首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
New40Ar-39Ar thermochronological results from the Ladakh region in the India-Asia collision zone provide a tectono-thermal evolutionary scenario. The characteristic granodiorite of the Ladakh batholith near Leh yielded a plateau age of 46.3 ± 0.6 Ma (2σ). Biotite from the same rock yielded a plateau age of 44.6 ± 0.3 Ma (2σ). The youngest phase of the Ladakh batholith, the leucogranite near Himya, yielded a cooling pattern with a plateau-like age of ∼ 36 Ma. The plateau age of muscovite from the same rock is 29.8 ±0.2 Ma (2σ). These ages indicate post-collision tectono-thermal activity, which may have been responsible for partial melting within the Ladakh batholith. Two basalt samples from Sumdo Nala have also recorded the post-collision tectono-thermal event, which lasted at least for 8 MY in the suture zone since the collision, whereas in the western part of the Indus Suture, pillow lava of Chiktan showed no effect of this event and yielded an age of emplacement of 128.2 ±2.6 Ma (2σ). The available data indicate that post-collision deformation led to the crustal thickening causing an increase in temperature, which may have caused partial melting at the base of the thickened crust. The high thermal regime propagated away from the suture with time.  相似文献   

2.
The western Fiordland Orthogneiss (WFO) is an extensive composite metagabbroic to dioritic arc batholith that was emplaced at c. 20–25 km crustal depth into Palaeozoic and Mesozoic gneiss during collision and accretion of the arc with the Mesozoic Pacific Gondwana margin. Sensitive high‐resolution ion microprobe U–Pb zircon data from central and northern Fiordland indicate that WFO plutons were emplaced throughout the early Cretaceous (123.6 ± 3.0, 121.8 ± 1.7, 120.0 ± 2.6 and 115.6 ± 2.4 Ma). Emplacement of the WFO synchronous with regional deformation and collisional‐style orogenesis is illustrated by (i) coeval ages of a post‐D1 dyke (123.6 ± 3.0 Ma) and its host pluton (121.8 ± 1.7 Ma) at Mt Daniel and (ii) coeval ages of pluton emplacement and metamorphism/deformation of proximal paragneiss in George and Doubtful Sounds. The coincidence emplacement and metamorphic ages indicate that the WFO was regionally significant as a heat source for amphibolite to granulite facies metamorphism. The age spectra of detrital zircon populations were characterized for four paragneiss samples. A paragneiss from Doubtful Sound shows a similar age spectrum to other central Fiordland and Westland paragneiss and SE Australian Ordovician sedimentary rocks, with age peaks at 600–500 and 1100–900 Ma, a smaller peak at c. 1400 Ma, and a minor Archean component. Similarly, one sample of the George Sound paragneiss has a significant Palaeozoic to Archean age spectrum, however zircon populations from the George Sound paragneiss are dominated by Permo‐Triassic components and thus are markedly different from any of those previously studied in Fiordland.  相似文献   

3.
The trans-Himalayan Ladakh batholith is a result of arc magmatism caused by the northward subduction of the Tethyan oceanic lithosphere below the edge of the Eurasian plate. The batholith dominantly consists of calc-alkaline I-type granitoids which are ferromagnetic in nature with the presence of magnetite as the principal carrier of magnetic susceptibility. The mesoscopic and magnetic fabric are concordant and generally vary from WNW–ESE to ENE–WSW for different intrusions of ferromagnetic granites in different parts of the batholith. Strike of magnetic fabric is roughly parallel with the regional trend of the Ladakh batholith in the present study area and is orthogonal to the direction of India-Eurasia collision. In Khardungla and Changla section, the magnetic fabric is distributed in a sigmoidal manner. It is inferred that this sigmoidal pattern is caused by shearing due to transpression induced by oblique convergence between the two plates. U–Pb zircon geochronology of a rhyolite from the southern parts of the batholith gives a crystallization age of 71.7 ± 0.6 Ma, coeval with ~68 Ma magmatism in the northern parts of the batholith. The central part of the batholith is characterized by S-type two-mica granites, which gives much younger age of magmatism at 35.5 ± 0.5 Ma. The magnetic fabric of these two-mica granites is at a high angle to the regional trend of the batholith. It is proposed that these two-mica granites were emplaced well after the cessation of subduction and arc magmatism, along fractures that developed perpendicular to the regional strike of the batholith due to shearing.  相似文献   

