首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake Xingcuo is a small, closed, hardwater lake situated in the eastern Tibetan Plateau. Stable isotope data (δ18O and δ13C) from the freshwater snail Gyraulus sibirica (Dunker) in a 34-cm-long, radioactive isotope-dated sediment core represent the past 200 years of Lake Xingcuo environmental history. Carbon and oxygen isotope ratios in the shells of the snail yield information on the isotopic composition of the water in which the shell was formed, which in turn relates to climatic conditions prevailing during the snail's life-span. Living and fossil shells from Lake Xingcuo were collected. δ18O values in the living shells from Lake Xingcuo are in equilibrium with ambient waters, while δ13C values may trace snail dietary carbon. On comparing δ18O and δ13C in the shell of Gyraulus sibirica with monitored data for the period 1954-1995, we found that the δ18O composition in the shell is an efficient proxy revealing air temperature during the warmer months from April to September. There is a positive correlation between the δ18O in the shells of Gyraulus sibirica and the running average temperature of the warmer months. Climatic variability in the eastern Tibetan Plateau for the past two centuries has been inferred from the δ18O record from the freshwater snails in the sediments of Lake Xingcuo. As such, the last 200 years' palaeoclimatic record for this region can be separated into three periods representing oscillations between warm and cool conditions consistent with the Guliya ice record in the Tibetan Plateau.  相似文献   

2.
The stable hydrogen and oxygen of lake, river, rain and snow waters were investigated to understand the water cycle characteristics of the drainage basin of Manasarovar Lake in Tibet. Both δD and δ 18O of river water are larger than those of lake water and the effect of altitude on both δD and δ 18O is not very significant. This phenomenon was suggested to occur because Manasarovar basin is located in Qinghai–Tibet Plateau which has low latitude, high altitude, abundant glaciers, thin air and intensive solar radiation, resulting in higher evaporation in lake water.  相似文献   

3.
Dreissena polymorpha is an exotic freshwater bivalve species which was introduced into the Great Lakes system in the fall of 1985 through the release of ballast water from European freighters. Utilizing individual growth rings of the shells, the stable isotope distribution (δ18O and δ13C) was determined for the life history of selected samples which were collected from the western basin of Lake Erie. These bivalves deposit their shell in near equilibrium with the ambient water and thus reflect any annual variation of the system in the isotopic records held within their shells. Observed values for δ18O range from -6.64 to –9.46‰ with an average value of –7.69‰ PDB, while carbon values ranged from –0.80 to –4.67‰ with an average value of –1.76‰ PDB. Dreissena polymorpha shells incorporate metals into their shells during growth. Individual shell growth increments were analyzed for Pb, Fe, Mg, Mn, Cd, Cu, and V concentrations. The shells show increased uptake of certain metals during periods of isotopic enrichment which correspond with warmer water temperatures. Since metals are incorporated into the shells, the organism may be useful as a biomonitor of metal pollution within aquatic environments. Received: 31 October 1996 · Accepted: 21 May 1997  相似文献   

4.
A continuous high-resolution (monthly) record of stable isotopes (δ13C and δ18O) in a well-laminated freshwater travertine deposited at Baishuitai, SW China from May 1998 to November 2001 was presented. The travertine exhibits clear annual bands with coupled brown/white color laminations. Throughout field investigation, it was found that the thin (1.5–2.2 mm), brown porous lamina was formed in the monsoonal rainy season from April to September, whereas the thick (5–8 mm), dense white lamina was formed in the dry season from October to March. The comparisons of lamina thickness and stable isotope signals in the travertine with the meteorological records allow us to constrain the relevant geochemical processes in the travertine formation under different climate conditions and to relate climate variables to their physicochemical proxies in the travertine record. Sympathetic variations in lamina thickness, δ13C and δ18O along the sampled profile reflect changes in hydrogeochemistry, showing that thin lamina and low δ13C and δ18O values occur in warm and rainy seasons. The decreased amount of calcite precipitation and low δ13C values during the warm and rainy seasons is caused by dilution of overland flow after rainfall. The low δ18O values are believed to be related to the rainfall amount effect in subtropical monsoonal regions. This process is thought to be markedly subdued whenever the amount of rainfall is lower than a given threshold. Accordingly, distinct minima in lamina thickness, δ13C and δ18O are interpreted to reflect events with above-average rainfall, possibly heavy floods, and vice versa. This study demonstrates the potential of freshwater travertine to provide valuable information on seasonal or even monthly rainfall variations.  相似文献   

