首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
选取采自南海天然气水合物赋存区海马冷泉,管状蠕虫区(ROV06站位)和贻贝区(HM101站位)的2个表层沉积物柱状样品,提取其中的生物标志化合物,对其种类和稳定碳同位素进行了测定,用以探讨海底表层沉积物中的有机质来源、微生物种群分布及其对冷泉渗漏活动的响应特征. 两个站位的沉积物中均发现了大量与甲烷厌氧氧化古菌(ANME)有关的生物标志物,如2,6,11,15?四甲基十六烷(crocetane)、2,6,10,15,19?五甲基二十烷(PMI)等类异戊二烯烃,古醇(archaeol)、sn2?羟基古醇(sn2?OH?Ar)等,以及来源于硫酸盐还原菌(SRB)的异构/反异构脂肪酸iso?C15和ai?C15等. 这些生物标志物均具有极低的碳同位素特征(古菌生标δ13C值低至-126‰,硫酸盐还原菌生标δ13C值低至?89‰),表明沉积物中发生了甲烷厌氧氧化作用(AOM). ROV06和HM101站位沉积物中均检测到了crocetane,大多数sn2?羟基古醇/古醇大于1,同时ai?C15/iso?C15脂肪酸比值小于2,这说明两个站位沉积物中的甲烷厌氧氧化古菌主要以ANME?2/DSS为主,指示甲烷渗漏强度较强. ROV06站位的表层沉积物含有crocetane,但sn2?羟基古醇/古醇小于1,且ai?C15/iso?C15脂肪酸比值大于2.1,指示了ANME?1/DSS和ANME?2/DSS混合存在的种群特征,说明ROV06站位顶部甲烷渗漏强度有减小的趋势. 根据古菌种群ANME?2化合物对甲烷的碳同位素分馏(Δ:-50‰)及古菌生物标志物(PMI、古醇、sn2?羟基古醇)的平均δ13C值,计算得到甲烷δ13C值(-58‰~-53‰),显示甲烷为热成因和生物成因混合气. 虽然ROV06和HM101站位的甲烷具有相近的δ13C值,但ROV06站位的SRB生物标志物比HM101站位要更加亏损13C(Δδ13C:18‰),这可能与管状蠕虫的共生菌(硫氧化菌)吸收硫化物并释放出硫酸盐有关,因为其不断释放出的硫酸盐很可能极大地增强了甲烷厌氧氧化作用,使沉积物中含有更多13C亏损的无机碳.   相似文献   

2.
《Geochimica et cosmochimica acta》1999,63(23-24):3959-3966
We propose that organic compounds found in a Miocene limestone from Marmorito (Northern Italy) are source markers for organic matter present in ancient methane vent systems (cold seeps). The limestone contains high concentrations of the tail-to-tail linked, acyclic C20 isoprenoid 2,6,11,15-tetramethylhexadecane (crocetane), a C25 homolog 2,6,10,15,19-pentamethylicosane (PME), and a distinctive glycerol ether lipid containing 3,7,11,15-tetramethylhexadecyl (phytanyl-) moieties. The chemical structures of these biomarkers indicate a common origin from archaea. Their extremely 13C-depleted isotope compositions (δ13C ≈ −108 to −115.6‰ PDB) suggest that the respective archaea have directly or indirectly introduced isotopically depleted, methane-derived carbon into their biomass. We postulate that a second major cluster of biomarkers showing heavier isotope values (δ13C ≈ −88‰) is derived from sulfate-reducing bacteria (SRB). The observed biomarkers sustain the idea that methanogenic bacteria, in a syntrophic community with SRB, are responsible for the anaerobic oxidation of methane in marine sediments. Marmorito may thus represent a conceivable ancient scenario for methane consumption performed by a defined, two-membered bacterial consortium: (1) archaea that perform reversed methanogenesis by oxidizing methane and producing CO2 and H2; and (2) SRB that consume the resulting H2. Furthermore, the respective organic molecules are, unlike other compounds, tightly bound to the crystalline carbonate phase. The Marmorito carbonates can thus be regarded as “cold seep microbialites” rather than mere “authigenic” carbonates.  相似文献   

