首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 977 毫秒
1.
Aeolian sand transport results from interactions between the ground surface and airflow. Previous research has focused on the effects on sand entrainment and mass transport of surface features and wind velocity, but the influence of air density, which strongly constrains airflow characteristics and the resulting sand flow, has not been widely considered. In the present study, entrainment, saltation characteristics and transport rates were examined at nine experimental sites ranging in elevation from ?154 m below sea‐level (Aiding Lake) to 5076 m above sea‐level (Tanggula Mountain pass on the Qinghai–Tibetan plateau). At each site, a portable wind tunnel and high‐speed camera system were set up, and the friction wind velocity, threshold friction velocity and sand flow structure were observed systematically. For a given volumetric airflow, lower air density increases the wind velocity. Low air density also creates a high threshold friction velocity. The Bagnold wind erosion threshold model remains valid, but the value of empirical parameter A decreased with decreasing air density and ranged from 0·10 to 0·07, the smallest values reported in the literature. For a given wind velocity, increased altitude reduced total sand transport and creeping, but the saltation rate and saltation height increased. The present results provide insights into the fundamental mechanisms of the initiation and transport of sand by wind in regions with an extreme temperature or altitude (for example, alpine deserts and low‐lying lake basins) or on other planets, including Mars. These results also provide theoretical support for improved sand‐control engineering measures. The data and empirical equations provided in this paper improve the ability to estimate threshold and transport conditions for wind‐blown sand.  相似文献   

2.
Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size distribution of sand throughout the saltation layer and, in particular, how the associated flux of different grain size changes with variation in wind velocity, remain unclear. In the present study, a blowdown wind tunnel with a 50 cm thick boundary layer was used to investigate saltating sand grains by analyzing the weight percentage and transport flux of different grain‐size fractions and the mean grain size at different wind velocities. It was found that mean grain size decreases with height above the sand bed before undergoing a reversal. The height of the reversal point ranges from 4 to 40 cm, and increases with wind velocity following a non‐linear relationship. The content of the finer fractions (very fine and fine sand) initially increases above the sand bed and then decreases slightly with height, whereas that of the coarser fractions (medium and coarse sand) exhibits the opposite trend. The content of coarser grains and the mean grain size of sand in the saltation layer increase with wind velocity, indicating erosional selectivity with respect to grains in multi‐sized sand beds; but this size selectivity decreases with increasing wind velocity. The vertical mass flux structure of fine sand and very fine sand does not obey a general exponential decay pattern under strong wind conditions; and the coarser the sand grain, the greater the decrease rate of their transport mass with height. The results of these experiments suggest that the grain‐size distribution of a saltating sand cloud is governed by both wind velocity and height within the near‐surface boundary layer.  相似文献   

3.
Rapid (10 s) measurements of sediment transport and wind speed on the stoss slope of a transverse dune indicate that the majority of sand transported is associated with fluctuations in wind speed with a periodicity of 5–20 min duration. Increases in the sediment transport rate towards the dune crest are associated with a small degree of flow acceleration. The increase in wind speed is sufficient, however, to greatly increase values of the intermittency index ( γ ), so that the duration of saltation is extended in crestal regions of the dune. The pattern of sediment transport on the stoss slope and, therefore, the locus of areas of erosion and deposition change with the regional wind speed. Erosion of the crest occurs during wind speed events just above transport threshold, whereas periods of higher magnitude winds result in deposition of sand upwind of the crest, thereby increasing dune height. Although short-term temporal and spatial relations between sand transport and wind speed on the stoss slope are well understood, it is not clear how these relations affect dune morphology over longer periods of time.  相似文献   