5.
Based on the data developed from various s natural waters in the Qinghai Lake area and ostracode shells present in drill core QH-16A of recent lake-floor sediments ,this paper discusses the distribution of stable isotopes in the modern water body of Qinghai Lake,and the initial isotopic composition of the lake water has been deduced ,Studies of δ^18O,δ^13C,Mg/Ca and Sr/Ca in ostracode shells provide the basis for the establishment of the model of climatic fluctuation in the Qinghai Lake area since the postaglacial age,as well as for the elucidation of the environmental evolution of the water body of Qinghai Lake since the postglacial age.  相似文献   

6.
The Qinghai-Xizang Plateau is an area where a large number of salt lakes are distributed. We have collected several hundred samples of natural waters over the Plateau since 1976 and carried out researches on their hydrogen and oxygen isotopes. The results indicate that theδD and δ18O values of the salt lake waters over the Plateau range from −64.1 to +12.4‰ and from −11.19 to +8.62‰, respectively. From the different types of surfaces, ground and lake waters of various salinities it is inferred that the compositions of H and O isotopes in the initial water of Qinghai Lake areδD=−55.0‰ and {ie336-1}; and those in the original water from the lakes in northern Xizang, areδD=−116.0‰ and {ie336-2}. Brines in the salt lakes are derived from rain water through prolonged circulation. Oilfield water also makes some contribution to the salt lakes in the Qaidam Basin. Similar slopes of evaporation lines of water isotopes are noticed for the Qinghai Lake area and northern Xizang. This is attributed to the evolution of the isotopes in these water bodies in an environment of middle latitude and high elevation.  相似文献   

7.
Stable isotopic ratios of carbon and oxygen (δ13C and δ18O) from mollusk shells reflect the water quality characteristics of Florida Bay and can be used to characterize the great temporal variability of the bay. Values of δ18O are directly influenced by temperature and evaporation and may be related to salinity, δ13C values of δ13C are sensitive to organic and inorganic sources of carbon and are influenced by productivity. Analyses of eight mollusk species from five short-core localities across Florida Bay show large ranges in the values of δ13C and δ18O, and reflect the variation of the bay over decades. Samples from southwester Florida Bay have distinct δ13C values relative to samples collected in northeastern Florida Bay, and intermediate localities have intermediate values.13C values of δ13C grade from marine in the southwest bay to more estuarine in the northeast. Long cores (>1m), with excellent chronologies were analyzed from central and eastern Florida Bay. Preliminary analyses ofBrachiodontes exustus andTransenella spp. from the cores showed that both δ13C and δ18O changed during the first part of the twentieth century. After a century of relative stability during the 1800s, δ13C decreased between about 1910 and 1940, then stabilized at these new values for the next five decades. The magnitude of the reduction in δ13C values increased toward the northeast. Using a carbon budget model, reduced δ13C values are interpreted as resulting from decreased circulation in the bay, probably associated with decreased freshwater flow into the Bay. Mollusk shell δ18O values display several negative excursions during the 1800s, suggesting that the bay was less evaporitic than during the twentieth century. The isotope records indicate a fundamental change took place in Florida Bay circulation early in the twentieth century. The timing of the change links it to railroad building and early drainage efforts in South Florida rather than to flood control and water management measures initiated after World War II.  相似文献   

