首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human activities contribute different pollutants to receiving waters, often with significant variations in time and space. Therefore, integrating multiple parameters of water quality and their spatiotemporal variations is necessary to identify the pollution characteristics. Based on the water quality monitoring data with 12 parameters for 2 years at 22 sampling sites in the Cao-E River system, eastern China, the projection pursuit method was used to project all parameters and their temporal variations into a one-dimensional vector through two projections. Accordingly, we could easily assess the comprehensive water quality in different sampling sites and then classify their water pollution features. Factor analysis was then used to identify the pollution characteristics and potential sources. Results showed that all sampling sites for the river system could be classified into four groups: headwater sites (HS), agricultural nonpoint sources pollution sites (ANPS), point sources pollution sites (PSPS), and mixed sources pollution sites. Water quality in HS was good, containing only a few nutrients from the woodland runoff and soil erosion. For ANPS, the main pollutants were dissolved phosphorus, total P, and nitrate nitrogen (NO3 ?-N), mainly from farming land. For PSPS, ammonium nitrogen (NH4 +-N) and organic pollutants originated from industrial and municipal sewage. In HS and ANPS, NO3 ?-N was the main form of nitrogen, and a high ratio of NO3 ?-N/NH4 +-N was a remarkable characteristic, whereas NH4 +-N was the main form of nitrogen in PSPS. Except in HS, water quality in the other groups could not meet the local water quality control standard. Finally, suggestions were proposed for water pollution control for the different groups.  相似文献   

2.
There are many reports of NO3 ? violating safety standards in the neighboring areas of concentrated animal feeding operations (CAFOs), which have become the bottleneck of the CAFOs development. The high concentration of ammonium nitrogen (NH4 +-N), which transforms into nitrate nitrogen (NO3 ?-N) through nitrification, and then leaches into the groundwater, is a potential threat to the environment. Adsorption and desorption characteristics of ammonium can reduce the amount of NH4 +-N in soils, which effectively prevents or slows down the nitrate leaching. Researches on the adsorption and desorption of ammonium mainly focus on the simple NH4 + solution. Researches on the adsorption and desorption from hogpen wastewater are few, which is a complex system coexisting with many ions. In this paper, ammonium was selected as the object of pollutant, a batch of equilibration experiments was conducted to evaluate the adsorption–desorption and its kinetics in eight loams, typically found in Northern China, irrigated with original wastewater (OW) and reclaimed wastewater (RW) from intensive hogpen and a simple one consisting of clean water (CW). This study showed that the Freundlich and Langmuir model described the ammonium adsorption properties very well in multi-ion coexistensive system of hogpen wastewater; the ammonium adsorbed amount in the corresponding matrices followed by OW < RW < CW tendency, although the adsorption model parameters had great diversity. The adsorbed amount increased as the adsorption time went on and then approached to a stable state. CW had the shortest reaction time to reach equilibrium, whereas OW had the longest. The normal adsorption kinetics equation could not depict the adsorption behavior of loams but characterized by the ExpAssoc equation well. The study could provide references for the wastewater treatment and recycling, and rural water pollution controlling.  相似文献   

3.
Nitrogen fertilizer consumption is very common in the agricultural practices. Nitrogen application could be an important source of groundwater N pollution. Normally, nitrogen can pass through the unsaturated zone to pollute the groundwater. Different agricultural practices have different cultivation methods, accordingly different fertilization and irrigation techniques. Hence, the agricultural practice determines the environment of the unsaturated zone, which subsequently determines the extent of groundwater N pollution. To verify the pollution modes and transformation mechanisms of nitrogen, both in situ and laboratory tests were conducted at four different sites to study the effects of agricultural practices on nitrogen distribution in unsaturated zones. The inorganic nitrogen in soil is extracted by potassium chloride solution, and the soil utilization form and pollution type are identified by δ15N by comparing with the known standard values. The experimental results indicate that continual fertilization and sewage irrigation in these agricultural regions were the primary sources of nitrogen in the unsaturated zone. In the soils planted with rice, δ15N–NH4 + was relatively elevated due to ammonium volatilization. In the unsaturated zone of rice–wheat rotation fields, NO3 ?–N and δ15N were both elevated because of manure fertilizer. Meanwhile, denitrification also occurred in the hypoxic environment due to the high soil water content.  相似文献   

