首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
栾燕  何克  谭细娟 《地质通报》2019,38(7):1206-1218
利用长安大学成矿作用及其动力学实验室Agilent 7700X四极杆等离子体质谱(ICP-MS)和Photo Machines Analyte Excite 193nm激光,在激光频率为5Hz,束斑直径为35μm条件下,对91500、GJ-1、Ple?ovice和Qinghu 4个标准锆石进行了原位微区U-Pb同位素和微量元素测定。结果显示,91500标准锆石20个测试点的~(206)Pb/~(238)U年龄范围为1059~1070Ma,~(206)Pb/~(238)U年龄加权平均值为1063.8±6.6Ma;GJ-1标准锆石28个测试点的~(206)Pb/~(238)U年龄范围为601~610Ma,~(206)Pb/~(238)U年龄加权平均值为605.4±3.0Ma;Ple?ovice标准锆石28个测试点的~(206)Pb/~(238)U年龄范围为336~341Ma,~(206)Pb/~(238)U年龄加权平均值为338.8±1.4Ma;Qinghu标准锆石40个测试点的~(206)Pb/~(238)U年龄范围为158~165Ma,~(206)Pb/~(238)U年龄加权平均值为159.9±0.7Ma。上述结果表明,91500、GJ-1、Ple?ovice和Qinghu 4个标准锆石的~(206)Pb/~(238)U年龄都在误差范围内,且年龄加权平均值与前人报道的年龄在误差范围内一致。同时,4个标准锆石的微量元素结果基本落在前人文献报道的范围内。从4个标准锆石的稀土元素球粒陨石标准化曲线可以看出,稀土元素的相对含量较准确。以上结果表明,建立的测试方法实现了对锆石原位微区U-Pb定年及微量元素的同时测定,分析数据结果准确、可靠。  相似文献   

2.
在LA-ICP-MS测量中,样品是否能够均匀地由激光样品池运送到等离子体质谱仪炬管是影响分析数据精度的关键。本研究对样品剥蚀池和剥蚀气溶胶传输进行改进,在LA和ICP-MS之间添加一套激光剥蚀脉冲平滑系统将LA剥蚀气溶胶转化为连续送样模式,并使用多通道旋转式样品池消除样品在激光剥蚀池中的位置效应,显著提高了测量信号的稳定性。在优化条件下,以标准锆石91500作外标,测量锆石标样GJ-1、Pleovice、TEMORA、QH的U-Pb年龄分别为604±3 Ma(2δ,MSWD=1.2)、337±1 Ma(2δ,MSWD=1.18)、419±3 Ma(2δ,MSWD=0.15)和161±1 Ma(2δ,MSWD=0.6),与前人报道结果在误差范围内一致;以NIST610作外标,玻璃标样NIST612和BHVO-2G大部分微量稀土元素的测量值与参考值的相对偏差均在10%以内;测量新疆天山造山带锆石样品的207Pb/206Pb加权年龄与SHRIMP结果基本吻合。本方法可有效降低元素分馏效应,提高测量精度。  相似文献   

3.
激光焦平面变化对LA-ICPMS锆石U-Pb定年准确度的影响   总被引:3,自引:0,他引:3  
元素分馏是影响LA-ICPMS锆石U-Pb定年准确度的重要因素之一,通常利用标样进行校正。激光聚焦位置变化会引起剥蚀坑形貌及U-Pb分馏的改变,标样和样品聚焦条件不一致将导致标样难以准确校正样品,并最终影响定年结果的准确性,但影响的程度、机制及可容忍范围目前尚不清楚。为此,文章以91500为标样、GJ-1为样品,详细研究了聚焦偏离30μm范围内剥蚀标样与样品锆石的剥蚀坑形貌变化以及由此导致的U-Pb定年误差。实验表明,在距离锆石表面30μm范围内,标样和样品焦平面同步变化时,二者U-Pb分馏形式及程度基本一致,激光焦平面偏离所引起的样品年龄与TIMS推荐值的偏差小于1%;当二者聚焦不同步时,标样与样品的U-Pb分馏差别显著,年龄偏差最大可超过3%。激光聚焦不同步导致的标样与样品剥蚀坑纵横比差异是引起年龄误差的根本原因,激光焦平面偏离锆石表面超过15μm,剥蚀坑坑口明显变大,纵横比减小,U-Pb分馏形式及程度发生改变。通过预剥蚀锆石,观察剥蚀坑轮廓,使激光焦平面在距离锆石样品表面15μm范围内,可确保标样与样品剥蚀坑形貌及U-Pb分馏状态一致,提高LA-ICPMS定年的准确度。  相似文献   