4.
The calc-alkaline Ladakh batholith (NW Himalayas) was dated to constrain the timing of continental collision and subsequent deformation. Batholith growth ended when collision disrupted subduction of the Tethyan oceanic lithosphere, and thus the youngest magmatic pulse indirectly dates the collision. Both U-Pb ages on zircons from three samples of the Ladakh batholith and K-Ar from one subvolcanic dike sample were determined. Magmatic activity near Leh (the capital of Ladakh) occurred between 70 and 50 Ma, with the last major magmatic pulse crystallizing at ca. 49.8+/-0.8 Ma (2sigma). This was followed by rapid and generalized cooling to lower greenschist facies temperatures within a few million years, and minor dike intrusion took place at 46+/-1 Ma. Field observations, the lack of inherited prebatholith zircons, and other isotopic evidence suggest that the batholith is mantle derived with negligible crustal influence, that it evolved through input of fresh magma from the mantle and remelting of previously emplaced mantle magmatic rocks. The sedmimentary record indicates that collision in NW Himalaya occurred around 52-50 Ma. If this is so, the magmatic system driven by subduction of Tethys ended immediately on collision. The thermal history of one sample from within the Thanglasgo Shear Zone (TSZ) was determined by Ar-Ar method to constrain timing of batholith internal deformation. This is a wide dextral shear zone within the batholith, parallel to the dextral, N 30 degrees W-striking crustal-scale Karakoram Fault. Internal deformation of the batholith, taken up partly by this shear zone, has caused it to deviate from it regional WNW-ESE trend to parallel the Karakoram Fault. Microstructures and cooling history of a sample from the TSZ indicate that shearing took place before 22 Ma, implying that (1) the history of dextral shearing on NW-striking planes in northern Ladakh started at least 7 m.yr. before the <15 Ma Karakoram Fault, (2) shearing was responsible for deviation of the regional trend of the Ladakh batholith, and (3) dextral shearing occured within a zone apporximately 100 km wide that includes the Ladakh batholith and portions of the younger Karakoram batholith.  相似文献   

5.
The Jiangda–Deqen–Weixi continental margin arc(DWCA) developed along the base of the Changdu–Simao Block and was formed as a result of the subduction of the Jinsha River Ocean Slab and the subsequent collision. The Ludian batholith is located in the southern part of the DWCA and is the largest batholith in northwest Yunnan. Granite samples from the Ludian batholith yield an early Middle Permian age of 271.0 ± 2.8 Ma. The geochemical data of the early Middle Permian granitoids show high Si2 O, low P2 O5 and MgO contents that belong to calc-alkaline series and peraluminous I-type rocks. Their εHf(t) values range from-5.01 to +0.58, indicating that they were formed by hybrid magmas related to the subduction of the Jinsha River Tethys Ocean. The monzonite and monzogranite samples yield Late Permian ages of 250.6 ± 1.8 Ma and 252.1 ± 1.3 Ma, respectively. The Late Permian granitoids are high-K calc alkaline and shoshonite series metaluminous I-type rocks. Their εHf(t) values range from-4.12 to-1.68 and from-7.88 to-6.64, respectively. The mixing of crustal and mantle melts formed the parental magma of the Late Permian granitoids. This study, combined with previous work, demonstrates the process from subduction to collision of the Jinsha River Paleo-Tethys Ocean.  相似文献   

6.
Sm–Nd garnet‐whole rock geochronology, phase equilibria, and thermobarometry results from Garnet Ledge, south‐eastern Alaska, provide the first precisely constrained P–T–t path for garnet zone contact metamorphism. Garnet cores from two crystals and associated whole rocks yield a four point isochron age for initial garnet growth of 89.9 ± 3.6 Ma. Garnet rims and matrix minerals from the same samples yield a five point isochron age for final garnet growth of 89 ± 1 Ma. Six size fractions of zircon from the adjacent pluton yield a concordant U–Pb age of 91.6 ± 0.5 Ma. The garnet core and rim, and zircon ages are compatible with single‐stage garnet growth during and/or after pluton emplacement. All garnet core–whole rock and garnet rim‐matrix data from the two samples constrain garnet growth duration to ≤5.5 my. A garnet mid‐point and the associated matrix from one of the two garnet crystals yield an age of 90.0 ± 1.0 Ma. This mid‐point result is logically younger than the 90.7 ± 5.6 Ma core–whole rock age and older than the 88.4 ± 2.5 Ma rim‐matrix age for this sample. A MnNaCaKFMASH phase diagram (P–T pseudosection) and the garnet core composition are used to predict that cores of garnet crystals grew at 610 ± 20 °C and 5 ± 1 kbar. This exceeds the temperature of the garnet‐in reaction by c. 50 °C and is compatible with overstepping of the garnet growth reaction during contact metamorphism. Intersection of three reactions involving garnet‐biotite‐sillimanite‐plagioclase‐quartz calculated by THERMOCALC in average P–T mode, and exchange thermobarometry were used to estimate peak metamorphic conditions of 678 ± 58 °C at 6.1 ± 0.9 kbar and 685 ± 50 °C at 6.3 ± 1 kbar, respectively. Integration of pressure, temperature, and age estimates yields a pressure‐temperature‐time path compatible with near isobaric garnet growth over an interval of c. 70 °C and c. 2.3 my.  相似文献   