3.
Four massive brecciated, chimney-like, and slender pipe network carbonate samples(JA-4, JA-5, JX-8 and BG-12) were collected from southwestern Taiwan, which were suggested to have formed as a result of anaerobic oxidization of methane(AOM). Considering that the environmental conditions of the carbonates precipitation and the sources of carbon and organic matter need to be further declared, molecular fossils and compound-specific carbon isotopic investigations of the carbonates were conducted in this study. According to lipid biomarkers of 2,6,10,15,19-pentamethyleicosane(PMI) and squalane diagnostic to methanotrophic archaea, as well as the extremely low δ13C values(as low as -113.4‰) detected in samples JA-4, JA-5 and JX-8, these carbonates were revealed to be a result of AOM. Based on the varied δ13C values of characteristic archaea biomarkers in specific samples, biogenic methane was proposed to be responsible for the formation of samples JA-4 and JA-5, whereas a mixed carbon source of 13C-depleted methane and 13C-enriched residual CO_2 from methanogenesis was suggested for the carbonate of JX-8 due to the co-occurrence of a highly positive δ13 Ccarb value(+8‰) and a moderate 13C depletion of PMI. The low content of AOM-related biomarkers and the absence of indicators for ANME-2 suggested that these carbonates were formed in weak seep settings. By comparison, no typical lipid biomarkers for methanotrophic archaea was detected in carbonate BG-12. The short-chain and long-chain n-alkanes accounted for 30% and 45% of all hydrocarbons, respectively, with a CPI value of 1.2, suggesting that the n-alkanes were derived from both marine organisms and terrestrial inputs. A low thermal maturity could be revealed by the incomplete equilibrium value of the C31αβ 22S/(22S+22R) ratio(0.5), and the carbonate BG-12 was probably deposited in a suboxic condition indicated by a value of Pr/Ph ratio(2.5).  相似文献   

4.
The Patom Complex is characterized by a unique association of carbonate rocks with ultralow (≤8‰) and ultrahigh (>6‰) δ13C values. The thickness, stable isotopic composition along the strike, and lithological and geochemical parameters suggest that these rocks could not form as a result of short-term local events or epigenetic processes. Ultralow δ13C values (less than ?8‰) in carbonate rocks of the Zhuya Group, which substantially exceed all the known negative C isotope anomalies in thickness (up to 1000 m) and amplitude (δ13C = ?10 ± 2‰), point to sedimentation under conditions of extreme “contamination” of water column by oxidized isotopically light organic (hereafter, light) carbon. The decisive role in this contamination belonged to melting and oxidation of huge volumes of methane hydrates accumulated in sediments during the powerful and prolonged Early Vendian glacial epoch. The accumulation of δ13C-depleted carbonates was preceded by the deposition of carbonates with anomalously high δ13C values. These carbonates formed at high rates of the burial of organic matter and methane in sediments during periods when the sedimentation basin consumed carbon dioxide from the atmosphere and organic carbon was conserved in sediments.  相似文献   

5.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   

6.
In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on δ13C, δ18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the δ13C is generally less than ?5.0‰PDB, δ18O less than -10.0‰PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the δ13C generally more than ?2.0‰PDB, δ18O less than ?10.0‰PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the δ13C generally ranging from ?2.0‰ to ?8.0‰PDB, δ18O from ?10.0‰ to ?18.0‰ PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the δ13C generally ranging from 0.0‰ to ?10.0‰PDB, δ18O less than ?8.0‰PDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid.  相似文献   

7.
Two types of ‘pseudobreccia’, one with grey and the other with brown mottle fabrics, occur in shoaling‐upward cycles of the Urswick Limestone Formation of Asbian (Late Dinantian, Carboniferous) age in the southern Lake District, UK. The grey mottle pseudobreccia occurs in cycle‐base packstones and developed after backfilling and abandonment of Thalassinoides burrow systems. Burrow infills consist of a fine to coarse crystalline microspar that has dull brown to moderate orange colours under cathodoluminescence. Mottling formed when an early diagenetic ‘aerobic decay clock’ operating on buried organic material was stopped, and sediment entered the sulphate reduction zone. This probably occurred during progradation of grainstone shoal facies, after which there was initial exposure to meteoric water. Microspar calcites then formed rapidly as a result of aragonite stabilization. The precipitation of the main meteoric cements and aragonite bioclast dissolution post‐date this stabilisation event. The brown mottle pseudobreccia fabrics are intimately associated with rhizocretions and calcrete, which developed beneath palaeokarstic surfaces capping cycle‐top grainstones and post‐date all depositional fabrics, although they may also follow primary depositional heterogeneities such as burrows. They consist of coarse, inclusion‐rich, microspar calcites that are always very dull to non‐luminescent under cathodoluminescence, sometimes with some thin bright zones. These are interpreted as capillary rise and pedogenic calcrete precipitates. The δ18O values (?5‰ to ?8‰, PDB) and the δ13C values (+2‰ to ?3‰, PDB) of the ‘pseudobreccias’ are lower than the estimated δ18O values (?3‰ to ?1‰ PDB) and δ13C values of (+2‰ to +4‰ PDB) of normal marine calcite precipitated from Late Dinantian sea water, reflecting the influence of meteoric waters and the input of organic carbon.  相似文献   