8.
 Isotopic (δ13C, δ18O) and elemental (Mg, Sr, Mn, Fe) compositions were analysed in sclerochronological profiles of several shells of late Cretaceous rudist bivalves from Greece, Turkey, Somalia and the Arabian Peninsula. The preservation of original compositions of low-Mg calcite of outer shell layers is indicated by constant and high Sr, generally low Fe and Mn, and the preservation of fibrous-prismatic ultrastructures. Cyclic variations in δ18O and Mg are interpreted to reflect seasonal temperature/salinity cycles and, thus, annual growth increments. In shells of Torreites, amplitudes of correlated δ13C and δ18O cycles cannot be related to reasonable palaeotemperatures or salinity. This isotopic pattern reflects vital fractionations of an extent which is unknown from modern bivalves. In contrast, almost identical ranges and amplitudes of δ18O cycles are observed in 13 shells of five species from Santonian-Campanian localities in central Greece and northern Turkey, suggesting that seasonal variations in environmental conditions were recorded without significant vital fractionations. The effect of seasonal salinity changes on δ18O of the shells is evaluated, and mean palaeotemperatures are constrained within the range of 30–32.5  °C. The annual range of temperature was estimated to be 7  °C, assuming a constant salinity. This agrees with other isotopic proxies of Late Cretaceous palaeotemperatures, and with global circulation models which predict higher low-latitude sea-surface temperatures than the present ones. Received: 12 February 1998 / Accepted: 24 May 1999  相似文献   

9.
 Late Proterozoic to Cambrian carbonate rocks from Lone Mountain, west central Nevada, record multiple post-depositional events including: (1) diagenesis, (2) Mesozoic regional metamorphism, (3) Late Cretaceous contact metamorphism, related to the emplacement of the Lone Mountain granitic pluton and (4) Tertiary hydrothermal alteration associated with extension, uplift and intrusion of silicic porphyry and lamprophyre dikes. Essentially pure calcite and dolomite marbles have stable isotopic compositions that can be divided into two groups, one with positive δ13C values from+3.1 to +1.4 ‰ (PDB) and high δ18O values from +21.5 to +15.8 ‰ (SMOW), and the other with negative δ13C values from –3.3 to –3.6‰ and low δ18O values from +16.9 to +11.1‰. Marbles also contain minor amounts of quartz, muscovite and phlogopite. Brown and blue luminescent, clear, smooth textured quartz grains from orange luminescent calcite marbles have high δ18O values from +23.9 to +18.1‰, while brown luminescent, opaque, rough textured quartz grains from red luminescent dolomite marbles typically have low δ18O values from +2.0 to +9.3‰. The δ18O values of muscovite and phlogopite from marbles are typical of micas in metamorphic rocks, with values between +10.4 and +14.4‰, whereas mica δD values are very depleted, varying from −102 to −156‰. No significant lowering of the δ18O values of Lone Mountain carbonates is inferred to have occurred during metamorphism as a result of devolatilization reactions because of the essentially pure nature of the marbles. Bright luminescence along the edges of fractures, quartz cements and quartz overgrowths in dolomite marbles, low δD values of micas, negative δ13C values and low δ18O values of calcite and dolomite, and depleted δ18O values of quartz from dolomite marbles all indicate that meteoric fluids interacted with Lone Mountain marbles during the Tertiary. Partial oxygen isotopic exchange between calcite and low 18O meteoric fluids lowered the δ18O values of calcite, resulting in uniform quartz-calcite fractionations that define an apparent pseudoisotherm. These quartz-calcite fractionations significantly underestimate both the temperature of metamorphism and the temperature of post-metamorphic alteration. Partial oxygen isotopic exchange between quartz and meteoric fluids also resulted in 18O depletion of quartz from dolomite marbles. This partial exchange was facilitated by an increase in the surface area of the quartz as a result of its dissolution by meteoric fluids. The negative δ13C values in carbonates result from the oxidation of organic material by meteoric fluids following metamorphism. Stable isotopic data from Lone Mountain marbles are consistent with the extensive circulation of meteoric hydrothermal fluids throughout western Nevada in Tertiary time. Received: 1 February 1994/Accepted: 12 September 1995  相似文献   