7.
Abstract  Abundant mafic microgranular enclaves (MMEs) extensively distribute in granitoids in the Gangdisê giant magmatic belt, within which the Qüxü batholith is the most typical MME‐bearing pluton. Systematic sampling for granodioritic host rock, mafic microgranular enclaves and gabbro nearby at two locations in the Qüxü batholith, and subsequent zircon SHRIMP II U‐Pb dating have been conducted. Two sets of isotopic ages for granodioritic host rock, mafic microgranular enclaves and gabbro are 50.4±1.3 Ma, 51.2±1.1 Ma, 47.0±1 Ma and 49.3±1.7 Ma, 48.9±1.1 Ma, 49.9±1.7 Ma, respectively. It thus rules out the possibilities of mafic microgranular enclaves being refractory residues after partial melting of magma source region, or being xenoliths of country rocks or later intrusions. Therefore, it is believed that the three types of rocks mentioned above likely formed in the same magmatic event, i.e., they formed by magma mixing in the Eocene (c. 50 Ma). Compositionally, granitoid host rocks incline towards acidic end member involved in magma mixing, gabbros are akin to basic end member and mafic microgranular enclaves are the incompletely mixed basic magma clots trapped in acidic magma. The isotopic dating also suggested that huge‐scale magma mixing in the Gangdisê belt took place 15–20 million years after the initiation of the India‐Asia continental collision, genetically related to the underplating of subduction‐collision‐induced basic magma at the base of the continental crust. Underplating and magma mixing were likely the main process of mass‐energy exchange between the mantle and the crust during the continental collision, and greatly contributed to the accretion of the continental crust, the evolution of the lithosphere and related mineralization beneath the portion of the Tibetan Plateau to the north of the collision zone.  相似文献   

8.
The Zhongchuan district is an important component of the metallogenic belt in the Western Qinling. The Zhongchuan granite pluton occurring in the centre of the Zhongchuan metallogenic area has been poorly constrained, though the Triassic granite in Western Qinling has been well documented. In‐situ zircon U–Pb ages, Hf isotopic compositions and whole‐rock geochemical data are presented for host granite and mafic microgranular enclaves (MMES) from the Zhongchuan pluton, in order to constrain its sources, petrogenesis and tectonic setting of the pluton. The distribution of major, trace and rare earth elements apparently reflect exchange between the MMES and the host granitic rocks mainly due to interactions between coeval felsic host magma and mafic magma. The zircon U–Pb age of host granite (231.6 ± 1.5 to 235.8 ± 2.3 Ma) has overlapping uncertainty with that of the MMES (236.6 ± 1.3 Ma), establishing that the mafic and felsic magmas were coeval. The Hf isotopic composition of the MMES (εHf(t) = −13.4 to 4.0) is distinct from the host granite (εHf(t) = −15.7 to 0.0), indicating that both enriched subcontinental lithosphere mantle (SCLM) and crustal sources contributed to their origin. The zircons have two‐stage Hf model ages of 1064 to 1798 Ma for the host granite and 858 to 1747 Ma for the MMES. This suggests that the granitic pluton was likely derived from partial melting of a Late Mesoproterozoic crust, with subsequent interaction with the SCLM‐derived mafic magmas in tectonic affinity to the South China Block. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The zircon SHRIMP dating of the Zhangtiantang granite gave an age of 159±7 Ma., which shows that the granite was produced at the early Late Jurassic. The Ar-Ar plateau ages of biotite and K-feldspar from the Zhangtiantang pluton are 153.2±1.1 Ma and 135.8±1.2 Ma, respectively. The Ar-Ar anti-isochrone ages of biotite and K-feldspar are 152.5±1.7Ma and 135.4±2.7Ma, respectively. The ages represent the isotopic closure ages of minerals in the pluton. The Zhangtiantang granites are regarded as peraluminous crust-derived type granites to possess the typical geochemical characteristics of calc-alkaline rocks on continental margin, with enriched Si, K, Al (average value of A/CNK as 1.18), HREE, Rb, U, and Th, heavily depleted V, Cr, Co, Ni, Ti, Nb-Ta, Zr, Sr, P, and Ba, strongly negative Eu and common corundum normative (average value of C as 1.84). The εNd(t) values of the Zhangtiantang granite are −5.84 to −7.79, and t 2DM values are 1.69 to 1.83 Ga, which indicates partial melting of continental-crust metamorphic sedimentary rocks during the Middle Proterozoic. The cooling history of the Zhangtiantang granitic pluton indicates that the cooling velocity of pluton was faster (about 67°C/Ma) from zircon (158 Ma) to biotite (152 Ma), and was slower (about12°C/Ma) from biotite (152.5 Ma) to K-feldspar (135.8 Ma). It can be deduced that the temporal gap (about 10 Ma) between the granite formmation and W-Sn mineralization in South China may be related to ordinary magma-hydrothermal processes by the variational cooling curve of the pluton. The Zhangtiantang pluton was formed in a compressive setting, with differentiation evolution and mineralization occurring in a relative relaxation setting.  相似文献   