4.
In the rocky mountain area of North China, soil fertility has decreased with severe soil and water losses under various land uses. Land use has been proven to affect soil fertility spatial distribution patterns at larger scales. However, less information is available about these effects in field scale plots. Soil samples were collected at 2-m intervals by grid sampling from an area (18?×?18 m) within three land use types (poplar woodland, rotation cropland with peanut and sweet potato, and peach orchard). Soil properties including soil particle composition, soil organic matter, total nitrogen (TN), nitrate nitrogen (NO3 ?-N), total phosphorus (TP), and available phosphorus (AP) were measured for each sample. The spatial variability and spatial pattern of the soil properties were assessed for the three contrasting land use types. NH4 +-N, NO3 ?-N, and AP in the peach orchard and NO3 ?-N in the poplar woodland exhibited strong variation (coefficient of variance >100 %). Other properties showed moderate variations. With annual plowing and fertilization, soil properties in the rotation cropland had less variability and greater spatial autocorrelated ranges. The spatial dependences of sand content, TN, NO3 ?-N, and SWC in both the peach orchard and the rotation cropland were weaker than those in the poplar woodland, but the spatial dependences of TP and AP in the peach orchard were stronger than those in either the rotation cropland or the poplar woodland. Human activities such as plowing, fertilization, and harvesting had obvious effects on the spatial variability and spatial pattern of soil properties.  相似文献   

5.
The investigation of the impact of different forms of nitrogen fertilizer (NO3-N and NH4-N) on microbial parameters, enzyme activities and phytotoxicity in a petroleum-contaminated soil was evaluated by an incubation study. The tested enzymes, microbial activity and seed germination index showed different patterns in response to both petroleum and nitrogen fertilizer addition and time of incubation. The results apparently showed that the contamination of soil with petroleum has a negative effect on soil ecosystem. Nitrogen fertilizer could improve inhibition of petroleum hydrocarbons in soil. Nevertheless, nitrogen fertilizer had no significant effect on urease activity in the petroleum-contaminated soil. As compared to NO3-N, the addition of NH4-N to the soil resulted in a greater impact on soil performance as attested by the recovery of the soil germination capability and higher values of the respiration. The application of nitrogen fertilizer may be suggested as a good strategy for restoring soils in regions affected by the same problem.  相似文献   

6.
Soil nutrient dynamics, potential biological nitrogen fixation (BNF) changes, and their relations were studied using four land use types. Further, we investigated BNF changes in the presence of biochar in soils. Soil samples were collected from arable, vineyard, grassland, and forest soils during four seasons, and analyzed for abiotic contents of total nitrogen, NH4+-N, NO3?-N, ammonium lactate (AL)-soluble K2O, P2O5, and soil organic carbon (SOC) concentrations. Potential N2 fixation was measured as ethylene (C2H4) production from acetylene (C2H2) reduction (ARA). The study focused on the changes in ARA when different types of biochars (T600, T650, and T700) were applied to soil samples in different amounts (0, 0.5, 2.5, and 5.0% wt wt?1) under laboratory conditions. We found strong correlations between soil chemical parameters and ARA values, especially in the case of soil pH, total N, SOC, and P2O5 contents. In the case of arable soil, the ARA measurements were up to 227 times higher compared to grassland and forest samples. Biochar application affected N2-fixing microbial responses among land use types, most notably decreases in arable lands and forest soils. We found that a high amount of biochar added to the soils can greatly suppress N2-fixing activities. Our results highlight the strong relationship between soil nutrient changes and the intensity of anthropogenic influence.  相似文献   