4.
激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)技术,能够快速、精确地测定矿物的同位素信息,是锆石U-Pb年代学最常用的定年方法之一.应急管理部国家自然灾害防治研究院同位素热年代学实验室利用RESOlution SE型193 nm准分子激光器和Agilent 7900型四级杆电感耦合等离子质谱仪联机,成功建立了锆石U-Pb原位定年方法.对91500、GJ-1、Ple?ovice、Qinghu和蓬莱5个标准锆石样品开展了详细的U-Pb定年研究,均获得了与国际推荐值在误差范围内一致的结果,表明本实验室建立的实验流程准确可靠,可以实现较老到较年轻锆石U-Pb年龄的精确测定.实验室运用新建立的方法对滇西剑川正长岩进行了锆石U-Pb年代学测试,结果表明该岩体形成于35.7±0.2 Ma,属晚始新世,与SIMS锆石U-Pb定年结果一致.研究发现剑川正长岩中存在晚三叠世-新元古代(220~860 Ma)的继承锆石,表明岩浆物质来源的多元性.综合前人研究,剑川正长岩是金沙江碱性岩带向青藏高原东南缘的延伸,可能形成于晚始新世高原隆升后岩石圈伸展的构造背景.  相似文献   

5.
锆石LA-ICP-MS原位微区U-Pb定年及微量元素的同时测定   总被引:7,自引:0,他引:7  
利用配有的New Wave213nm激光和ThermoFisher X Series2四极杆等离子体质谱,对年龄在158~1065Ma之间的5个标准锆石进行了U-Pb同位素和微量元素的同时测定。测定结果显示,在激光频率为10Hz,斑束直径为30μm下,91500、GJ-1、TEMORA-1、Pleovice和Qinghu标准锆石所获得的加权平均年龄分别为(1059±11)Ma(2σ,n=21),(604.4±4.7)Ma(2σ,n=25),(419.3±3.4)Ma(2σ,n=14),(338.7±2.4)Ma(2σ,n=23)和(158.9±1.7)Ma(2σ,n=18),年龄分析测定的单点相对偏差(2σ)均小于5.6%,加权平均年龄的相对偏差(2σ)均小于1.08%。5个标准锆石定年结果在误差范围内与前人报道的年龄值完全一致。在相同的测试条件下,以NIST610为外标,对上述标准锆石的微量元素进行了同时测定,Pleovice除了Nb比文献给定的值偏高外,其余微量元素和91500微量元素的测定结果都落在文献报道的范围之内,GJ-1中的Pb、Th和U落在TIMS测定值的范围之内,TEMORA-1中的Th和U落在SHRIMP测定的值之内,Qinghu中的Th和U落在SIMS测定的值之内。从5个标准锆石的稀土元素球粒陨石标准化曲线可看出,所获得的稀土元素的相对含量也准确。  相似文献   

6.
10 μm尺度锆石U-Pb年龄的LA-MC-ICP-MS测定   总被引:13,自引:0,他引:13  
利用激光烧蚀多接收器等离子质谱系统, 采用离子计数器与法拉第接收器同时接收U-Pb同位素的技术, 对4个标准锆石GJ-1, 91500, M257和TEMORA采用10 μm剥蚀斑直径、单点剥蚀模式测定, 得到了(602±3) Ma (n=32)、(1058±3) Ma (n=29)、(561.9±2.5) Ma (n=32)和(414.7±2.3) Ma (n=36)的结果; 对GJ-1和TEMORA采用5 μm剥蚀斑直径、曲线扫描模式测定, 得到(596.9±4.5) Ma (n=22)、(417.9±2.5) Ma (n=32)的年龄, 均与文献参考值在误差范围内一致。10 μm斑径单点剥蚀得到I9801、05SD07-01两个典型变质锆石年龄分别为(426±2) Ma (n=30)、(1815±10) Ma (n=16), 5 μm斑径曲线扫描得到I9801、05SD07-01年龄分别为(427±3) Ma (n=32)、(1789±32) Ma (n=15), 均为其可信年龄结果。利用LA-MC-ICP-MS系统对小颗粒锆石、锆石变质增生边或其他成因增生边进行10 μm尺度内U-Pb定年是可行的。  相似文献   