10.
南岭成矿带加里东期大花岗岩基的钨锡成矿潜力是近年来地质学家关注的热点。本文以湖南省彭公庙岩体为研究对象,精确厘定了产于彭公庙岩体内部的石牛仙钨矿的形成时代,同时厘定了彭公庙岩体中粗粒黑云母花岗闪长岩形成时代,分析了其地球化学特征,并与典型的成钨锡矿花岗岩进行对比,以此评估其钨锡成矿潜力。黑云母花岗闪长岩LA-ICP-MS锆石和独居石U-Pb年龄分别为436.1±2.5 Ma(MSWD=1.9,n=19)和436.8±2.8 Ma(MSWD=2.7,n=20),指示其侵位于早志留世。石牛仙钨矿床白云母39Ar/40Ar同位素坪年龄为150.2±1.2 Ma(MSWD=0.42),成矿时代与彭公庙成岩时代明显不同。彭公庙岩体分异程度不高,成矿元素W和Sn含量低,主要来源于上地壳贫粘土的变质砂岩,与南岭典型的成钨、成锡花岗岩分异程度高、成矿元素含量高、来源于富粘土的上地壳物质部分熔融区别明显,说明其成矿潜力有限。最后,在综合前人研究成果的基础之上,指出应综合地球物理、地球化学、构造蚀变信息等资料,重点评价彭公庙岩体内部及周缘晚期晚侏罗世花岗岩岩脉或...  相似文献   

11.
The Paleozoic tectonic framework and paleo–plate configuration of the northern margin of Gondwana remain controversial. The South Qiangtang terrane is located along the northern margin of Gondwana and records key processes in the formation and evolution of this supercontinent. Here, we present new field, petrological, zircon U-Pb geochronological, and Lu-Hf isotopic data for granitic rocks of the Gemuri pluton, all of which provide new insights into the evolution of the northern margin of Gondwana. Zircon U-Pb dating of the Gemuri pluton yielded three concordant ages of 488.5 ± 2.1, 479.9 ± 8.9, and 438.5 ± 3.5 Ma. Combining these ages with the results of previous research indicates that the South Qiangtang terrane records two magmatic episodes at 502–471 and 453–439 Ma. These two episodes are associated with enriched zircon Hf isotopic compositions(εHf(t) =-10.1 to-3.9 and-16.6 to-6.5, respectively), suggesting the granites were formed by the partial melting of Paleoproterozoic–Mesoproterozoic metasedimentary rocks(Two–stage Hf model ages(TCDM) = 2094–1704 and 2466–1827 Ma, respectively). Combining these data with the presence of linearly distributed, contemporaneous Paleozoic igneous rocks along the northern margin of Gondwana, we suggest that all of these rocks were formed in an active continental margin setting. This manifests that the two magmatic episodes within the Gemuri area were associated with southward subduction in the Proto-(Paleo-) Tethys Ocean.  相似文献   