4.
Experimental data are presented demonstrating the influence of boundary layer flow conditions on aerodynamic entrainment of grains in the absence of intersaltation collisions. New methods are proposed for (1) the unambiguous determination of aerodynamic threshold for any grain population and (2) approximation of the probability density function (PDF) distributions of threshold shear velocity for aerodynamic entrainment. In wind tunnel experiments, the orderly spatial development of flow conditions within a developing boundary layer over the roughened surface of a flat plate constrains the aerodynamic threshold condition in terms of both mean and fluctuating values. Initial grain dislodgements and subsequent erosion from narrow strips of loose, finely fractionated ballotini were recorded photographically as wind speed was increased. Boundary layer parameters, including average threshold shear velocity (U*t), were calculated using the momentum integral method. Direct observations show that sporadic oscillation of grains preceded dislodgement. At slightly higher velocities most grains rolled over their neighbours before entering saltation. Initial entrainment in spatially semi-organized flurries of 50 or more grains was followed by quiescent periods at airflow velocities close to threshold. These observations provide strong circumstantial evidence linking both the nature and spatial pattern of initial grain motions to sweep events during the fluid bursting process. For each grain fraction, values of U*t were found to span an unexpectedly wide range and to decrease downwind from the leading edge of the plate as turbulence intensity increased. A probabilistic entrainment model is applied to the aerodynamic threshold condition so as to incorporate the effects of changing turbulent flow regimes over the plate. Analysis of strip erosion curves gives both an objective definition of the threshold condition and usable approximations of the PDF for U*t required by the model and for future stochastic treatment of the threshold condition.  相似文献   

5.
In this study, wind tunnel tests were performed to determine the relationships between sediment transport, the surface moisture content, and wind velocity using beach sands from a tropical humid coastal area of China. The variation in the properties of the creep proportion, relative decay rate as a function of height, and average saltation height in the flux profile were determined. Sand transport was measured using a standard vertical sand trap. The creep proportion (i.e., the proportion of the particles that move along the surface rather than undergoing saltation) and relative decay rate decreased and more particles were ejected to higher positions as moisture content and wind velocity increased. The creep proportion ranged between 0.12 and 0.33, and averaged 0.22. The creep proportion and relative decay rate decreased abruptly at moisture contents between 0.587 and 1.448%; the latter value was close to 1.591%, the moisture content at a matric potential of ?1.5 MPa. This moisture content limit may indicate a change in the form of soil water from adsorbed films on particle surfaces to capillary forces created by inter-particle water bridges. The surface moisture content therefore appears to decisively determine the degree of the restraint on particle entrainment by the wind. The average heights, below which 25, 50, 75, and 90% of sand transport occurred, increased with increasing moisture content (except at 0.231% moisture content) and wind velocity. The mean saltation height at various wind velocities increased linearly with increasing moisture content.  相似文献   

6.
The analysis of the aeolian content of marine cores collected off the coast of the Atacama Desert (Mejillones Bay, Chile) suggests that marine sediments can record inter‐annual to inter‐decadal variations in the regional southerly winds responsible for particle entrainment at the surface of the nearby desert. However, the establishment of a simple and direct correlation between the sediment and wind records is complicated by the difference of time scales between the erosion and accumulation processes. The aim of this work is to: (i) assess the inter‐annual variability of the surface winds responsible for the sand movements; and (ii) determine whether the integration over periods of several months completely smoothes the rapid changes in characteristics of the transported and deposited aeolian material. To accomplish this aim, 14 years of 10 m hourly wind speed, measured at the Cerro Moreno (Antofagasta) Airport between 1991 and 2003 and at the Orica Station between 2000 and 2004, were analyzed. For each year, the wind speed statistical distribution can be represented by a combination of two to three Weibull functions. Winds of the lowest Weibull mode are too weak to move the sand grains at the surface of the pampa; this is not the case for the intermediate mode and especially for the highest speed mode which are able to erode the arid surface and transport particles to the bay. In each individual year of the period of study, the highest speed mode only accounted for a limited number of strong erosion events. Quantitative analysis of the distribution of the friction velocities and of their impact on erosion using a saltation model suggests that, although all wind speeds above threshold produce erosion events, values around 0·45 m sec?1 contribute less to the erosion flux. This gap allows separation of the erosion events into low and high saltation modes. The correlation (r = 0·997) between the importance of the third Weibull mode and the extent of higher rate saltation indicates that the inter‐annual variability of the erosion at the surface of the pampa, as well as the transport of coarse particles (>100 μm), are directly related to inter‐annual variations in the prevalence of the strongest winds. Finally, a transport and deposition model is used to assess the possible impact of the wind inter‐annual variability on the deposition flux of mineral particles in the bay. The results suggest that inter‐annual differences in the wind speed distributions have a quantifiable effect on the intensity and size‐distribution of this deposition flux. This observation suggests that a detailed analysis of the sediment cores collected from the bay could be used for reconstructing the inter‐annual variability of past winds.  相似文献   