10.
An integrated faunal and geochemical dataset has been generated by the study of a late Miocene (early Tortonian) sedimentary section outcropping at Manassi, Levkas Island (eastern Mediterranean). Quantitative analysis of benthic foraminifers from the 25-m-thick section indicates changes of bottom palaeoecological conditions in this part of the eastern Mediterranean, during the analyzed time interval. Benthic foraminifer assemblages are typical of a bathyal environment and testify to relatively oxygenated conditions with low to moderate food supply alternating with periods with an increase in organic matter content. The long-term palaeoceanographic analyses indicate an anti-estuarine circulation model based on the benthic foraminifer and stable isotope results, which evolved in a strong estuarine circulation. The positive relationship existing between the plankton δ18O and δ13C, in most of the record, agrees well with the hypothesis of a variable contribution of runoff. In three stratigraphic levels, samples record heavy bottom water δ18O and δ13C values and light surface δ18O values, representing a wet, warm, estuarine climate with a stratified water column. In two stratigraphic levels, samples have depleted δ13C and δ18O values for both surface and bottom waters. These two samples represent wet, warm climates with some ocean mixing and stratification. The stable isotope signal of foraminifer tests from the Manassi section was influenced by the global temperature changes, but the local factors also played an important role. The palaeoenvironments derived from stable isotope analysis in this study are interpreted as responses to the local tectonic instability together with monsoon intensities that enhanced continental runoff, characteristic for the time interval studied in the study area. Due to the limited data available from this study, no correlations with the precessional, obliquity, or eccentricity cycles can be made.  相似文献   

11.
Isotopes of deuterium and oxygen-18 in thermal groundwater in China   总被引:1,自引:0,他引:1  
Compositions of deuterium and 18O isotopes of 90 representative samples indicate that thermal groundwater in most parts of China is meteoric in origin. Latitude, altitude, and continent effects have significant bearing on the values of δD and δ18O of the hot water samples. Oxygen-18 shift is not significant in most of the thermal groundwater, especially the hot water of low-to-moderate temperature. Slight oxygen-18 shift is only found in some hot springs of high temperature in Tibet and western Yunnan and in thermal groundwater of low-to-moderate temperature in the deep-seated carbonate aquifers in the northern North China Plain (including the Tianjin area). Near-surface boiling may causes the shift of the former and the latter may be attributed to exchange of oxygen-18 between water and carbonates in the geothermal systems of taphrogenic basin-type. Hot springs in Tibet and western Sichuan have very low contents of δD and δ18O, possibly due to recharge of precipitation and snow-melting water of extremely depleted δD and δ18O values at high latitudes of several thousands of meters.  相似文献   

12.
The source of metasomatic fluids in iron-oxide–copper–gold districts is contentious with models for magmatic and other fluid sources having been proposed. For this study, δ 18O and δ 13C ratios were measured from carbonate mineral separates in the Proterozoic eastern Mt Isa Block of Northwest Queensland, Australia. Isotopic analyses are supported by petrography, mineral chemistry and cathodoluminescence imagery. Marine meta-carbonate rocks (ca. 20.5‰ δ 18O and 0.5‰ δ 13C calcite) and graphitic meta-sedimentary rocks (ca. 14‰ δ 18O and −18‰ δ 13C calcite) are the main supracrustal reservoirs of carbon and oxygen in the district. The isotopic ratios for calcite from the cores of Na–(Ca) alteration systems strongly cluster around 11‰ δ 18O and −7‰ δ 13C, with shifts towards higher δ 18O values and higher and lower δ 13C values, reflecting interaction with different hostrocks. Na–(Ca)-rich assemblages are out of isotopic equilibrium with their metamorphic hostrocks, and isotopic values are consistent with fluids derived from or equilibrated with igneous rocks. However, igneous rocks in the eastern Mt Isa Block contain negligible carbon and are incapable of buffering the δ 13C signatures of CO2-rich metasomatic fluids associated with Na–(Ca) alteration. In contrast, plutons in the eastern Mt Isa Block have been documented as having exsolved saline CO2-rich fluids and represent the most probable fluid source for Na–(Ca) alteration. Intrusion-proximal, skarn-like Cu–Au orebodies that lack significant K and Fe enrichment (e.g. Mt Elliott) display isotopic ratios that cluster around values of 11‰ δ 18O and −7‰ δ 13C (calcite), indicating an isotopically similar fluid source as for Na–(Ca) alteration and that significant fluid–wallrock interaction was not required in the genesis of these deposits. In contrast, K- and Fe-rich, intrusion-distal deposits (e.g. Ernest Henry) record significant shifts in δ 18O and δ 13C towards values characteristic of the broader hostrocks to the deposits, reflecting fluid–wallrock equilibration before mineralisation. Low temperature, low salinity, low δ 18O (<10‰ calcite) and CO2-poor fluids are documented in retrograde metasomatic assemblages, but these fluids are paragenetically late and have not contributed significantly to the mass budgets of Cu–Au mineralisation.  相似文献   

