首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tin and rare metal-bearing granitic pegmatites in the Bastar–Malkangiri pegmatite belt of Central India are hosted by metabasic and metasedimentary country rocks. Fluid inclusion studies were conducted in spatially associated two-mica granite and the staniferous and non-staniferous pegmatites to characterize the physicochemical environment of mineralization, to distinguish different pegmatites in terms of their fluid characteristics and to envisage a possible genetic link between the pegmatites and spatially associated granite. Three different types of primary inclusions were identified. The type-I, aqueous bi-phase (L+V) inclusions are the most abundant and ubiquitous. Type-II polyphase (L+V+S) inclusions are rare. Type-III, monophase (L) and metastable aqueous inclusions, though less abundant than type-I inclusions, are ubiquitous. The fluid evolution trends indicate that mixing of two different fluids of contrasting salinities, one of high salinity (20–30 wt% NaCl equivalent) and another of low salinity (0–10 wt% NaCl equivalent), was responsible for precipitation of the bulk of the cassiterite. This mixing is the single most important characteristic that distinguishes the staniferous pegmatites from their non-staniferous counterparts. The non-staniferous pegmatites, on the other hand, are typified by the presence either of a high saline or a low saline fluid that evolved through simple cooling. The minimum pressure–temperature of entrapment, estimated from the intersections of the halide liquidus with the corresponding inclusion isochores of type-II inclusions, range between 2.1–2.2 kb and 300–325 °C. The similar PT range of fluid entrapment of the staniferous and non-staniferous pegmatites indicates that they were possibly emplaced within a similar physical environment. Type-I inclusions from granite recorded only the high salinity fluid, the salinity of which compares well with that of the highly saline fluid component of type-I inclusions in the pegmatites. This is a possible indication of a genetic link between the pegmatites and spatially associated granite.  相似文献   

2.
Tin and rare metal-bearing granitic pegmatites in the Bastar–Malkangiri pegmatite belt of Central India are hosted by metabasic and metasedimentary country rocks. Fluid inclusion studies were conducted in spatially associated two-mica granite and the staniferous and non-staniferous pegmatites to characterize the physicochemical environment of mineralization, to distinguish different pegmatites in terms of their fluid characteristics and to envisage a possible genetic link between the pegmatites and spatially associated granite. Three different types of primary inclusions were identified. The type-I, aqueous bi-phase (L+V) inclusions are the most abundant and ubiquitous. Type-II polyphase (L+V+S) inclusions are rare. Type-III, monophase (L) and metastable aqueous inclusions, though less abundant than type-I inclusions, are ubiquitous. The fluid evolution trends indicate that mixing of two different fluids of contrasting salinities, one of high salinity (20–30 wt% NaCl equivalent) and another of low salinity (0–10 wt% NaCl equivalent), was responsible for precipitation of the bulk of the cassiterite. This mixing is the single most important characteristic that distinguishes the staniferous pegmatites from their non-staniferous counterparts. The non-staniferous pegmatites, on the other hand, are typified by the presence either of a high saline or a low saline fluid that evolved through simple cooling. The minimum pressure–temperature of entrapment, estimated from the intersections of the halide liquidus with the corresponding inclusion isochores of type-II inclusions, range between 2.1–2.2 kb and 300–325 °C. The similar PT range of fluid entrapment of the staniferous and non-staniferous pegmatites indicates that they were possibly emplaced within a similar physical environment. Type-I inclusions from granite recorded only the high salinity fluid, the salinity of which compares well with that of the highly saline fluid component of type-I inclusions in the pegmatites. This is a possible indication of a genetic link between the pegmatites and spatially associated granite.  相似文献   