7.
激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)技术是目前最常用的锆石U-Pb同位素年龄测定方法之一。该方法能够对单颗粒锆石内部年龄差异实现快速、准确的原位微区分析。文章总结了近年来激光剥蚀系统、ICP-MS技术以及LA-ICP-MS锆石U-Pb定年方法、相关应用实例研究的进展和现状。系统评述了激光发生器,剥蚀池,剥蚀参数(激光波长、脉冲宽度、剥蚀气体、孔径大小)以及四极杆和扇形磁场质谱仪对锆石U-Pb年龄数据的精度和准确度的影响。详细介绍了基于锆石年龄标准样品、标准溶液及其他标样的外标定量校准方法,单个U/Pb比值计算方法,普通铅校正方法以及同位素年龄与微量元素同时测定的方法。目前LA-ICP-MS锆石U-Pb定年技术主要应用于碎屑锆石的沉积物源区示踪和岩浆事件的年代学约束研究。  相似文献   

8.
激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)技术广泛用来测量固体样品中的微量元素及同位素比值。然而在缺乏基体匹配校准条件下,发生在激光剥蚀过程中的元素分馏效应使得通常采用外标结合内标的方法很难准确量化待测元素的含量。不同岩石/矿物材料自身密度、表面张力、内部结构、元素成分等物理特性不同,对同一波长激光的吸收系数、反射系数、消光长度不同,导致相同实验条件下的激光对不同岩石/矿物剥蚀速率不同、剥蚀物体积不同、剥蚀后形成气溶胶粒子总数及粒径分布规律不同、在ICP中粒子化程度和效率也不同,最终待测元素分馏效应不同。建立了聚焦脉冲激光剥蚀不同基体材料动态物理模型,理论分析了激光脉冲宽度和能量密度对剥蚀速率影响的物理机制。采用193 nm波长的脉冲激光剥蚀不同地质标样NIST 614、NIST612、NIST610、BHVO-2G、BIR-1G、BCR-2G、橄榄石、石榴石、锆石。激光脉宽15 ns、束斑直径60μm、能量60 m J、频率8 Hz,脉冲数分别为25,50,100,150,200个,线性拟合后直线斜率值分别为0.140 44,0.138 05,0.124 13,0.099 11,0.093 87,0.105 39,0.113 86,0.051 22,0.09 341。实验结果表明,相同参数激光剥蚀不同基体时剥蚀速率(深度/脉冲个数)不同,玻璃标样比其它样品更易剥蚀。5 J/cm2能量条件下,平均剥蚀速率分别为169,159,155,118,104,116,115,62,88 nm/pulse;可见随着激光能量密度增加剥蚀速率缓慢增大,NIST614玻璃和石榴石剥蚀速率分别达到最大和最小。激光剥蚀地质样品剥蚀速率变化规律对理解剥蚀速率对元素分馏效应的影响、约束及校正具有理论意义和实践运用价值。  相似文献   

9.
LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用   总被引:6,自引:4,他引:2  
将激光器(LA)和电感耦合等离子体质谱仪(ICP-MS)联用避免了溶液分析繁琐、耗时的前处理操作,减少了样品制备过程中可能带来的污染,同时又具备分析成本低、测试速度快、分析数据精度高等优势。本文将LA与ICP-MS联接使用,通过激光能量密度和剥蚀频率组合来讨论较低的元素分馏效应,同时匹配RF功率、采样深度、载气及He气流速等主要工作参数以获得较高的元素信号灵敏度和稳定性,从而得到仪器最优工作参数组合,建立了可靠的锆石U-Pb定年方法。通过对锆石标样91500、GJ-1及Ple2ovic互测结果表明,其206Pb/238U加权平均年龄分别为1063.9±6.0 Ma(2σ,n=20)、600.3±2.6 Ma(2σ,n=27)及337.6±1.7 Ma(2σ,n=20),测试结果准确度和精度均在1%范围内,与前人报道的误差范围一致。使用优化后的仪器参数对来自鄂东南铜绿山矿区石英正长闪长玢岩岩体中的实际锆石样品进行测试,获得其206Pb/238U年龄与前人研究结果基本一致,表明本法能准确地对锆石进行定年分析。  相似文献   