13.
Three estuaries near Naples, Florida with variably modified watersheds have been investigated to understand the chemical consequences of altering drainage patterns. Blackwater River (near natural drainage, control site), Henderson Creek (moderately modified watershed), and Faka-Union Canal (severe channelization) were sampled for temperature, salinity, δ18O, δ13C of dissolved inorganic carbon (DIC), molality of CO2 (ΣCO2), and Mg:Ca and Sr:Ca ratios between freshwater and marine water end members over a 17-mo period. Carbon isotope composition followed similar seasonal patterns as salinity. Freshwater and seawater end members are more negative than the global average, likely reflecting equilibration with local carbon sources derived from mangrove leaf litter and groundwater. δ13C responds to differences in primary productivity between estuaries. Henderson Creek has higher primary productivity than Blackwater River (probable due to higher sewage input and agricultural runoff) and has more positive δ13C and lower ΣCO2. δ18O is affected by seasonal input of freshwater from atmospheric precipitation, evaporation, and groundwater. Late summer and fall rains lower the δ18O of estuarine water, whereas evaporative conditions in the dry season elevate δ18O to values that can be more positive upstream than those from the Gulf of Mexico (estuarine inversion). Evaporation produces water in the Gulf of Mexico that is >1‰ more positive than the global sea surface average most of the year. The very negative δ18O values in Blackwater River and Henderson Creek likely reflect atmospheric and groundwater contribution. Mg:Ca and Sr:Ca ratios of Gulf water from all three estuaries are similar to global averages at low latitudes. Freshwater end members among estuaries are different in that Blackwater River has higher ratios, suggesting a groundwater contribution. Dolomitic rocks in the subsurface likely provide a source of Mg ions.  相似文献   

14.
Stable isotope ratios of oxygen (δ18O) and carbon (δ13C) in tests ofGloborotalia menardii from samples at 25 cm intervals of top 900 cm cores, representing different thicknesses of the Pleistocene, from DSDP Sites 219, 220 and 241 in the northern Indian Ocean have been measured. Based on the δ18O stratigraphy, glacial and interglacial phases during the Pleistocene have been recognized, which are in good agreement with the standard Quaternary planktonic foraminiferal/climatic zones i.e., Ericson zones at these sites, based onG. menardii abundances. The GIA (glacial interglacial amplitude) at Sites 241, 219 and 220 are of the order of 1·2, 1·4 and 1·9‰ respectively. The last glacial and interglacial maxima (18 ka BP and 125 ka BP respectively) could be identified in DSDP Cores 241, and 219 with some precision. ‘Isotopic ages’ could be assigned to the different levels of these core sections based on the correlation of δ18O record from these sites with the SPECMAP record (Imbrieet al 1984). Changes in sediment accumulation rates at different levels of the Pleistocene have been worked out on the basis of changes in oxygen isotopic ratio. Oscillations in δ13C stratigraphy at Site 241 indicated southwest monsoon induced increase in upwelling and productivity during warmer periods. At Sites 219 and 220, variations in the δ13C record were due to the mixing of bottom water.  相似文献   