3.
东秦岭伟晶岩区是秦岭造山带规模最大、稀有金属矿化最丰富的伟晶岩区.该区稀有金属矿化种类齐全,产出贫矿、铀矿化、铍矿化、锂矿化和复杂稀有金属矿化伟晶岩,以锂矿化和铀矿化伟晶岩为主.稀有金属伟晶岩类型丰富,包括绿柱石-铌铁矿亚型、锂辉石亚型、锂云母亚型和钠长石-锂辉石型.伟晶岩内部结构分带型式多样,包括对称分带、分层和均一结构.铀矿化伟晶岩分带简单,铍矿化和复杂稀有金属矿化伟晶岩以对称分带结构为主,锂矿化伟晶岩具有多种内部结构分带型式.伟晶岩分异演化程度跨度大.结晶分异影响着复杂稀有金属矿化伟晶岩的成矿过程.该区主要产出古生代伟晶岩,形成于晚志留世—中泥盆世,集中于两期,处于晚造山-造山后阶段.伟晶岩形成时代与伟晶岩空间分布、岩浆岩分异演化程度、稀有金属矿化类型等关联不大.东秦岭地区中大面积不同时代花岗岩体的侵位、变质沉积岩地层的发育以及长期复杂的造山演化历史,包括地壳加厚和抬升,是形成高度分异演化的伟晶岩岩浆的有利地质条件.该区具有寻找铍矿和复杂稀有金属矿的潜力,且需要关注长石、石英和云母等矿物的综合利用.稀有金属伟晶岩的岩浆成因是未来研究的重要方向.  相似文献   

4.
新疆阿尔泰造山带是我国重要的稀有金属矿床矿产资源基地,尤以富Li和富Be伟晶岩型矿床广泛发育为特色。本研究选择阿尔泰造山带卡鲁安-阿祖拜矿田富Li和富Be伟晶岩型矿床开展典型解剖,以贯穿岩浆阶段-伟晶岩阶段的白云母矿物为研究主线,探讨不同矿化类型伟晶岩中云母的成分演化规律、花岗岩与伟晶岩的成因联系。矿物学特征显示富Be伟晶岩中发育大量磷酸盐矿物,而富Li伟晶岩含较多橙色锰铝榴石、锂云母而缺乏典型的Fe-Mn磷酸盐。白云母成分分析显示,从白云母花岗岩→富Be伟晶岩→富Li伟晶岩,白云母总体呈Nb含量和Nb/Ta值降低,指示白云母花岗岩、富Be伟晶岩经历了不同程度的分离结晶作用,也代表了富Li伟晶岩的岩浆分异演化程度更高。尽管利用云母成分变化(尤其是K、Rb、Cs等大离子亲石元素)模拟岩浆结晶演化过程,显示可由初始花岗质岩浆经瑞利分离结晶作用依次形成白云母花岗岩→富Be伟晶岩→富Li伟晶岩的假设。但研究区年代学、矿物学、同位素证据指示富Li伟晶岩和富Be伟晶岩具有不同的熔体性质和形成时代。因此,应用云母成分探讨伟晶岩的成因联系应当建立在花岗岩-伟晶岩系统具有合理的时空分布和其它支持源自同一...  相似文献   

5.
The distribution of rubidium and cesium in microcline-perthite was studied in five topaz- and fluorite-bearing zoned pegmatites. Determinations of mineral paragenesis aided in the interpretation of the results of the rare alkali metal determinations. The study lead to the following conclusions: 1) The Rb content in zoned fluorite and topaz pegmatites increases by a factor of 2.4–3.0 from the contact zone toward the core. Cs in microcline-perthite varies systematically with position in some pegmatites, but not in others. 2) Biotite from fluorite-bearing pegmatites shows a much higher content of F, Rb, Cs and Li than biotite from fluorite-free pegmatites. This criterion (plus a higher Rb content in the block microcline-perthite near the pegmatite core) is considered as exploration aid for fluorite and piezoquartz pegmatites. — R.D. DeRudder.  相似文献   

6.
张辉  吕正航  唐勇 《矿床地质》2019,38(4):792-814
文章对阿尔泰造山带中的主要伟晶岩类型、时空分布特征、形成物源以及稀有金属矿化类型、形成条件(包括温度、压力、侵位深度)、可能控制因素等进行了归纳和总结,进而提出了阿尔泰伟晶岩成因模式、稀有金属矿化机制、伟晶岩型稀有金属矿床找矿模型及其找矿方向。阿尔泰稀有金属伟晶岩显示2个期次(同造山和后造山)和4个阶段(泥盆纪—早石炭世、二叠纪、三叠纪、早侏罗世)的成岩成矿特征。其中,以后造山阶段的三叠纪伟晶岩成岩及其Be、Li成矿作用最为显著。不同期次和阶段的伟晶岩显示规律的时空分布特征,稀有金属伟晶岩的成岩成矿明显受"构造-变质-物源-岩浆"的控制,而伟晶岩与周边花岗岩存在时代或物源上的解耦,表明阿尔泰伟晶岩不是由花岗质岩浆分异演化晚期的残余岩浆固结形成,由此提出阿尔泰不同时代伟晶岩的成因模式,即造山过程中加厚的不成熟地壳物质在伸展减压背景下发生小比例部分熔融(深熔)形成独立伟晶岩。通过对形成伟晶岩初始岩浆中磷含量、伟晶岩分异演化程度的评价以及基于围岩蚀变过程中全岩及蚀变矿物电气石中稀有金属Li、Rb、Cs含量特征,建立了阿尔泰伟晶岩型稀有金属矿床找矿模型、地质-地球化学找矿指标体系,并提出不同尺度的找矿方向。  相似文献   

