块是兴蒙造山带微地块之一.采用SHRIMP和LA ICP-MS锆石U-Pb测年技术,对宝音图地块中变质侵入体和宝音图群石英岩中的锆石进行了同位素年代学研究,获得了变质侵入体SHRIMP锆石U-Pb年龄1672±10Ma和宝音图群石英岩的碎屑锆石U-Pb下限年龄1426Ma,限定了宝音图群的形成时代应晚于1426Ma.同时根据宝音图群碎屑锆石年龄谱构造-热事件信息与华北克拉通构造-热事件年龄谱对比的相似性,揭示了宝音图群的碎屑来源于华北克拉通,认为宝音图地块与华北克拉通更具亲缘性,可能为华北克拉通的一部分.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号