7.
Meiliang Bay and Gonghu Bay, in the north of Taihu Lake, are important water sources for the city of Wuxi, and increased eutrophication now threatens the safety of drinking water. The distribution of nitrogen (N) speciation and source of N in the surface waters in the north of Taihu Lake is studied, which was an important first step in controlling N pollution. The result shows that the average concentration of ammonia (NH4 +) and nitrate (NO3 ?) of surface water in Meiliang Bay was 0.32 and 0.35 mg/L, while 0.21 and 0.74 mg/L of Gonghu Bay, in which both bays had serious nitrate pollution. The concentrations of NH4 + and NO3 ? in the surface water of the two bays had a trend of gradual decrease from north to south. The maximum concentrations of NH4 + and NO3 ? of two bays were observed near the inflowing rivers, and the maximum concentrations of NH4 + in surface water of two bays were 0.49 and 0.61, and 0.77 and 1.38 mg/L of NO3 ?. The concentration of NH4 + in the interstitial water of the two bays had a trend of gradual decrease from west to east, but NO3 ? had the opposite tendency. The maximum concentrations of NH4 + in the interstitial water of the two bays were 5.88 and 4.64, and 3.58 and 7.18 mg/L of NO3 ?. The exchangeable NH4 + content in the sediment of Meiliang Bay had a trend of gradual decrease from north to south, but Gonghu Bay showed the reverse. The exchangeable NO3 ? content in the sediment of Meiliang Bay had a trend of gradual decrease from east to west, but a decreasing trend from north to south was observed in Gonghu Bay. The maximum concentrations of exchangeable NH4 + were determined, and the values were 96.25 and 74.90 mg/kg, as well as NO3 ? with the values of 12.06 and 7.08 mg/kg. Chemical fertilizer and domestic sewage were the major sources of nitrate in surface water of Gonghu Bay, contributing 39.16 and 47.79%, respectively. Domestic sewage was the major source of nitrate in Meiliang Bay, contributing 84.79%. The denitrification process in Gonghu Bay was more apparent than in Meiliang Bay. Mixing and dilution processes had important effects on changing the concentration of nitrate transportation in the two bays.  相似文献   

8.
The groundwater in the upper Kodaganar basin is contaminated due to the discharge of effluents from tannery industries. The water in the wells, whose physico-chemical characteristics are altered due to the influence of the effluents, is statistically analyzed. The physico-chemical variables such as EC, Na+, K+, Ca2+, Mg2+, F?, Cl?, HCO3 ?,CO3 2?, NO3 ?, SO4 2?, pH, and Crtotal were used for this study. An attempt was made to identify the contaminated wells based on suitability for drinking, suitability for industrial requirements, and through principal component analysis (PCA). Classification based on suitability helped in identifying the contaminated wells. However, this resulted in failure when identifying the wells that are contaminated by tanneries. PCA has proved to be effective in the segregation of contaminated wells influenced by tannery industries. The physico-chemical variables that are 13 in number are transformed into two orthogonal components and Eigen values based on the variance. The Eigen values are used to select the first two principal components PC1 (7.26) and PC2 (2.24) that accounted for 73.04% variance in the data. The components of the variables and the wells are plotted in a biplot to isolate the contaminated samples. The contaminated samples are analyzed in the spatial domain in geographic information system and found to be clustered around the tannery belt. The study reveals that 35% of the samples are contaminated due to discharge from tannery industries.  相似文献   

9.
不同温度条件下氨氮在砂土中的吸附实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
温度的变化能够改变水体的环境,引起周围环境中的离子吸附解吸作用的变化。不同于其他土壤,砂土的保水保肥能力更差,砂土地区一旦发生氨氮(NH4+-N)污染,情况会更加严重和突出。为防治砂土地区N H4+-N污染提供理论依据与技术支持,通过N H4+-N的静态吸附试验,研究不同温度条件下N H4+N在粗砂、中砂、细砂中的吸附转化特征,得到如下结论: 在试验设置的温度区间内,总的趋势是温度越低,砂土对N H4+-N的吸附量越高,表明温度升高对N H4+-N的吸附有抑制作用,这主要是因为吸附过程中会产生弱放热效应,进而降低渗滤介质对N H4+N的平衡吸附量; 在25~30 ℃区间内存在硝化与反硝化作用的临界温度,当温度低于临界温度时,N H4+-N吸附量的减少主要是由于发生了硝化反应,当温度高于临界温度时,N H4+-N的吸附量减少主要是由于发生了反硝化反应。  相似文献   