15.
Studies of carbonate carbon isotope of loess/paleosol (δ13Ccarb) in the Chinese Loess Plateau (CLP) have shown δ13Ccarb less negative in loess and more negative in paleosol, which is opposite to that of bulk organic matter. Although some mechanisms have been proposed to explain this inconsistency, few studies have been conducted to investigate how carbonate migration could affect the reliability of utilizing δ13Ccarb as an effective indicator. Here, a loess/paleosol profile with a nodule horizon intercalated in the loess layer, located on the southeastern edge of the CLP, was investigated to understand the influence of carbonate eluviation and reprecipitation on δ13Ccarb along the section. The mean grain size and magnetic susceptibility generally conform to the field observed loess/paleosol stratigraphy. However, carbonate content shows distinct differences in the two sides of the nodule horizon, clearly indicating eluviation along the section. The variation of carbon and oxygen isotopic compositions of soil carbonate (δ13CSC and δ18OSC) and nodule carbonate (δ13CNC and δ18ONC) along the profile does not present a clearly meaningful picture. Generally, δ13CSC and δ18OSC have a similar change trend along the profile and are positively correlated, but there is no apparent relationship between δ13CNC and δ18ONC. More importantly, δ18ONC values fall in the range of δ18OSC, whereas δ13CNC values are much more positive than δ13CSC. Detailed analyses of the data indicate migration of carbonate along the profile, which is an important factor that determines that loess/paleosol δ13Ccarb could not be employed as a high-resolution paleovegetational and paleoenvironmental indicator in the CLP, at least on or below the glacial/interglacial scales.  相似文献   

16.
 Previous stable isotope studies at Lizzies Basin revealed that metasedimentary rocks are 18O-depleted relative to protolith values, particularly in the lower parts of the section (Lower Zone) where the rocks are also isotopically homogeneous on a scale of hundreds of meters (quartz δ18O=+9.0 to +9.6 per mil). In contrast, metasedimentary rocks at higher levels at Lizzies Basin (Upper Zone) are less 18O-depleted and more heterogeneous in δ18O. In order to understand more fully the isotopic evolution of this terrane, a series of detailed, meter-scale traverses across various metamorphic and igneous lithologies were completed at Lizzies Basin, and at the structurally higher Angel Lake locality. Traverses in the Lizzies Basin Lower Zone and in the lower parts of Angel Lake (Angel Lake Lower Sequence) across various silicate lithologies, including abundant granitoids, reveal similar degrees of homogeneity, although the average δ18O values are higher at Angel Lake. In contrast, traverses which include substantial thicknesses of marble and calc-silicate gneiss and very little granitoid have more heterogeneous quartz δ18O values (+11.9 to +13.4 per mil), and also have a higher average δ18O (+12.9 per mil), than observed elsewhere. The scale of 18O/16O homogeneity in quartz observed at Lizzies Basin and Angel Lake (meters to hundreds of meters) requires fluid-mediated isotope exchange, which accompanied Tertiary metamorphism. There is a correlation between the degree of 18O-depletion in metasedimentary rocks, 18O/16O homogenization between lithologies, and the proportion of granitoids (leucogranites in particular) within any part of the section, and a corresponding anticorrelation with the proportion of marble. This points to a causal relationship, whereby the leucogranites (as well as the Tertiary hornblende diorite and biotite monzogranite) acted as both a relatively low-18O reservoir and a source of fluids to enhance exchange, while the marbles hindered isotope depletion and homogenization by acting as relatively high-18O reservoirs and impermeable layers. Material balance calculations help delineate the plausible mechanisms of exchange between granitoids and metasediments. Single-pass infiltration of magmatic fluids from the granitoids is not capable of reproducing all of the observations. Fluid-mediated exchange by convective recirculation of magmatic fluids on a scale of meters is the mechanism which explains all of the observations. The generalized model for the isotopic evolution of the East Humboldt Range core complex provides an excellent opportunity to establish the main causes and controlling factors of 18O-depletion and 18O/16O homogenization during regional metamorphism. Received: 27 July 1993 / Accepted: 1 July 1994  相似文献   