7.
Paragenetic sequences observed in ore-bearing and barren pegmatites associated with alkalic ultramafic rocks are described. The Afrikanda massif is located in the western part of the Kola peninsula and is represented by nepheline pyroxenite. In its central part are ore-bearing pegmatites containing concentrations of titanomagnetite, knopite, schorlomite garnet, nepheline, pyroxene, and phlogopite. Processes of replacement are described and a comparison is made of geochemical features of these pegmatites as compared to granitic pegmatites, nepheline syenite pegmatites, and gabbroic pegmatites. --M. Russell.  相似文献   

8.
Zonal and sectorial monazite-(Ce) crystals from ceramic granite pegmatites of the Adui pluton are enriched in Ce and La, whereas monazite from the miarolitic gemstone pegmatites at the western contact of the pluton are enriched in Nd, Sm, Gd, and Y. This difference is caused by earlier crystallization of ceramic pegmatites and higher temperatures of their formation (650–600°C for ceramic pegmatites and 550–300°C for miarolitic pegmatites). Monazites from ceramic and miarolitic pegmatites of the Adui pluton differ in La and Nd contents, but their compositional trend in La-Nd coordinates is similar to the variation in monazite composition from the early to late granite pegmatites in the Ilmeny Mountains. It is suggested that decrease in temperature is a factor controlling REE contents in monazite. Heterovalent P ↔ Si and REE ↔ Th, Ca isomorphism in the consecutive zones of growth pyramids in monazite is both unidirectional and wave-like. Monazite from granite pegmatites of the Adui pluton and Ilmeny Mountains crystallized mainly under slightly alkaline conditions.  相似文献   

9.
Granitic pegmatites are widespread within a schist-metagreywacke complex in the Fregeneda-Almendra area (Central Iberian Zone). They intrude pre-Ordovician metasedimentary rocks and show a zonal distribution relative to the Meda-Penedono-Lumbrales granitic complex, from barren bodies to those enriched in Li, F, Sn, Nb>Ta, P and Be. Based on mineralogical criteria, these pegmatites are classified into three main categories: barren, intermediate and rare-element pegmatites, with each type including various subtypes. Phosphates are present in many pegmatites that usually occur as fine-grained accessory minerals. The most complex association of such minerals includes numerous Fe–Mn phosphates that occur in intermediate pegmatites. Al-phosphates are characteristic of Li-rich pegmatites. Electron microprobe analyses of representative phosphates reflect compositional differences depending on the pegmatite type. The Fe/(Fe+Mn) ratio of phosphates tends to decrease as the evolution degree of the pegmatites increases.  相似文献   

10.
Two distinct series of Variscan granitic rocks have been distinguished in the Gravanho-Gouveia area of Portugal, based on field work, variation diagrams for major and trace elements, rare earth patterns and δ18O versus total FeO diagram of rocks, anorthite content of plagioclase, BaO and P2O5 contents of feldspars and AlVI versus Fe2+ diagram for magmatic muscovite. One series consists of a late-orogenic porphyritic biotite > muscovite granite (G1), less evolved beryl-columbite pegmatites and more evolved beryl-columbite pegmatites showing gradational contacts. The other series consists of post-orogenic porphyritic muscovite > biotite granodiorite to granite (G2), slightly porphyritic muscovite > biotite granite (G3) and lepidolite pegmatites. In each series, pegmatites are derived from the parent granite magma by fractional crystallization of quartz, plagioclase, K-feldspar, biotite and ilmenite. Some metasomatic effects occur like muscovite replacing feldspars, chlorite in pegmatites of the first series and a late muscovite in pegmatites of the second series, probably due to hydrothermal fluids. The lepidolite pegmatites contain cassiterite and two generations of rutile. The first magmatic generation consists of homogeneous crystals and the second generation occurs as heterogeneous zoned crystals derived from hydrothermal fluids. The beryl-columbite pegmatites and lepidolite pegmatites also contain the first magmatic generation and the late hydrothermal generation of zoned columbite-group minerals. More evolved beryl-columbite pegmatites were converted into episyenite by intense hydrothermal alteration and regional circulation of fluids in the granitic rocks.  相似文献   