10.
The potential mineralization and immobilization of soil nitrogen (N), phosphorus (P) and sulfur (S) are relatively high in natural ecosystems. This study was conducted to investigate the changes in essential plant macronutrients; N, P, and S status in response to different soil depth in rangeland ecosystems in vitro. The net nutrient mineralization was measured during 90 days at different depths (0–15, 15–30, 30–45 and 45–60 cm), using kinetic models to estimate the release rate. The net ammonification and mineralization of P and S were described using parabolic diffusion equation, while the power function equation was used to describe the net nitrification. The results indicated that the amount of released ammonium (NH4 +) decreased with time and depth and the rates of net ammonification were negative in all samples. Conversely, nitrification increased with time and depth and the rates were all positive. The net mineralization for both P and S reduced with time. The concentration of mineralized SO4 2? increased with depth like nitrate (NO3 ?). Accumulation of SO4 2? and NO3 ? in subsurface soils and NH4 + and P at surface horizons can increase the potential of their loss by leaching or volatilization.  相似文献   

11.
In an attempt to more fully understand the dissolved inorganic nitrogen dynamics of the Neuse River estuary, 15NH4 + and 15NO3 ? uptake rates were measured and daily depth-integrated rates calculated for seven stations distributed along the salinity gradient. Measurements were made at 2–3-wk intervals from March 1985 to February 1989. Significant dark NH4 + uptake occurred and varied both spatially and seasonally, accounting for as much as 95% of light uptake with the median being 33%. Apparent NH4 + uptake ranged from 0.001 μmol N 1?1 h?1 to 4.2 μmol N 1?1 h?1, with highest rates occurring during late summer-fall in the oligohaline estuary. Apparent NH4 + uptake was significantly related to NH4 + concentration (p<0.01); however, the regression explained <3% of the variation. Daily-integrated NH4 + uptake ranged from 0.1 mmol N m?2 d?1 to 133 mmol N m?2 d?1 and followed the trend of apparent uptake. Annual NH4 + uptake of the estuary was significantly lower in 1988 than for any other year. Dark uptake of NO3 ? was only 14% of maximum light uptake. Apparent NO3 ? uptake rates ranged from 0.001 μmol N 1?1 h?1 to 1.84 μmol N 1?1 h?1 with highest rates occurring in the oligohaline estuary. Apparent NO3 ? uptake was significantly related to NO3 ? concentration (p<0.01); however, the regression explained <5% of the variation. In general, NO3 ? uptake was only 20% of total dissolved inorganic nitrogen (DIN) uptake. Daily-integrated NO3 ? uptake ranged from 0.1 mmol N m?2 d?1 to 53 mmol N m?2 d?1 and followed similar patterns of apparent uptake. Annual NH4 + uptake was 11.39 mol N m?2 yr?1, 10.28 mol N m?2 Yr?1, 10.93 mol N m?2 yr?1, and 7.38 mol N m?2 yr?1, and 1.84 mol N m?2 yr?1, with the 4-yr mean being 10.0. Annual NO3 ? uptake was 3.12 mol N m?2 yr?1, 3.40 mol N m?2 yr?1, 1.96 mol N m?2 yr?1, and 1.84 mol N m?2 yr?1, with the 4-yr mean being 2.6. The total annual DIN uptake was more than twice published estimates of phytoplankton DIN demand, indicating that there is an important heterotrophic component of DIN uptake occurring in the water column. The extrapolation of nitrogen demand from primary productivity results in serious underestimates of estuarine nitrogen demand for the Neuse River estuary and may be true for other estuaries as well.  相似文献   