12.
The Menghai batholith (Yunnan Province, China) is the southern extension of the ~370 km long Lincang granite body that syntectonically intruded the collisional zone between Gondwana (Baoshan block) and Laurasia (Simao block) terranes during closure of the Palaeo-Tethyan Ocean. Eight Menghai granodiorites were analysed across an ~45 km E–W transect from the pluton’s central region to eastern perimeter. Each rock was imaged in cathodoluminescence and geochemically analysed for major and trace elements. A minimum 30 zircons per sample were dated using laser ablation inductively coupled plasma–mass spectrometry. Samples are peraluminous to strongly peraluminous, magnesian, calcic or calc-alkalic granodiorites. Trace element suggest a high pressure (12–15 kbar) low clay source with >20–30% volume interaction with basalt. Crustal anatexis was likely related to post-collisional lithosphere delamination and upwelling of hot asthenosphere, forming large-volume melts. Zircon ages (207Pb–206Pb and 238U–206Pb) range from 3234 ± 42 to 171.7 ± 5.4 Ma (±2σ). Inherited zircon ages include the Palaeoarchaean–Neoarchaean (average 2938 ± 27 Ma, n = 8 ages), Lüliang (2254 ± 38 Ma, n = 7), Changcheng–Jixianian (1274 ± 47 Ma, n = 33), Qinbaikou (963 ± 29 Ma, n = 7), Nanhua (787 ± 24 Ma, n = 7), Sinian (595.4 ± 12.2 Ma, n = 14), Qilian (452.2 ± 8.7 Ma, n = 24) and Tienshan (358.9 ± 12.4 Ma, n = 5). The presence of these ages decrease from the batholith’s central portion (>50% ages) to eastern perimeter (2–16% ages), as the rocks appear progressively metamorphosed. The distribution of U/Th ratio suggests inherited zircons are Carboniferous (317.6 ± 5.7 Ma) and older and crystallization ages span the Permian to Early Jurassic. The average and youngest zircon age per sample decreases from the centre of the batholith to its eastern perimeter, from 226.8 ± 8.8 and 210.7 ± 3.3 to 211.8 ± 5.7 and 171.0 ± 5.4 Ma, respectively. If recorded by syntectonic zircon crystallization, collision and closure of a branch of the Palaeo-Tethyan Ocean occurred here over an ~100 million years time period from the Permian (281.0 ± 13.0 Ma) to Jurassic (171.5 ± 5.4 Ma).  相似文献   

13.
The Mount Princeton magmatic center, located in central Colorado, consists of the epizonal Mount Princeton batholith, the nested Mount Aetna caldera, and volumetrically minor leucogranites. New CA-TIMS U/Pb zircon ages indicate the majority of the Mount Princeton batholith was emplaced during a period of regional ignimbrite quiescence. The structurally highest unit of quartz monzonite yields a 206Pb/238U age of 35.80 ± 0.10 Ma, and the youngest dated unit of the quartz monzonite is a porphyritic unit that yields a 206Pb/238U age of 35.37 ± 0.10 Ma. Using the exposed, dated volume of the quartz monzonite and new geochronology yields an estimated pluton filling rate of ~0.002 km3/a. This rate is comparable to the accumulation rates published for other plutons, and at least an order of magnitude slower than fluxes necessary to support accumulation of large eruptible magma volumes. Geochronology for the two large ignimbrites spatially associated with the batholith indicates a temporal disconnect between the vast majority of pluton building and explosive eruption of magma. The Wall Mountain Tuff erupted from a source in the same geographic area as the Mount Princeton batholith at 37.3 Ma (Ar/Ar sanidine), but no structural evidence of a caldera or temporally associated plutonic rocks is known. The Badger Creek Tuff erupted at 34.3 Ma (Ar/Ar sanidine) during the formation of the Mount Aetna caldera in the southern portion of the batholith. Our 206Pb/238U age for the Badger Creek Tuff is 34.47 ± 0.05. The only analyzed plutonic rocks of similar age to the Badger Creek Tuff are an extra-caldera dike with a 206Pb/238U age of 34.57 ± 0.08 Ma, a ring dike with a 206Pb/238U age of 34.48 ± 0.09 Ma, and a portion of the Mount Aetna pluton with a 206Pb/238U age of 34.60 ± 0.13 Ma. The small volume intrusions related to the eruption of the Badger Creek Tuff are chemically similar to the ignimbrite and show no signature of crystal–liquid separation in the shallow crust.  相似文献   