7.
Sand transport model of barchan dune equilibrium   总被引:9,自引:0,他引:9  
Erosion and deposition over a barchan dune near the Salton Sea, California, is modelled by book-keeping the quantity of sand in saltation following streamlines of transport. Field observations of near-surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold-type sand-transport formulae corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuation in the wind direction. Although the model includes a provision for a lag in response of the transport rate to downwind changes in applied shear stress, the best results are obtained when no delay is assumed. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. Smaller grain size or higher wind speed produce a steeper and more blunt stoss-side. Low saturation of the inter-dune sandflow produces open crescent-moon-shaped dunes, whereas high saturation produces a whaleback form with a small slip face. Dunes subject to winds of variable direction are blunter than those under unidirectional winds. The size of barchans could be proportional to natural atmospheric scales, to the age of the dune, or to the upwind roughness. The upwind roughness can be controlled by fixed elements or by the sand is saltation. In the latter case, dune scale may be proportional to wind velocity and inversely proportional to grain size. However, because the effective velocity for transport increases with grain size, dune scale may increase with grain size as observed by Wilson (1972).  相似文献   

8.
The threshold condition and mass flux of aeolian sediment transport are the essential quantities for wind erosion prediction, dust storm modeling and geomorphological evolution, as well as the sand control engineering design. As a consequence, they have long been the key issues of windblown sand physics. Early researches on aeolian sediment transport focus mainly on steady transport process. While recently, synchronous, high frequency measurements show that wind field in atmospheric boundary layer is always unsteady, showing up as intense fluctuation of wind speed, which thus results in the intense spatial-temporal variability of aeolian sand transport. It has been proven that unsteady sand/dust transport is closely related with boundary layer turbulence and affects significantly the determination of threshold condition and the prediction of aeolian transport rate. The researches of experiment, theory analysis and numerical simulation on unsteady sand/dust transport in recent two decades are reviewed. Finally, open questions and future developments are suggested.  相似文献   

9.
Wind erosion is a dominant geomorphological process in arid and semi-arid regions with major impacts on regional climate and desertification. The erosion process occurs when the wind speed exceeds a certain threshold value, which depends on a number of factors including surface soil moisture. The understanding and modelling of aeolian erosion requires a better understanding of the soil erodibility associated with different moisture conditions. In arid regions during the dry season, the atmospheric humidity plays an important role in determining the surface moisture content and the threshold shear velocity. By a series of wind tunnel tests and theoretical analyses, this dependence of threshold velocity on near surface air humidity is shown for three soils of different textures: sand, sandy loam, and clay loam. The results show that the threshold shear velocity decreases with increasing values of relative humidity for values of relative humidity between about 40% and 65%, while above and below this range the threshold shear velocity increases with air humidity. A theoretical framework is developed to explain these dependencies assuming an equilibrium between the surface soil moisture and the humidity of the overlying atmosphere. The conditions under which soil-atmosphere equilibrium occurs were tested experimentally in the laboratory for different soils in order to determine the effect of grain surface area and texture on the time required to reach equilibrium starting from different initial conditions.  相似文献   