12.
A comparative experiment was conducted in two cross sections with sandy and sandy loam sediment textures along an agricultural drainage stream in eastern China to address the effects of sediment texture on in-stream nitrogen uptake efficiency. Using dimerous chambers for in situ incubations, NO3-N and NH4-N uptake metrics (i.e., areal uptake rate and uptake velocity) and associated hydrochemical variables in the enclosed sediment–water column system were measured for 8 days and two nights across April–July in 2011 and March–June in 2012. For the investigated sites, in-stream uptake accounted for 2–45 and 9–36 % of the initial NH4-N and NO3-N within the enclosed water column, respectively. Although similar daytime, diel and day-to-day (daytime) variation patterns of NO3-N or NH4-N uptake metrics were observed for the two sites, the sandy loam sediments had average net NO3-N and NH4-N uptake efficiency ~50 % higher and ~40 % lower than for the sandy sediments, respectively. As NO3-N was the dominant nitrogen form in the studied water columns (typical of agricultural drainage rivers), the sandy loam sediment site had an average of about 47 % higher net uptake efficiency for dissolved inorganic nitrogen (i.e., NO3-N + NH4-N). This study demonstrates that sediment texture has a considerable effect on spatial variation of nitrogen uptake along the river system. Changing sediment texture due to anthropogenic modifications on catchment land use and stream channels has the potential to change stream nitrogen cycling as well as altering nitrogen inputs and forms to downstream aquatic ecosystems.  相似文献   

13.
Soil salinization is an environmental problem having significant impacts on the soil–water–plant system. This problem is more frequent in coastal areas due to seawater intrusion into the land. Assessing the soil salinization is a critical issue for the agricultural areas situated in the Mediterranean basin. This paper examines the deterioration of soil quality in the cultivated land of a Mediterranean site (Agoulinitsa district—West Greece). Soil samples were collected in both pre-irrigation and post-irrigation seasons. Electrical conductivity (EC), pH and the ions Br?, Ca2+, Cl?, F?, K+, Li+, Mg2+, Na+, NH4 +, NO2 ?, NO3 ?, PO4 3? and SO4 2? were determined by the 1:2 (soil/water ratio on weight basis) method. The salts which were present in both seasons in the soils of the area studied are KCl, MgCl2, NaCl, CaSO4 and K2SO4. The wide spatiotemporal variation of EC in the cultivated land in both seasons demonstrates that soil salinity is controlled mainly by seawater intrusion and anthropogenic factors such as the application of salt-rich water which is directly pumped from the drainage ditches. Seawater intrusion provides the affected soil with elevated contents of Ca2+, Cl?, K+, Mg2+, Na+ and SO4 2?. Classification of the soils by using criteria given by the literature is discussed. Practices to prevent, or at least ameliorate, salinization in the cultivated land of Agoulinitsa district are proposed.  相似文献   

14.
The supply of nutrients from surface and subsurface water flow into the root zone was measured in a developing barrier island marsh in Virginia. We hypothesize that high production of tall-formSpartina alterniflora in the lower intertidal zone is due to a greater nitrogen input supplied by a larger subsurface flux. Individual nitrogen inputs to the tall-form and short-formS. alterniflora root zones were calculated from water flow rates into the root zone and the nutrient concentration corresponding to the source of the flow. Total dissolved inorganic nitrogen (DIN) input (as ammonium and nitrate) was then calculated using a summation of the hourly nutrient inputs to the root zone over the entire tidal cycle based on hydrologic and nutrient data collected throughout the growing season (April–August) of 1993 and 1994. Additionally, horizontal water flow into the lower intertidal marsh was reduced experimentally to determine its effects on nutrient input and plant growth. Total ammonium (NH4 +) input to the tall-formS. alterniflora root zone (168 μmoles 6 h?1) was significantly greater relative to the short-form (45 μmoles 6 h?1) during flood tide. Total NH4 + input was not significantly different between growth forms during ebb tide, and total nitrate (NO3 ?) and total DIN input were not significantly different between growth forms during either tidal stage. During tidal flooding, vertical flow from below the root zone accounted for 71% and horizontal flow from the adjacent mudflat accounted for 19% of the total NH4 + input to the tall-formS. alterniflora root zone. Infiltration of flooding water accounted for 15% more of the total NO3 ? input relative to the total NH4 + input at both zones on flood tide. During ebb tide, vertical flow from below the root zone still accounted for the majority of NH4 + and NO3 ? input to both growth forms. After vertical flow, horizontal subsurface flow from upgradient accounted for the next largest percentages of NH4 + and NO3 ? input to both growth forms during ebb tide. After 2 yr of interrupted subsurface horizontal flow to the tall-formS. alterniflora root zone, height and nitrogen content of leaf tissue of treatment plants were only slightly, but significantly, lower than control plants. The results suggest that a dynamic supply of DIN (as influenced by subsurface water flows) is a more accurate depiction of nutrient supply to macrophytes in this developing marsh, relative to standing stock nutrient concentrations. The dynamic subsurface supply of DIN may play a role in spatial patterns of abovegroundS. alterniflora production, but determination of additional nitrogen inputs and the role of belowground production on nitrogen demand need to also be considered.  相似文献   