14.
Abstract

The Shyok suture zone separates the Ladakh terrane to the SW from the Karakoram terrane to the NE. Six tectonic units have been distinguished. From south to north these are; 1. Saltoro formation; 2. Shyok volcanites; 3. Saltoro molasse; 4. Ophiolitic melange; 5. Tirit granitoids; 6. Karakoram terrane including the Karakoram batholith. Albian—Aptian Orbitolina-bearing lime-stones and turbidites of the Saltoro formation tectonically overlie high-Mg-tholeiites similar to the tectonically overlying Shyok volcanites. The high-Mg tholeiitic basalts and calcalkaline andesites of the Shyok volcanites show an active margin signature. The Saltoro molasse is an apron-like, moderately folded association of redgreen shales and sandstones that are interbedded with ~ 50 m porphyritic andesite. Desiccation cracks and rain-drop imprints indicate deposition in a subaerial fluvial environment. Rudist fragments from a polygenic conglomerate of the Saltoro molasse document a post-Middle Cretaceous age. The calcalkaline andesites of the Shyok volcanites are intruded by the Tirit granitoids, which are located immediately south of the Ophiolitic melange and belong to a weakly deformed trondhjemite-tonalite-granodiorite-granite suite. These granitoids are subalkaline, I-type and were emplaced in a volcanic arc setting. The subalkaline to calcalkaline granitoids of the Karakoram batholith are I-and S-type granitoid. The I-type granitoids represent a typical calcalkaline magmatism of a subduction zone environment whereas the S-type granitoids are crustderived, anatectic peraluminous granites. New data suggest that the volcano-plutonic and sedimentary successions of the Shyok suture zone exposed in northern Ladakh are equivalent to the successions exposed along the Northern suture in Kohistan. It is likely that the o istan and Ladakh blocks evolved as one single tectonic domain uring the Cretaceous-Palaeogene. Subsequently, collision, suturing and accretion of the Indian plate along the Indus suture (50–60 Ma) together with tectonic activity along the Nanga Parbataramosh divided Kohistan and Ladakh into two arealy distinct magmatic arc terranes. The activity and a dextral offset along the Karakoram fault (Holocene-Recent) disrupted the original tectonic relationships. © 1999 Éditions scientifiques et médicales Elsevier SAS  相似文献   

15.
Eclogite lenses in marbles from the Dabie-Sulu ultrahigh-pressure (UHP) terrane are deeply subducted meta-sedimentary rocks. Zircons in these rocks have been used to constrain the ages of prograde and UHP metamorphism during subduction, and later retrograde metamorphism during exhumation. Inherited (detrital) and metamorphic zircons were distinguished on the basis of transmitted light microscopy, cathodoluminescence (CL) imaging, trace element contents and mineral inclusions. The distribution of mineral inclusions combined with CL imaging of the metamorphic zircon make it possible to relate zircon zones (domains) to different metamorphic stages. Domain 1 consists of rounded, oblong and spindly cores with dark-luminescent images, and contains quartz eclogite facies mineral inclusion assemblages, indicating formation under high-pressure (HP) metamorphic conditions of T = 571-668℃and P = 1.7-2.02 GPa. Domain 2 always surrounds domain 1 or occurs as rounded and spindly cores with white-luminescent images. It contains coesite edogite facies mineral inclusion assemblages, indicating formation under UHP metamorphic conditions of T = 782-849℃and P > 5.5 GPa. Domain 3, with gray-luminescent images, always surrounds domain 2 and occurs as the outermost zircon rim. It is characterized by low-pressure mineral inclusion assemblages, which are related to regional amphibolite facies retrograde metamorphism of T = 600-710℃and P = 0.7-1.2 GPa. The three metamorphic zircon domains have distinct ages; sample H1 from the Dabie terrane yielded SHRIMP ages of 245±4 Ma for domain 1, 235±3 Ma for domain 2 and 215±6 Ma for domain 3, whereas sample H2 from the Sulu terrane yielded similar ages of 244±4 Ma, 233±4 Ma and 214±5 Ma for Domains 1, 2 and 3, respectively. The mean ages of these zones suggest that subduction to UHP depths took place over 10-11 Ma and exhumation of the rocks occurred over a period of 19-20 Ma. Thus, subduction from~55 km to > 160 km deep mantle depth took place at rates of approximately 9.5-10.5 km/Ma and exhumation from depths >160 km to the base of the crust at~30 km occurred at approximately 6.5 km/Ma. We propose a model for these rocks involving deep subduction of continental margin lithosphere followed by ultrafast exhumation driven by buoyancy forces after break-off of the UHP slab deep within the mantle.  相似文献   