10.
报道了利用中国科学院广州地球化学研究所同位素地球化学国家重点实验室的CAMECA IMS1280-HR型二次离子质谱仪(SIMS)建立的锆石原位微区U-Th不平衡定年方法。一次离子为~(16)O~–,束斑大小约25μm,质量分辨率设定为约6000,使用单接收系统EM跳峰方式接收各相关质量峰。每个点经35次循环测量,共耗时约27 min。使用Plesovice为外标,对处于久期平衡状态的U-Pb定年标准锆石91500和Qinghu进行(~(230)Th)/(~(238)U)分析测试,得到两个标准锆石(~(230)Th)/(~(238)U)重现性分别为2.3%和1.3%,准确度分别为98.1%和98.6%,测试精密度和准确度都达到了国际上其他实验室的水平。对云南腾冲地区已知U-Th年龄的打鹰山、马鞍山第四纪火山岩的年轻锆石进行了U-Th定年,得到马鞍山锆石样品U-Th等时线年龄为(84.1±9.2)ka(2σ,MSWD=2.9);打鹰山锆石样品U-Th等时线年龄为(85.6±7.6)ka(2σ,MSWD=2.1),在误差范围内与前人报道一致,表明我们建立的SIMS原位微区U-Th定年方法准确可靠。  相似文献   

11.
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is used to compare the suitability of four cassiterite (SnO2) materials (SPG, Yankee, AY-4 and Jian-1), and three matrix-mismatched reference materials (NIST SRM 612, NIST SRM 614 and 91500 zircon) for normalisation of U-Pb and Pb-Pb isotope ratios in cassiterite. The excess variance of ages determined by LA-ICP-MS is estimated to be ±0.33% for 207Pb/206Pb vs. 208Pb/206Pb isochron ages and ± 1.8% and for U-Pb ages. Incorporation of this excess variance in cassiterite ages is necessary for realistic uncertainties. 207Pb-206Pb ages are advantageous for dating Precambrian cassiterite such as SPG compared with U-Pb ages as matrix effect on instrumental mass fractionation of Pb isotopes are generally considered to be minor. We note minor bias in 207Pb/206Pb vs. 208Pb/206Pb isochron ages (~ 0.6%) when using either the NIST SRM 614 or 91500 zircon reference materials and emphasise the requirement for uncertainty propagation of all sources of error and reference materials with comparable U and Pb mass fraction to the cassiterite. The 238U/206Pb isotopic ratios from normalisation to matrix-mismatched reference materials show varied results, which emphasises the need to use matrix-matched reference materials for calculating U-Pb ages. When cross-calibrated against each other, LA-ICP-MS U-Pb ages of the ca. 1535 Ma SPG, ca. 245 Ma Yankee and ca. 155 Ma Jian-1 cassiterites are all consistent with their ID-TIMS values.  相似文献   

12.
Zircon geochemistry can vary over micrometre scales; therefore, natural reference materials need to be well characterised before being used to calculate trace element mass fractions in unmeasured samples. Moreover, reference material homogeneity needs to be ensured with the accelerating rate of geoanalytical developments to map mineral chemistry at increasingly finer scales. Here, we investigate trace element zoning in four widely used zircon reference materials: 91500, Mud Tank, Temora and Plešovice, as well as zircon crystals from the Mount Dromedary/Gulaga Igneous Complex, Australia. Sub-micrometre resolution focused ion beam scanning electron microscope (FIB-SEM) based time-of-flight secondary ion mass spectrometry (ToF-SIMS) and 5 μm resolution LA-ICP-MS mapping show that trace elements are zoned in all reference materials, though 91500 exhibited the least zonation. We demonstrate that FIB-SEM-based ToF-SIMS can rapidly resolve variations in trace elements (e.g., U, Th, Sc, Y, Gd, Dy, Yb and Li) at sensitivities down to the μg g-1 level with a spatial resolution of 195 nm for areas 100 × 85 μm to 959 × 828 μm. Zircon 91500 is recommended for future quantitative analyses provided that (1) the spatial distribution of elements is imaged before analysis of unknown samples and (2) it is used in conjunction with a doped glass as the primary reference material.  相似文献   