17.
The stable isotopic composition of the bivalve shell has been widely used to reconstruct the pa-laeo-climate and palaeo-environment. The climatic and environmental significance of carbon isotopic composition of the bivalve shell is still in dispute, and incorporation of metabolic carbon can obscure carbon isotope records of dis-solved inorganic carbon. This study deals with freshwater bivalve, Corbicula fluminea aragonite shell. The results indicated that the δ13C values of bivalve shells deposited out of equilibrium with the host water and showed an onto-genic decrease, indicating that there are metabolic effects and more metabolic carbon is incorporated into larger shells. The proportion of metabolic carbon of shells varies between 19.8% and 26.8%. However, δ13CS can still be used as qualitative indicators of δ13CDIC and environmental processes that occurred during shell growth.  相似文献   

18.
为了揭示蜗牛化石壳体碳酸盐(文石)稳定同位素组成的古气候和古生态环境指示意义,对采集于河南荥阳邙山末次冰期黄土剖面上部中的粉华蜗牛(Cathaica pulveratrix)化石壳体碳酸盐进行了碳、氧稳定同位素分析,同时还对全岩有机物质(SOM)碳同位素组成以及全岩磁化率和粒度等气候替代指标进行分析,结果显示:剖面中反映蜗牛食物碳同位素组成的壳体δ13CSSA的变化,与反映古植被碳同位素组成的全岩有机物质碳同位素组成(δ13CSOM)无显著的相关关系,但是壳体13C相对于SOM的富集程度(Δδ13CSSA-SOM)的变化与石笋氧同位素记录的末次冰期东亚夏季风强度演化同步一致;   壳体δ18OSSA的变化不但与黄土磁化率、粒度等气候替代指标变化具有显著相关性,同样也与末次冰期东亚夏季风强度演化同步一致。这些特征,一方面说明受季风环流控制的气候温湿程度变化左右蜗牛夏季活动的几率和食物的类型,干冷气候条件下,相对温湿夏季成为蜗牛活动主要时期,相对富集13C苔藓、菌类和植物可能是蜗牛的主要食物;   另一方面暗示蜗牛化石壳体碳酸盐稳定同位素组成能够指示气候温湿程度和生态环境的变化。  相似文献   

19.
An array of samples from the eastern Upper Basin Member of the Plateau Rhyolite (EUBM) in the Yellowstone Plateau, Wyoming, were collected and analyzed to evaluate styles of deposition, geochemical variation, and plausible sources for low δ18O rhyolites. Similar depositional styles and geochemistry suggest that the Tuff of Sulphur Creek and Tuff of Uncle Tom’s Trail were both deposited from pyroclastic density currents and are most likely part of the same unit. The middle unit of the EUBM, the Canyon flow, may be composed of multiple flows based on a wide range of Pb isotopic ratios (e.g., 206Pb/204Pb ranges from 17.54 to 17.86). The youngest EUBM, the Dunraven Road flow, appears to be a ring fracture dome and contains isotopic ratios and sparse phenocrysts that are similar to extra-caldera rhyolites of the younger Roaring Mountain Member. Petrologic textures, more radiogenic 87Sr/86Sr in plagioclase phenocrysts (0.7134–0.7185) than groundmass and whole-rock ratios (0.7099–0.7161), and δ18O depletions on the order of 5‰ found in the Tuff of Sulphur Creek and Canyon flow indicate at least a two-stage petrogenesis involving an initial source rock formed by assimilation and fractional crystallization processes, which cooled and was hydrothermally altered. The source rock was then lowered to melting depth by caldera collapse and remelted and erupted. The presence of a low δ18O extra-caldera rhyolite indicates that country rock may have been hydrothermally altered at depth and then assimilated to form the Dunraven Road flow.  相似文献   

20.
THEJINLONGSHANGOLDOREBELTINZHEN’ANCOUN TY,SOUTHERNSHAANXIPROVINCE,ISLOCATEDINTHEWEST ERNQINLINGGOLDPROVINCE(NO.16INFIG.1;CHEN YANJINGETAL.,2004).ITWASDISCOVEREDINTHEDEVO NIANSTRATAINTHELATE1980S).ITSGEOLOGICALSETTING ANDMETALLOGENICEVOLUTIONARESIMILARTOT…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号