16.
The relationship among magmatism, large-scale metallogenesis of Southeast China, and subduction of the Pacific plate has long been debated. The lower Yangtze River belt (LYRB) in the northeastern edge of Southeast China is characterized by intense late Mesozoic magmatism and associated polymetallic mineralization such as copper, gold, iron, tungsten, molybdenum, etc. The copper-related adakitic rocks (148–130 Ma) in this belt are the oldest episode of magmatism and intruded as small intermediate-acid intrusive bodies. The Huayuangong granitoids (HYG), located in the southern part of this belt, however, are copper-barren. Three granitoid samples from this pluton give zircon U–Pb ages of 126.4 ± 1.6 Ma, 125.9 ± 1.9 Ma, and 126.2 ± 1.2 Ma, respectively. The HYG has A-type affinity with metaluminous to weakly peraluminous, high FeOT/(FeOT+MgO) ratios, and high Zr+Nb+Ce+Yb contents. Meanwhile, 10 late Mesozoic mafic samples from the LYRB exhibit similar trace element characteristics to those of ‘continental arc andesite’ (CAA) and suggest an enriched lithospheric mantle source with depletion in high field strength elements (e.g. Nb, Ta, Zr, Hf, and Ti) and enrichment of large ion lithophile elements (e.g. Rb, Th, U, and Pb). Although the HYG exhibits similar Sr–Nd isotope composition with the mafic dikes, distinct whole-rock Pb isotope ratios imply that the granitoids and mafic magmas originated from heterogeneous mantle sources. Compared with coeval Baijuhuajian A-type rocks that are exposed along the Jiang–Shao fault of Southeast China, the HYG shows enriched Hf isotope ratios of zircon with εHf(t) values ranging from ?4.8 to ?11.1. In the Yb/Ta versus Y/Nb diagram, being different from the major asthenospheric mantle-origin Baijuhuajian pluton, a large range of and high Y/Nb ratios as well as high Zr contents of the HYG pluton suggest a magmatic source of mixing between the asthenospheric and enriched crustal component in the LYRB. Compared with early-stage copper-related adakitic rocks (148–130 Ma) with subduction-related affinities and high oxygen fugacity, the copper-barren HYG has with-plate A-type affinities and lower oxygen fugacity. Summarizing, the production of early-stage (i.e. subduction related) adakitic rocks followed by late-stage A-type granitoids in the LYRB is ascribed to the rollback of the Palaeo-Pacific plate beneath Southeast China and associated with asthenospheric upwelling and lithospheric thinning during the late Mesozoic era.  相似文献   

17.
1 Introduction Voluminous literature has resulted from study of the geology and tectonic evironments of post-orogenic granitoids in eastern Tianshan (He et al., 1995; Han et al., 1997; Gu et al., 1999, 2001; Li et al., 2003; Chen et al., 2004). Previous contributions (Hu et al., 1997; Li et al., 2003) indicate that major events of continental collision in northern Xinjiang occurred around 300 Ma. Then, the tectonics converted from compression to extension, resulting in the uplifting of th…  相似文献   

18.
北秦岭太白花岗岩体LA-ICP-MS锆石U-Pb测年及其地质意义   总被引:2,自引:2,他引:0  
北秦岭太白岩体位于商丹构造带北侧。野外侵入关系和LA-ICP-MS锆石U-Pb定年显示,该岩体由早志留世的五里峡岩体、晚三叠世的红崖河岩体和早白垩世的下板寺岩体组成。五里峡岩体的主要岩石类型为片麻状黑云母二长花岗岩,锆石U-Pb年龄为(431±2) Ma;红崖河岩体的主要岩石类型为黑云母二长花岗岩,锆石U-Pb年龄为(214±2) Ma;下板寺岩体为粗粒黑云母花岗岩,锆石U-Pb年龄为(130±1) Ma,表明太白岩体是由3个不同时代岩体组成的侵入复合杂岩体。结合区域构造背景和前人的研究成果,得出早志留世五里峡岩体可能与秦岭微板块沿商丹缝合带俯冲碰撞有关;晚三叠世红崖河岩体与秦岭早中生代主期岩浆作用一致,是华北地块与扬子地块碰撞的产物;燕山期的下板寺花岗岩属于板内岩浆作用。研究显示,今后应注意大岩体的解体,其可能隐含着不可忽视的构造-岩浆作用信息。  相似文献   