11.
The Oban Basement Massif of southeastern Nigeria is composed of metamorphosed rocks including phyllites, schists, gneisses and amphibolites cut by pegmatitic dykes of varying length and thickness, which intruded the metamorphic rocks. Preliminary geochemical study and analysis of these pegmatites from western Oban Massif at Uyanga, Akwa Ibami, Iwuru I, Iwuru Ⅱ and Igbofia showed that the pegmatites are highly albitized. This is incon-sistent with earlier postulations that the pegmatites in this part of Nige...  相似文献   

12.
The geochemistry of K‐feldspar for K, P, Sr, Ba, Rb, Cs, Ga, and of muscovite for the same elements plus Nb and Ta, was used for proving the parental relationships of S‐type granites and LCT (Li, Cs, Ta) rare‐element pegmatites in the southernmost pegmatitic field of the Pampean pegmatite province in Argentina. The variation of K/Rb‐Cs, K/Cs‐Rb, K/Rb‐Rb/Sr, K/Rb‐Ba in K‐feldspar from the granites and pegmatites show that they form an association with the evolutional sequence: granites → barren‐ to transitional pegmatites → beryl type, beryl‐columbite‐phosphate pegmatites → complex type of spodumene subtype pegmatites → albite‐spodumene type → albite type pegmatites. This sequence reflects the regional distribution of the different magmatic units. The Ta‐Cs diagram for muscovite reveals that none of the studied pegmatites exceed the threshold established in previous studies for being considered with important tantalum oxide mineralization. The granites and pegmatites constitute a rare‐element pegmatitic field in which different magmatic units form a continuous fractionation trend, extended from the less evolved granitic facies to the most geochemically specialized pegmatites  相似文献   

13.
The Xikeng pegmatite field lies on the eastern margin of the south China fold system in Fujian Province, and it is located at the junction of three major tectonic units. The distribution of pegmatites is obviously controlled by the fold system. There exists apparent injection relationship between the pegmatites and the surrounding Sinian schist and granulitite. The granitoids extensively distributed in the field belong either to the Variscan or to the Yenshanian cycle, and it is evident that the pegmatites are genetically related to Variscan migmatitic granites. The pegmatites can be grouped into four types: muscovite-orthoclase-albite pegmatite (I), muscovite albite-orthoclase pegmatite (II), muscovite-orthoclase-albite pegmatite (III), and muscovite-albite-spodumene pegmatite (IV). Owing to strong metasomatism and multi-stage emplacement of pegmatitic meltsolution, the sequence of interior assemblage zones in the pegmatites does not always represent the sequence of original crystallization. The mineral composition of the pegmatites is extremely complicated. 81 kinds of minerals have so far been found. From type I to type IV, the mineral assemblage tend to get increasingly complex, together with the synchronous intensification of rare-metal and Sn mineralizations. Most of the type-IV pegmatites are of economic value. The features of fluid inclusions in the minerals are significantly different not only in different types of pegmatite, but also in different parts of a single pegmatite vein. Theδ 18O values of migmatitic granite and pegmatites are comparatively low (9.3–10.4‰), and those of rock-forming fluids are higher than 9.5‰. Isotopic ages of the pegmatites range from 235 to 328 Ma with initial87Sr/86Sr ratios being 0.715–0.746. According to the temporal and spatial relationships between the pegmatites and the migmatitic granite, combined with the features of the pegmatites themselves, it can be concluded that the Xikeng pegmatites are the product of differentiation closely related to the migmatitic granite.  相似文献   

14.
     对美国北卡罗来纳州 Spruce Pine 地区白岗岩 / 伟晶岩和新疆阿尔泰白云母花岗岩 / 伟晶岩进行了对比研究。这两个地区的伟晶岩可能是过铝质花岗岩浆通过熔体 - 蒸汽分异作用的产物。美国产高纯石英的伟晶岩发育在片岩、片麻岩的背景之上,主要造岩矿物中富含斜长石,Na 大于 K,大离子亲石元素 Sr 和 Ba 含量高,高场强元素和稀土元素含量低,Eu 正异常,石英中杂质元素含量低。这些特征可作为高纯石英伟晶岩的判别标志。我国阿尔泰地区的伟晶岩脉十分发育,所研究的样品中,有些样品已经具有这些特点,阿尔泰伟晶岩区具有产高纯石英的成矿前景。  相似文献   