13.
Various zircons of Proterozoic to Oligocene ages (1060-31 Ma) were analysed by laser ablation-inductively coupled plasma-mass spectrometry. Calibration was performed using Harvard reference zircon 91500 or Australian National University reference zircon TEMORA 1 as external calibrant. The results agree with those obtained by SIMS within 2s error. Twenty-four trace and rare earth elements (P, Ti, Cr, Y, Nb, fourteen REE, Hf, Ta, Pb, Th and U) were analysed on four fragments of zircon 91500. NIST SRM 610 was used as the reference material and 29Si was used as internal calibrant. Based on determinations of four fragments, this zircon shows significant intra-and inter-fragment variations in the range from 10% to 85% on a scale of 120 μm, with the variation of REE concentrations up to 38.7%, although the chondrite-normalised REE distributions are very similar. In contrast, the determined age values for zircon 91500 agree with TIMS data and are homogeneous within 8.7 Ma (2 s ). A two-stage ablation strategy was developed for optimising U-Pb age determinations with satisfactory trace element and REE results. The first cycle of ablation was used to collect data for age determination only, which was followed by continuous ablation on the same spot to determine REE and trace element concentrations. Based on this procedure, it was possible to measure zircon ages as low as 30.37 0.39 Ma (MSWD = 1.4; 2 s ). Other examples for older zircons are also given.  相似文献   

14.
Analytical protocols for SHRIMP‐SI oxygen isotope analysis (δ18O) of a suite of zircon reference materials (RMs) are presented. Data reduction involved a robust estimate of uncertainties associated with the individual spot as well as for groups where the spot data are combined. The repeatability of δ18O measurements is dependent on both the analytical conditions and the choice of the primary reference material. Under optimised conditions, repeatability was often better than 0.4‰ (2s) allowing sample uncertainties to be obtained to better than 0.2‰ (at 95% confidence limit). Single spot uncertainty combined the within‐spot precision with the scatter associated with repeated measurements of the primary zircon reference material during a measurement session. The uncertainty for individual spots measured under optimised conditions was between 0.3 and 0.4‰ (at 95% confidence). The analytical protocols described were used to assess a variety of zircon RMs that have been used for geochronology and for which laser fluorination oxygen isotope data are available (Temora 2, FC1, R33, QGNG and Ple?ovice), as well as zircons that have been used as RMs for trace element or other types of determination (Mud Tank, Monastery, 91500, AS57, AS3, KIM‐5, OG1, SL13, CZ3 and several other Sri Lankan zircons). Repeated analyses over nine sessions and seven different mounts show agreement within analytical uncertainty for Temora 2, FC1, R33, QGNG, Ple?ovice and 91500, when normalised to Mud Tank. For existing ion microprobe mounts with these materials, an appropriate δ18O can be determined. However, care should be taken when using zircons from the Duluth Complex (i.e., FC1, AS57 and AS3) as reference materials as our data indicated an excess scatter on δ18O values associated with low‐U zircon grains.  相似文献   