19.
The blueschists along the Indus Suture Zone in Ladakh, NW Himalaya   总被引:5,自引:0,他引:5  
ABSTRACT Blueschists occur along the Indus Suture Zone in Ladakh as tectonic thrust slices, as isolated blocks within mélange units and as pebbles within continental detrital series. In the Shergol-Baltikar section high-pressure rocks within the Mélange unit lie between the Dras-Naktul-Nindam nappes in the north and the Lamayuru units in the south. The blueschists are imbricated with mélange formation of probably upper Cretaceous age. They are overlain discordantly by the Shergol conglomerate of post Eocene (Oligo-Miocene ?) age. Blueschist lithologies are dominated by volcanoclastic rock sequences of basic material with subordinate interbedding of cherts and minor carbonates. Mineral assemblages in metabasic rocks are characterized by lawsonite-glaucophane/crossite-Na-pyroxene-chlorite-phengite-titanite ± albite ± stilpnomelane. In the quartz bearing assemblages garnet is present but omphacite absent. P-T estimates indicate temperatures of 350 to 420°c and pressures around 9–11 kbar. Geochemical investigations show the primary alkaline character of the blueschist, which suggests an oceanic island or a transitional MORB type primary geotectonic setting. K/Ar isotopic investigations yield middle Cretaceous ages for both whole rocks and minerals. Subduction related HP-metamorphism affecting the Mesozoic Tethyan oceanic crust developed contemporaneously with magmatism in the Dras volcanic are and the Ladakh batholith. Subsequent collision of India with Asia obducted relics of subduction zone material which later became involved in nappe emplacement during the Himalayan mountain building.  相似文献   

20.
东天山觉罗塔格地区岩浆岩非常发育,以花岗岩类分布最为广泛,对其研究还较为薄弱。本文对觉罗塔格地区主要的花岗岩类岩体系统开展了地质特征研究并进行了同位素精确测年,报道了区内16个主要花岗岩类岩体的锆石LA-ICPMS U-Pb年龄:镜儿泉岩体376.9±3.1Ma、西凤山岩体349.0±3.4Ma、石英滩岩体342±11Ma、长条山岩体337.4±2.8Ma、天目岩体320.2±3.1Ma、百灵山岩体317.7±3.7Ma、白石泉岩体303±18Ma、迪坎岩体288.0±2.5Ma、黄山岩体288±17Ma、白山东岩体284.5±4.5Ma、管道岩体284.1±5.8Ma、红石岩体282.7±4.2Ma、陇东岩体276.2±2.5Ma、多头山岩体271.7±5.5Ma、双岔沟岩体252.4±2.9Ma、土墩岩体246.2±2.6Ma,上述定年结果为研究区岩浆活动与区域构造演化及深部过程的关系研究提供了可靠的年代学支持。结合前人已有的部分年代学成果认为,觉罗塔格地区花岗岩类的形成年龄分布在386~230Ma之间,岩浆活动可分为晚泥盆世(386.5~369.5Ma)、早石炭世(349~330Ma)、晚石炭世-晚二叠世(320~252Ma)、早中三叠世(246~230Ma)等4个阶段。前3个阶段岩浆活动具有持续时间逐渐变长、岩浆活动逐渐加剧的特点,并在第三阶段达到顶峰,而第四阶段岩浆活动则明显变弱。花岗岩类岩浆活动在时空分布上表现为,自哈尔里克-大南湖岛弧带→阿奇山-雅满岛弧带→康古尔-黄山韧性剪切带,岩体侵位由早到晚; 自研究区东部→中西部→沿韧性剪切带,岩体侵位由老到新。结合区域构造演化研究成果认为,觉罗塔格地区花岗质岩浆活动与区域构造演化具有很强的耦合关系,花岗岩类在前碰撞阶段、主碰撞阶段、后碰撞阶段、板内阶段等4个构造演化阶段均有发育,与花岗岩类在时间分布上的4个阶段完全对应,其中尤以后碰撞构造演化阶段花岗岩类的分布最广泛、岩浆活动最强烈。觉罗塔格地区与4个阶段花岗岩类有关的成矿作用由早到晚具有无明显矿化→斑岩型铜矿、火山岩型铁矿→韧性剪切带型金矿、夕卡岩型银(铜)矿→斑岩-石英脉型钼矿的演化特点,其中以对应于主碰撞阶段的斑岩型铜矿和后碰撞阶段的韧性剪切带型金矿最为发育。本文系统阐述了东天山觉罗塔格地区中酸性岩体的时空格架、与区域构造演化的耦合、与成矿作用的关系,为北疆地区晚古生代特别是后碰撞背景下的岩浆演化及其成矿关系的研究提供了有力支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号