15.
Pegmatites and aplites enriched in P, Be, Nb, Ta and Li occur in the high-temperature metamorphic lithological units of the NE Bavarian Basement, SE Germany. They are accompanied by Ba mineralization, in vein-type deposits in the basement as well as in its foreland. Locally, Ba minerals are encountered in the late Variscan pegmatites and aplites too. The shallow discordant stock-like pegmatites (Hagendorf-type) are barren as to Ba, but in the tabular, concordant aplites and pegmatites Ba was concentrated (Plössberg-type). These concordant pegmatites and aplites are supposed to be the root zone of the intrusive pegmatites. In the rare case of low sulfur fugacity, Ba forms Ba–Zr–K–Sc phosphates/silicates in the pegmatites (transition of magmatic into the hydrothermal stages I/II). Under high sulfur fugacity, Ba is accommodated within the same stages in the structure of baryte. Barium is not accommodated in the lattice of phosphates during or in the immediate aftermaths of the emplacement of these Be–P–Nb–Ta pegmatites (stage III). This element shows up again in APS minerals during supergene alteration under acidic conditions (stage IV). Considering the host rocks of baryte mineralization, the Sr contents of baryte increased from the early Paleozoic to the Late Triassic. The Sr contents of baryte are a function of the depth below ground in the vein-type deposits and in the shear-zones bounding the tabular concordant pegmatites. Beryl is not only a marker mineral for the shear-zone-hosted pegmatites but can also be used as a tool for the geodynamic positioning of these pegmatites using its oxygen isotopes. A subdivision of the pegmatites into intrusive and shear-zone hosted may be achieved by its REE and minor elements.  相似文献   

16.
华南晚中生代幕阜山花岗复式岩基内部及周缘广泛发育花岗伟晶岩脉,部分岩脉富含Li-Nb-Ta等元素,形成大型-超大型稀有金属矿床.本文以幕阜山北缘断峰山地区贫锂伟晶岩类和南缘仁里地区新发现的富锂伟晶岩为主要研究对象,通过详细的岩相学和主要及特征矿物(长石、云母、电气石、石榴子石、绿柱石、铌钽铁矿)的微区原位EPMA和LA-ICP-MS主微量元素地球化学的对比分析,深入探讨了伟晶岩的分类、成因演化及成矿潜力.按照特征矿物组合将伟晶岩划分为断峰山地区电气石伟晶岩、电气石-绿柱石伟晶岩、绿柱石伟晶岩、铌钽铁矿-绿柱石伟晶岩和仁里地区的锂电气石-锂云母伟晶岩5类.5类岩脉中的长石、云母、电气石和/或石榴子石的化学成分记录了不同程度花岗伟晶岩脉的演化阶段,按岩浆演化程度由低至高依次为电气石伟晶岩→电气石-绿柱石伟晶岩→绿柱石伟晶岩→铌钽铁矿-绿柱石伟晶岩→锂电气石-锂云母伟晶岩,并分别对应伟晶岩稀有金属富集程度分类中的无矿→(含Be)→富Be→富Be、Nb、Ta→富Li、Be、Nb、Ta阶段.这一结果表明仁里地区伟晶岩已演化至晚期富集多种稀有金属元素阶段,具有Li-Nb-Ta多金属成矿潜力,而断峰山地区的伟晶岩演化程度相对较低.断峰山电气石-绿柱石伟晶岩中的色带电气石晶体发育强烈成分环带,由内向外可明显分为5环,自核部至边部,Li、Zn、Ga、Ge、Nb、Ta、Sn、Pb等不相容元素和金属元素含量逐渐升高,清晰记录了正常岩浆演化序列及稀有金属富集过程.结合前人有关幕阜山花岗岩类的研究资料,本文认为幕阜山伟晶岩为该地区晚中生代巨量花岗质岩浆经历长期结晶分异作用晚期的分异产物.   相似文献   