10.
An experimental study was undertaken in a large-scale wind tunnel to investigate sand particle dislodgement by wind over time in the absence of grain-bed collisions. Aerodynamic dislodgement was measured for six groups of sand particles under two known wind velocity profiles. The results show that the dislodgement rate for both fine and coarse particles decreases rapidly during the transition of the particle surface from a non-wind-worked condition to a wind-worked condition, and that the dislodgement rate continues to decay under a wind-worked condition even though the mean grain size of surface particles remains nearly the same. A previously developed theoretical method for calculating the number of particles left on the bed by wind was developed further. The derived method was used to calculate the time-decay of the dislodgement rate and the length of time required for the dislodgement rate to reach an equilibrium. The length of time for dislodgement rate to reach an equilibrium in this study is of the order of 10–15 min. This not only provides further observation of the second, long stage of aeolian sediment transport system development reported previously but also indicates a potentially large variation in the time-decay of transport rate under different conditions. The results indicate that the time-decay of the particle dislodgement rate is related to sorting processes. Because of the artificial method of preparation of the grain surface and the wind velocity profiles, the results of this study should be applied with caution to natural conditions.  相似文献   

11.
R. D. SARRE 《Sedimentology》1988,35(4):671-679
Sand transport rates were measured using a vertical sand trap along the intertidal zone of a beach in North Devon, England, together with simultaneous monitoring of the wind speed on the beach and moisture levels in the surface layers of sand. The results of 88 sand trap samples in a wide range of wind speeds showed that moisture levels up to 14%, in the top 1–2 mm of the beach sand, have no discernible effect on the transport rates. Transport rates measured from areas of the beach where the moisture was below this level are compared with the rates predicted by seven expressions based on theoretical and wind tunnel research together with the empirical results of other published research. Measured transport rates range from 0.0001 to 0.22 kg m-1 s-1. The results indicate that expressions based on a power relation between the wind speed and the transport rate, and which include a threshold velocity term, provide the best estimates of the observed transport rates.  相似文献   

12.
Rates of aerodynamic entrainment in a developing boundary layer   总被引:1,自引:0,他引:1  
Despite its significance for inception of grain transport by wind, the initial dislodgement of grains from a static surface by aerodynamic forces of drag and lift in the absence of grain collision has received little attention. This paper describes a series of wind-tunnel experiments in which the erosion of narrow strips of loose grains from the roughened surface of a flat plate exposed to a range of wind speeds was examined. The progressive downwind development of the boundary layer over the plate provided a range of airflow conditions which permitted systematic evaluation of grain entrainment rates arising from purely aerodynamic forces. Use of closely graded size fractions in flat, single grain layers resting on identical, fixed grain support eliminated the effects of surface irregularities and impacts from saltation. Results show that erosion of strips of loose grains develops with time according to an inverse exponential function in which the entrainment rate time constant relates to Shields dimensionless shear stress function. An empirical expression defining aerodynamic entrainment rate in terms of rate of strip erosion is derived and comparisons are made between present and published data. The need for additional data to resolve several questions raised by the present investigation is stressed. In addition, a simple, objective technique for accurate determination of the aerodynamic entrainment threshold of any loose, granular sediment is proposed.  相似文献   

13.
ABSTRACT Temporally and spatially averaged models of bedload transport are inadequate to describe the highly variable nature of particle motion at low transport stages. The primary sources of this variability are the resisting forces to downstream motion resulting from the geometrical relation (pocket friction angle) of a bed grain to the grains that it rests upon, variability of the near‐bed turbulent velocity field and the local modification of this velocity field by upstream, protruding grains. A model of bedload transport is presented that captures these sources of variability by directly integrating the equations of motion of each particle of a simulated mixed grain‐size sediment bed. Experimental data from the velocity field downstream and below the tops of upstream, protruding grains are presented. From these data, an empirical relation for the velocity modification resulting from upstream grains is provided to the bedload model. The temporal variability of near‐bed turbulence is provided by a measured near‐bed time series of velocity over a gravel bed. The distribution of pocket friction angles results as a consequence of directly calculating the initiation and cessation of motion of each particle as a result of the combination of fluid forcing and interaction with other particles. Calculations of bedload flux in a uniform boundary and simulated pocket friction angles agree favourably with previous studies.  相似文献   