15.
This paper evaluates the analytical precision, accuracy and long‐term reliability of the U‐Pb age data obtained using inductively coupled plasma–mass spectrometry (ICP‐MS) with a frequency quintupled Nd‐YAG (λ = 213nm) laser ablation system. The U‐Pb age data for seven standard zircons of various ages, from 28 Ma to 2400 Ma (FCT, SL13, 91500, AS3, FC1, QGNG and PMA7) were obtained with an ablation pit size of 30 μm diameter. For 207Pb/206Pb ratio measurement, the mean isotopic ratio obtained on National Institute of Standards and Technology (NIST) SRM610 over 4 months was 0.9105 ± 0.0014 (n = 280, 95% confidence), which agrees well with the published value of 0.9096. The time‐profile of Pb/U ratios during single spot ablation showed no significant difference in shape from NIST SRM610 and 91500 zircon standards. These results encouraged the use of the glass standard as a calibration standard for the Pb/U ratio determination for zircons with shorter wavelength (λ = 213 nm) laser ablation. But 206Pb/238U and 207Pb/235U ages obtained by this method for seven zircon standards are systematically younger than the published U‐Pb ages obtained by both isotope dilution–thermal ionization mass spectrometry (ID‐TIMS) and sensitive high‐resolution ion‐microprobe (SHRIMP). Greater discrepancies (3–4% younger ages) were found for the 206Pb/238U ages for SL13, AS3 and 91500 zircons. The origin of the differences could be heterogeneity in Pb/U ratio on SRM610 between the different disks, but a matrix effect accuracy either in the ICP ion source or in the ablation‐transport processes of the sample aerosols cannot be neglected. When the 206Pb/238U (= 0.2302) newly defined in the present study is used, the measured 206Pb/238U and 207Pb/235U ages for the seven zircon standards are in good agreement with those from ID‐TIMS and SHRIMP within ±2%. This suggests that SRM610 glass standard is suitable for ICP‐MS with laser ablation sampling (LA‐ICP‐MS) zircon analysis, but it is necessary to determine the correction factor for 206Pb/238U by measuring several zircon standards in individual laboratories.  相似文献   

16.
LA-MC-ICP-MS锆石微区原位U-Pb定年技术   总被引:297,自引:33,他引:264  
利用激光多接收等离子体质谱(LA-MC-ICP-MS)技术对30~1 065 Ma的系列锆石进行了详细的定年研究.包含离子计数器的多接收系统使得不同质量数的同位素信号可以同时静态接收,并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据,均匀锆石颗粒207Pb/206Pb、206Pb/238U、207Pb/235U比值的测试精度(2σ)均为2%左右,对锆石标准的定年精度和准确度在1%(2σ)左右;不同质量数同位素信号的同时静态接收使得剥蚀时间缩短,剥蚀深度变浅,相比LA-ICP-MS方法,提高了激光剥蚀的空间分辨率.对5个锆石标准和2个实际样品的测试表明,206Pb/235U年龄测定误差在1%(2σ)以内,定年结果在误差范围内与前人报道值完全一致,测试精度达到国际同类实验室先进水平.  相似文献   

17.
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a microanalytical tool especially suitable for providing fast and precise U-Pb geochronological results on zircon grains. A new 193 nm excimer laser adapted to a micromachining workstation, equipped with a newly designed two-volume ablation cell and coupled with a quadrupole ICP-MS, is presented here. The system was tuned routinely to achieve sensitivities in the range of 3000 cps/μg g−1 for 238U (< 2% RSD), with a 34 μm spot size, at 5 Hz and ∼ 8 J cm−2, while ablating the NIST SRM 612 glass reference material. The system was capable of providing fast (< 1.5 minutes each analysis) and precise (generally < 1.5% 1s errors) 206Pb/238U zircon ages. The ages of widely used reference material zircons (Plesovice, 337 Ma; Temora, 416 Ma; R33, 418 Ma; Sri Lanka, 564 Ma; 91500, 1065 Ma) could be precisely matched, with an accuracy on isotopic ratios that ranged from ∼ 2 to ∼ 6%, depending on the homogeneity of the natural reference materials.  相似文献   

18.
In this study we evaluated the capability of a 213 nm laser ablation system coupled to a quadrupole-based ICP-MS in delivering accurate and precise U-Pb ages on zircons and monazites. Four zircon samples ( ca. 50 Ma to ca. 600 Ma) and four monazite samples ( ca. 30 Ma to ca. 1390 Ma) of known ages were analysed utilising laser ablation pits with diameters of 20 μm and 60 μm. Instrument mass bias and laser induced time-dependent elemental fractionation were corrected for by calibration against a matrix-matched reference material. Tera-Wasserburg plots of the calculated U-Pb data were employed to assess, and correct for, common Pb contributions. The results indicated that the LA-ICP-MS technique employed in this study allowed precise and accurate U-Pb isotope dating of zircon and monazite on sample areas 20 μm in diameter. At this spot size, the precisions achieved for single spot 206Pb/238U ages, were better than 5% (2s) for monazites and zircons with ages down to 30 Ma and 50 Ma, respectively. The precisions reported are comparable to those generally reported in SIMS and LA-MC-ICP-MS U-Pb isotope determinations.  相似文献   