15.
Eutrophication of lakes and reservoirs has become a worldwide environmental problem, and nitrogen (N) has been recognized as one of the key factors responsible for eutrophication. Nitrogen adsorbed on sediments may be released via chemical and biological processes under changing environmental conditions. Spatial distributions of concentrations of ammonia nitrogen (NH4 +–N), nitrate nitrogen (NO3 ?–N) and total nitrogen (TN) were investigated in sediments and overlying water of Dongting Lake, the second largest freshwater lake in China. The concentration of TN in the sediments exhibited strong spatial variation with relatively high values in the eastern part and relatively low values in the southern part of the lake. The TN concentration in the water of different regions of Dongting Lake was affected by the internal load of sediment N. The vertical distribution of TN in sediment cores showed a decreasing trend with an increase in depth. Concentrations of NH4 +–N in the sediment cores decreased with the depth increase until 6–8 cm and then increased slowly. However, concentrations of NO3 ?–N in the sediment cores showed an opposite trend from those of NH4 +–N. A kinetic release experiment of NH4 +–N showed that the maximum release rate occurred in the first 5 min and the amount of NH4 +–N release reached 77.93–86.34 % of the total amount in 0–10 min. The release of NH4 +–N in the surface sediments of Dongting Lake fits a first-order kinetics function.  相似文献   

16.
Biochar has been considered a safe soil additive to enhance soil fertility and agronomic traits of different crops. This study was conducted to explore the impacts of sugarcane waste straw biochar on soil characteristics and some agronomic traits of okra. The experiment was carried out with four treatments, i.e., control, sugarcane waste straw biochar (10 ton ha?1), farmyard manure (FYM, 10 ton ha?1), and chemical fertilizers (NPK; 120:100:80 kg ha?1) having three replications of each treatment. Soil samples were tested for texture, bulk density, particle density, pH, electrical conductivity (EC), organic matter content, nitrate nitrogen (NO3-N), and extractable-P. The sugarcane waste straw biochar was characterized for plant major nutrient elements. The impact of various treatments was observed on soils and agronomic traits of okra like plant height, fruit size, fruit length, and yield of okra. Results revealed that sugarcane waste straw biochar expressed higher EC value and noticeable amounts of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and magnesium (Mg). The sugarcane waste straw biochar, in comparison with FYM and NPK, significantly improved the NO3-N, extractable-P, OM and EC of the calcareous soil, and reduced the soil bulk density. Furthermore, plant growth and yield parameters were significantly improved under biochar application over the control, FYM and NPK. Overall, sugarcane waste straw biochar proved to be a good alternative to conventional organic and inorganic fertilizers under calcareous soil conditions.  相似文献   

17.
This paper evaluates the effects of Torul dam on the stream Harşit water quality in terms of 13 physico-chemical parameters in the Gümüşhane Province, Eastern Black Sea Basin, Turkey. For this purpose, a study was fortnightly conducted during the four seasons between March 2009 and February 2010. In two monitoring stations selected in the upstream and downstream of the Torul dam, T, pH, DO and EC were determined in situ, and collected water samples were analyzed for TH, COD, NH4 +-N, NO2 -N, NO3 -N, TN, TKN, PO4 3−-P and MBAS. According to the Turkish Water Pollution Control Regulation (TWPCR), the stream Harşit was classified, and the obtained results were evaluated for the values proposed by Turkish Standard (TS) 266 and World Health Organization (WHO) guidelines. The results showed that the stream Harşit has high-quality water in terms of, T, pH, DO, COD, NH4 +-N and NO3 -N, but slightly polluted water in terms of NO2 -N, TKN and PO4 3−-P, and polluted for MBAS. It was concluded that Torul dam has a positive effect on the stream water quality in terms of decrease in the annual average concentration values. The percent decreases for TH, COD, NH4 +-N, NO2 -N, NO3 -N, TN, TKN, PO4 3−-P and MBAS were 17.1, 20.3, 56.2, 62.6, 11.7, 11.9, 11.4, 17.8 and 71.4, respectively. The reason for these decreases is probably due to the Torul dam reservoir where the water has a hydraulic residence time and the exposure to chemicals by aquatic organisms or populations that ingest the water. Also, statistical analysis shows that there are significant correlations among the studied parameters.  相似文献   