14.
Aeolian transport rates were measured for three sands: a quartz sand (relative density 2.68, sphericity 0.73), a shelly sand (relative density 2.64, sphericity 0.59, carbonate content 67%), and granular aluminium oxide (relative density 3.95, sphericity 0.67). Low sphericity depresses the transport rate, particularly at high wind speeds; high density also does so but the effect is more marked at low transporting wind speeds. The sand of low sphericity undergoes longer saltations than the other materials, but is dislodged less frequently than they are and is transported less freely in a given wind. Of the more spherical materials, the denser was the least effective at extracting energy from the wind for grain transport in the range of our experiments. Both of the more spherical materials showed evidence of a fairly sudden transition of transport behaviour at modest wind speed. It is inferred that this marks the transfer of the function of grain dislodgement from direct wind action to inter-granular collision. The transition did not occur in experiments on the material of lower sphericity. For a given transport rate, wind speed near the bed is highest for the grains of low sphericity (by a considerable margin) and lowest for the more compact quartz grains. Propensity for transport by wind is greatest for the quartz sand, less so for the heavy material and least for the material of low sphericity.  相似文献   

15.
Intermittent saltation   总被引:11,自引:0,他引:11  
During a typical wind erosion event, large variations in wind strength produce temporal variations in saltation activity. The focus of this paper is on a special type of unsteady behaviour - intermittent saltation - a process characterized by bursts of blowing soil interspersed with periods of inactivity. We report here measurements from a field study designed to measure intermittent saltation during three separate 1-h periods. Our measurements show that natural wind erosion events consist of intermittent bursts of blowing soil often occupying a small fraction of the total time. We have managed to describe the level of intermittency by a simple and universal mathematical expression. We find that the level of intermittency is governed by whether typical wind fluctuations span the gap between the mean wind speed and threshold wind speed. We propose a nondimensional number which expresses the ratio of these velocity scales, called the relative wind strength, and find that the level of intermittency can be described by a simple distribution function of the relative wind strength.  相似文献   

16.
Settling velocities and entrainment thresholds of biogenic sedimentary particles, under unidirectional flow conditions, are derived on the basis of settling tower and laboratory flume experiments. Material consisting predominantly of equant blocks (shell fragments of Cerastoderma edule , density, ρ s=2800 kg m−3) or of mica-like flakes and elongate rods ( Mytilus edulis fragments, ρ s=2720 kg m−3) are used in separate series of experiments. Differences in the measured settling and threshold properties are related primarily to particle shape. The selection of a characteristic length scale for non-spherical grains is investigated by comparing two approaches used to define the grain size ( D ) of the sediment samples: grain settling and sieve analysis that are used to derive data for the threshold criteria, in terms of the Shields and Movability diagrams. The empirical curves effectively predict the threshold conditions for any grain shape, provided that grain size is defined in terms of grain settling velocity. However, a functional distinction is made between the characteristic `hydraulic' grain size, defined by grain settling for grain transport applications, and the actual (physical) grain size defined by sieve analysis.  相似文献   

17.
Abstract Reliable predictions of wind erosion depend on the accuracy of determining whether erosion occurs or not. Among the several factors that govern the initiation of soil movement by wind, surface moisture is one of the most significant. Some widely used models that predict the threshold shear velocity for particle detachment of wet soils by wind were critically reviewed and evaluated. Wind‐tunnel experiments were conducted on pre‐wetted dune sand with moisture contents ranging from 0·00 to 0·04 kg kg?1. Sand samples were exposed to different wind speeds for 2 min. Moisture content was determined gravimetrically before and after each experiment, and the saltation of sand particles was recorded electronically with a saltiphone. Shear velocities were deduced from the wind speed profiles. For each moisture content, the experiments were repeated at different shear velocities, with the threshold shear velocity being determined by least‐squares analysis of the relationships between particle number rates and shear velocity. Within the 2‐min test runs, temporal changes in particle number rates and moisture contents were detected. A steep increase in the threshold shear velocity with moisture content was observed. When comparing the models, large differences between the predicted results became apparent. At a moisture content of 0·007 kg kg?1, which is half the moisture content retained to the soil matrix at a water tension (or matric potential) of ?1·5 MPa, the increase in ‘wet’ threshold shear velocity predicted with the different models relative to the dry threshold shear velocity ranged from 117% to 171%. The highest care should therefore be taken when using current models to predict the threshold shear velocity of wet sediment. Nevertheless, the models of Chepil (1956; Proc. Soil Sci. Soc. Am., 20, 288–292) and Saleh & Fryrear (1995; Soil Sci., 160, 304–309) are the best alternatives available.  相似文献   