8.
海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征   总被引:18,自引:3,他引:18  
冯东  陈多福  苏正  刘芊 《现代地质》2005,19(1):26-32
海底天然气渗漏系统是全球海洋环境中广泛分布的自然现象。部分渗漏天然气通过细菌作用转变为二氧化碳,同时海水硫酸盐被还原为硫化氢, 与孔隙水中的钙和铁结合而沉淀冷泉碳酸盐岩。冷泉碳酸盐岩的常见矿物有微晶方解石、文石、白云石和黄铁矿。冷泉碳酸盐岩常发育一些特殊的组构, 如黄铁矿环带结核、溶蚀面、平底晶洞、凝块和向下生长的叠层石组构等。碳酸盐岩特别负的δ13C值指示碳来源于生物成因的甲烷, 而18O富集可能与天然气水合物的分解有关。冷泉碳酸盐岩中黄铁矿的δ34S值低于海水的, 这指示硫来源于微生物还原的海水硫。冷泉碳酸盐岩中的生物标志化合物及其极负的δ13C值指示微生物的生命代谢活动。  相似文献   

9.
Lower Messinian stromatolites of the Calcare di Base Formation at Sutera in Sicily record periods of low sea‐level, strong evaporation and elevated salinity, thought to be associated with the onset of the Messinian Salinity Crisis. Overlying aragonitic limestones were precipitated in normal to slightly evaporative conditions, occasionally influenced by an influx of meteoric water. Evidence of bacterial involvement in carbonate formation is recorded in three dolomite‐rich stromatolite beds in the lower portion of the section that contain low domes with irregular crinkly millimetre‐scale lamination and small fenestrae. The dominant microfabrics are: (i) peloidal and clotted dolomicrite with calcite‐filled fenestrae; (ii) dolomicrite with bacterium‐like filaments and pores partially filled by calcite or black amorphous matter; and (iii) micrite in which fenestrae alternate with dark thin wispy micrite. The filaments resemble Beggiatoa‐like sulphur bacteria. Under scanning electron microscopy, the filaments consist of spherical aggregates of dolomite, interpreted to result from calcification of bacterial microcolonies. The dolomite crystals are commonly arranged as rounded grains that appear to be incorporated or absorbed into developing crystal faces. Biofilm‐like remains occur in voids between the filaments. The dolomite consistently shows negative δ13C values (down to ?11·3‰) and very positive δ18O (mean value 7·9‰) that suggest formation as primary precipitate with a substantial contribution of organic CO2. Very negative δ13C values (down to ?31·6‰) of early diagenetic calcite associated with the dolomite suggest contribution of CO2 originating by anaerobic methane oxidation. The shale‐normalized rare earth element patterns of Sutera stromatolites show features similar to those in present‐day microbial mats with enrichment in light rare earth elements, and M‐type tetrad effects (enrichment around Pr coupled to a decline around Nd and a peak around Sm and Eu). Taken together, the petrography and geochemistry of the Sutera stromatolites provide diverse and compelling evidence for microbial influence on carbonate precipitation.  相似文献   

10.
Isotopic compositions of sulphur, carbon, and oxygen have been determined for constituents from a total of 103 samples of sedimentary rocks, mafic and ultramafic igneous rocks, nickel ores, and gold ores from the Archaean Yilgarn Block.

Sulphides in the bulk of the sedimentary rocks have δ34S values close to 0‰ and appear to have precipitated from solutions which incorporated magmatic sulphur (either juvenile or derived from older rocks). There is no evidence for widespread sulphate reduction.

δ34S values of sulphides in the nickel deposits and associated mafic/ultramafic igneous rocks are within the magmatic range. The small, high‐grade deposits of the Kambalda‐Nepean‐Scotia type have small positive δ34S values, and the large, low‐to‐medium grade dunite‐associated deposits of the Mount Keith‐Perseverance type have small negative δ34S values.

Sulphides in the Kalgoorlie gold ores are enriched in 32S relative to those in their host dolerite, supporting an epigenetic origin for the gold, under moderately high fO2 conditions.

The δ13C values do not provide unequivocal evidence for the source(s) of the reduced carbon (kerogen) in the sedimentary rocks. Whilst they are compatible with biogenic derivation, it is not possible to rule out contributions from pre‐biotic organic ‘soup’ or from hydrothermal solutions of deep‐seated origin.

Carbonate in the sedimentary rocks are predominantly in epigenetic, sulphide‐bearing veinlets. In many cases, their δ13C values suggest precipitation from hydro‐thermal solutions containing magmatically derived CO2. In only two samples are the petrographic features and δ13C values compatible with marine carbonates. Talc‐carbonate altered ultramafic igneous rocks have δ13C values consistent with their incorporation of magmatically derived CO2.

The ?δ13C (carbonate‐kerogen) values for most of the sedimentary rock studied fall in a narrow range around +10‰, suggesting isotopic exchange between oxidized and reduced carbon species at moderately high temperatures (>250°C).

δ18O values of carbonate from both sedimentary rocks and igneous rocks are mainly within the range +7.2‰ to +18.0‰. If the values are primary they are consistent with the formation of carbonate from hydrothermal solutions of magmatic and/or metamorphic origin. However, it is also possible the δ18O values are the result of post‐depositional equilibration with meteoric waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号