18.
Benthic macroinvertebrate biomass and ammonium excretion rates were measured at four stations in the Gulf of Mexico near the Mississippi River mouth. Calculated areal excretion rates were then compared to sediment-water nitrogen fluxes measured in benthic bottom lander chambers at similar stations to estimate the potential importance of macroinvertebrate excretion to sediment nitrogen mineralization. Excretion rates for individual crustaceans (amphipods and decapods) was 2–21 nmoles NH4 + (mg dry weight)?1 h?1. The mean excretion rates for the polychaetes, Paraprionaspio pinnata [6–12 nmoles NH4 + (mg dry weight)?1h?1] and Magelona sp. [27–53 nmoles NH4 + (mg dry weight)?1h?1], were comparable or higher than previous measurements for similar size benthic or pelagic invertebrates incubated at the same temperature (22±1°C). Although the relatively high rates of excretion by these selective feeders may have been partially caused by experimental handling effects (e.g., removal from sediment substrates), they probably reflected the availability of nitrogen-rich food supplies in the Mississippi River plume. When the measured weight-specific rates were extrapolated to total areal biomass, areal macroinvertebrate excretion estimates ranged from 7 μmole NH4 + m?2h?1 at a 40-m deep station near the river mouth to 18 μmole NH4 + m?2h?1 at a shallower (28-m deep) station further from the river mouth. The net flux of ammonium and nitrate from the sediments to the water measured in bottom lander chambers in the same region were 15–53 μmole NH4 + m?2h?1 and ?25–21 μmole NO3 ? m?2h?1. These results suggest that excretion of NH4 + by macroinvertebrates could be a potentially important component of benthic nitrogen regeneration in the Mississippi River plume-Gulf shelf region.  相似文献   

19.
According to the transport theory of soil solutes and the conditions of soil, geology and climate in the karst region of Guizhou Province, a numerical simulation model of edaphic nitrogen element transport under field conditions is initially established. In this model, NO 3 and NH+ 4 are regarded as soil solutes. Transformation mechanisms such as biological release, bio-immobilization, ammonium adsorption-desorption, nitration-denitrification and factors of crop root uptaking are considered in this model. It is hoped that the data from this model could directly be used to guide agricultural production in this region and offer feasible ways to improve the use of nitrogen element, sustainable development of agriculture in karst mountainous areas and natural environment.  相似文献   

20.
This paper aims to reveal the reciprocal influence of Kürtün Dam and wastewaters from the settlements on the water quality in the stream Har?it, NE Turkey. Several key water-quality indicators were measured: water temperature (T), pH, dissolved oxygen (DO), electrical conductivity, water hardness, chemical oxygen demand (COD), ammonium nitrogen (NH4 +–N), nitrite nitrogen (NO2 ?–N), nitrate nitrogen (NO3 ?–N), total Kjeldahl nitrogen (TKN), total nitrogen (TN), orthophosphate phosphorus (PO4 3?–P), and methylene blue active substances (MBAS). The monitoring and sampling studies were conducted every 15 days from March 2009 to February 2010 at two stations selected in the upstream and downstream of the Kürtün Dam. It was concluded that the Kürtün Dam Lake had a high-quality water in terms of T, pH, DO, COD, NH4 +–N, NO2 ?–N and NO3 ?–N values, but slightly polluted water with respect to TKN, PO4 3?–P, and MBAS according to the Turkish Water Pollution Control Regulation. The dam improved the stream water quality by increasing the DO concentration, and decreasing the NO2 ?–N and PO4 3?–P concentrations thanks to its hydraulic residence time despite the wastewater discharge by the nearby settlements. However, the wastewater discharge deteriorated the stream water quality increasing the COD, NH4 +–N, NO3 –N, and TN concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号