17.
In the Hindu Kush system of ranges, rare-metal pegmatites are spatially and genetically associated with granitoids of the Laghman complex, which form gigantic massifs in the Karakorum - South Pamir late Cimmerian fold region. Age of the granitoids and pegmatites is Early Cretaceous - Paleogene. Fields of rare-metal pegmatites occur in the roof of the massifs of biotite and two-mica granites in quartz-muscovite-biotite schists with garnet and staurolite, and in a lesser degree, these pegmatites are distributed among gabbro-diorites, gneisses, limestones, and amphibolites. The fields of rare-metal pegmatites on the largest scale and of practical importance are located in graben-synclines of the upper structural stage, where only the apical crests of massifs of the parent granites crop out. The pegmatite fields in Afganistan have been grouped into clearly defined belts extending for hundreds of kilometers. The principal belts of rare-metal pegmatites (Nuristan, Hindu Kush, and Badakhshan) are located in the surroundings of the rises in the Precambrian basement. —Authors.  相似文献   

18.
In this paper we discuss the main petrogenetic models for granitic pegmatites and how these models have evolved over time. We suggest that the present state of knowledge requires that some aspects of these models to be modified, or absorbed into newer ones. Pegmatite formation and internal evolution have long supposed the need for highly water- and flux-enriched magmas to explain the differences between pegmatites and other intrusives of similar major element composition. Compositions and textural characteristics of fluid and melt inclusions in pegmatite minerals provide strong evidence for such magmas. Furthermore, we show that melt inclusion research has increased the number of potential flux components, which may include H2O, OH?, CO2, HCO 3 ? , CO 3 2? , SO 4 2? , PO 4 3? , H3BO3, F , and Cl, as well as the elements Li, Na, K, Rb, Cs, and Be, herein described as melt structure modifiers. In this paper we emphasize that the combined effect which these components have on the properties of pegmatite melts is difficult to deduce from experimental studies using only a limited number of these components. The combination and the amount of the different magmatic species, together with differences in the source region, and variations in pressure and temperature cause the great diversity of the pegmatites observed. Some volatile species, such as CO 3 2? and alkalis, have the capacity to increase the solubility of H2O in silicate melt to an extraordinary degree, to the extent that melt-melt-fluid immiscibility becomes inevitable. It is our view that the formation of pegmatites is connected with the complex interplay of many factors.  相似文献   

19.
福建南平花岗伟晶岩中锡石的矿物学研究   总被引:1,自引:0,他引:1  
锡石是南平花岗伟晶岩中分布广泛的重要副矿物,和铌钽矿物密切伴生,且锡石中的钽、铌含量也颇高,Ta2O5最高达4.8%,Nb2O5最高达1.66%,因此,锡石不仅是伟晶岩中铌钽矿体中的标志性矿物,而且完全可综合回收,具有较大的经济价值。对南平伟晶岩中的锡石从产状、分布规律、物理、化学特性及其红外光谱等做了较详细论述,对于探讨铌钽矿化伟晶岩的形成及寻找铌钽矿体有着重要意义。  相似文献   

20.
Miarolitic granite pegmatites are a unique natural object that makes it possible to study magmatic processes that lead to the formation of ore-forming media and systems. This paper summarizes modern views on phase transformations in aqueous silicate systems at parameters close to those of the transition from magmatic to hydrothermal crystallization. Comparison of phase diagrams and the results of study of pegmatite-forming media permits making conclusions about the crystallization of the water-saturated magmas of miarolitic granite pegmatites. The fluid regime of aqueous granite systems of simple composition, not enriched in fluxing components, is determined mainly by magma degassing or the supply of volatiles with flows of transmagmatic fluids. These processes cause the separation of essentially carbon dioxide or essentially hydrous fluid. During the evolution of such magmas, crystallization from silicate melt is separated in PT-space and, possibly, in time from the crystallization from aqueous or mixed carbon dioxide-aqueous super- and subcritical solutions. The evolution of chambers of water-saturated granitic and pegmatitic magma enriched in F, B, and alkali metals presupposes the formation of a heterogeneous mineral-forming medium in which crystallization occurs in the magmatic melt at high-temperature stages; as temperature decreases, crystallization can proceed in hydrous fluid, hydrosilicate, and/or hydrosaline liquids simultaneously. Hydrothermal crystallization can also take place in a heterogeneous medium consisting of aqueous solutions of different salinities and vapor or vapor-carbon dioxide gas mixture. The relationship between different fluid regimes during the evolution of volatile-saturated granitic and pegmatitic magmas determines the variety of postmagmatic rocks accompanying granite massifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号