18.
A new method for analysing observed aeolian sand transport rate profiles of the kind obtained by Williams is presented. The method involves a mathematical model of aeolian saltation. Detailed information about the saltation process can be calculated from the transport rate profile by means of this model. The method is used to perform a re-analysis of Williams' trap data. Among the main findings of this analysis is that the grain borne shear stress appears to be a smaller fraction of the total shear stress than assumed by Bagnold & Owen in their theories of aeolian saltation. Other findings are that the probability distribution of the jump height of the grains does not depend much on the wind speed once the saltation is established, and that the vertical component of the mean launch velocity decreases with the grain size. It is approximately inversely proportional to the grain diameter. Our estimates of the landing angles indicate that estimates of the impact angles obtained from photographically recorded trajectories are too small due to biased sampling. The influence of grain shape on the transport characteristics is mainly due to changes in the grains' ability to jump when hitting the bed. It is found that angular grains have a lower mean jump height than spherical grains.  相似文献   

19.
Bioclastic particles derived from mollusc shell debris can represent a significant fraction of sandy to gravelly sediments in temperate and cool‐water regions with high carbonate productivity. Their reworking and subsequent transport and deposition by waves and currents is highly dependent on the shape and density of the particles. In this study, the hydrodynamic behaviour of shell debris produced by eight mollusc species is investigated for several grain sizes in terms of settling velocity (measurements in a settling tube) and threshold of motion under unidirectional current (flume experiments using an acoustic profiler). Consistent interspecific differences in settling velocity and critical bed shear stress are found, related to differences in shell density, shell structure imaged by scanning electron microscopy and grain shape. Drag coefficients are proposed for each mollusc species, based on an interpolation of settling velocity data. Depending on the shell species, the critical bed shear stress values obtained for bioclastic particles fall within or slightly below empirical envelopes established for siliciclastic particles, despite very low settling velocity values. The results suggest that settling velocity, often used to describe the entrainment of sediment particles through the equivalent diameter, is not a suitable parameter to predict the initiation of motion of shell debris. The influence of the flat shape of bioclastic particles on the initiation of motion under oscillatory flows and during bedload and saltation transport is yet to be elucidated.  相似文献   

20.
Dynamic processes acting on a longitudinal (seif) sand dune   总被引:4,自引:0,他引:4  
HAIM TSOAR 《Sedimentology》1983,30(4):567-578
ABSTRACT Field measurements were made on a longitudinal dune in the Sinai Desert in order to understand its morphology and dynamics. The field measurements contradicted the wind structure indicated by the helicoidal flow theory. Rather, it was found that winds coming from two basically different directions at different times and striking the dune obliquely were responsible for sand transport and erosion or deposition along the lee flank.
The essence of this mechanism is the deflection of the wind airflow on the lee flank of the dune to a direction parallel to the crest line. The occurrence of erosion or deposition depends upon the angle of incidence between the wind and the crest line. When this angle is < 40° the velocity of the deflected wind is higher than on the crest line or the windward flank and longitudinal sand transport occurs. When the angle is less acute (> 40°) the velocity of the deflected wind drops and deposition takes place on the lee flank.
The angle of incidence in each wind storm is changed intermittently between 30° and 100° along the dune because the dune meanders and because of the sinuous outline of the crest line. In this manner sand transport and erosion or deposition occurs along the lee flank depending on the angle of incidence between the wind and the crest line. As a result of the deflection of the wind the dune elongates at an average rate of more than 1 m per month. Peaks and saddles along the crest line advance at an average rate of 0.7 m per month.
The lack of uniformity in the effects of the wind on both sides of the dune creates a lack of uniformity in the rate of erosion and deposition. This can explain the formation of peaks along the crest line of the dune.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号