19.
本文主要报道内蒙古中部白乃庙地区侵入古生界徐尼乌苏组沉积地层中的石英二长闪长岩脉的锆石LA-ICP-MS 法U-Pb定年结果。测试结果显示大量锆石为捕获锆石并获得了从古元古代1.9Ga到中元古代1.26Ga左右的谐和年龄。其中中元古代年龄可划分为1.7Ga, 1.6~1.47Ga和1.26Ga等三个不同阶段;前两阶段年龄分别与华北克拉通化之后初始裂谷和非造山岩浆作用以及白云鄂博裂谷中火成碳酸盐的侵位时代相对应;而1.26Ga的年龄则与全球格林威尔构造-岩浆热事件时代相吻合。结果表明华北北缘存在中元古1.26Ga左右岩浆热事件。该结果为进一步认识华北北缘地壳演化及华北板块是否参与过罗迪尼亚超大陆演化提供了重要线索。  相似文献   

20.
Apatite is a common U- and Th-bearing accessory mineral in igneous and metamorphic rocks, and a minor but widespread detrital component in clastic sedimentary rocks. U–Pb and Th–Pb dating of apatite has potential application in sedimentary provenance studies, as it likely represents first cycle detritus compared to the polycyclic behavior of zircon. However, low U, Th and radiogenic Pb concentrations, elevated common Pb and the lack of a U–Th–Pb apatite standard remain significant challenges in dating apatite by LA-ICPMS, and consequently in developing the chronometer as a provenance tool.This study has determined U–Pb and Th–Pb ages for seven well known apatite occurrences (Durango, Emerald Lake, Kovdor, Mineville, Mud Tank, Otter Lake and Slyudyanka) by LA-ICPMS. Analytical procedures involved rastering a 10 μm spot over a 40 × 40 μm square to a depth of 10 μm using a Geolas 193 nm ArF excimer laser coupled to a Thermo ElementXR single-collector ICPMS. These raster conditions minimized laser-induced inter-element fractionation, which was corrected for using the back-calculated intercept of the time-resolved signal. A Tl–U–Bi–Np tracer solution was aspirated with the sample into the plasma to correct for instrument mass bias. External standards (Ple?ovice and 91500 zircon, NIST SRM 610 and 612 silicate glasses and STDP5 phosphate glass) along with Kovdor apatite were analyzed to monitor U–Pb, Th–Pb, U–Th and Pb–Pb ratiosCommon Pb correction employed the 207Pb method, and also a 208Pb correction method for samples with low Th/U. The 207Pb and 208Pb corrections employed either the initial Pb isotopic composition or the Stacey and Kramers model and propagated conservative uncertainties in the initial Pb isotopic composition. Common Pb correction using the Stacey and Kramers (1975) model employed an initial Pb isotopic composition calculated from either the estimated U–Pb age of the sample or an iterative approach. The age difference between these two methods is typically less than 2%, suggesting that the iterative approach works well for samples where there are no constraints on the initial Pb composition, such as a detrital sample. No 204Pb correction was undertaken because of low 204Pb counts on single collector instruments and 204Pb interference by 204Hg in the argon gas supply.Age calculations employed between 11 and 33 analyses per sample and used a weighted average of the common Pb-corrected ages, a Tera–Wasserburg Concordia intercept age and a Tera–Wasserburg Concordia intercept age anchored through common Pb. The samples in general yield ages consistent (at the 2σ level) with independent estimates of the U–Pb apatite age, which demonstrates the suitability of the analytical protocol employed. Weighted mean age uncertainties are as low as 1–2% for U- and/or Th-rich Palaeozoic–Neoproterozoic samples; the uncertainty on the youngest sample, the Cenozoic (31.44 Ma) Durango apatite, ranges from 3.7–7.6% according to the common Pb correction method employed. The accurate and relatively precise common Pb-corrected ages demonstrate the U–Pb and Th–Pb apatite chronometers are suitable as sedimentary provenance tools. The Kovdor carbonatite apatite is recommended as a potential U–Pb and Th–Pb apatite standard as it yields precise and reproducible 207Pb-corrected, 232Th–208Pb, and common Pb-anchored Tera–Wasserburg Concordia intercept ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号