首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical proxies are useful analogs for reconstructing physical properties of sea water, such as sea surface temperature (SST) and sea surface salinity (SSS). Time series of these inferred properties would allow for reconstructions of past El Niño–Southern Oscillation (ENSO) events, where no instrumental records exist. In this study, a monthly oxygen isotope record from a Porites coral is used to explain how past ENSO events are recorded in the coral skeletons. The sample covers a 12 year period and was collected from Nanwan Bay, Taiwan. During El Niño events the coral skeleton is shown to produce a δ18O–SST correlation with a slope of −0.12 ± 0.04‰ °C−1. During other times, this value is significantly different, with a slope of −0.21 ± 0.04‰ °C−1. Coral that grew during El Niño summers have δ18O values which are enriched by ∼0.2‰, relative to other times. A possible mechanism to explain this difference may be enhanced penetration of Kuroshio Current waters into the South China Sea during summer. The observed contrast in the correlation of δ18O–SST variability in this sample supports the influence of El Niño in eastern Asia.  相似文献   

2.
To reconstruct oceanographic variations in the subtropical South Pacific, 271-year long subseasonal time series of Sr/Ca and δ18O were generated from a coral growing at Rarotonga (21.5°S, 159.5°W). In this case, coral Sr/Ca appears to be an excellent proxy for sea surface temperature (SST) and coral δ18O is a function of both SST and seawater δ18O composition (δ18Osw). Here, we focus on extracting the δ18Osw signal from these proxy records. A method is presented assuming that coral Sr/Ca is solely a function of SST and that coral δ18O is a function of both SST and δ18Osw. This method separates the effects of δ18Osw from SST by breaking the instantaneous changes of coral δ18O into separate contributions by instantaneous SST and δ18Osw changes, respectively. The results show that on average δ18Osw at Rarotonga explains ∼39% of the variance in δ18O and that variations in SST explains the remaining ∼61% of δ18O variance. Reconstructed δ18Osw shows systematic increases in summer months (December-February) consistent with the regional pattern of variations in precipitation and evaporation. The δ18Osw also shows a positive linear correlation with satellite-derived estimated salinity for the period 1980 to 1997 (r = 0.72). This linear correlation between reconstructed δ18Osw and salinity makes it possible to use the reconstructed δ18Osw to estimate the past interannual and decadal salinity changes in this region. Comparisons of coral δ18O and δ18Osw at Rarotonga with the Pacific decadal oscillation index suggest that the decadal and interdecadal salinity and SST variability at Rarotonga appears to be related to basin-scale decadal variability in the Pacific.  相似文献   

3.
The origin of δ13C variations within the skeletons of zooxanthellate scleractinian corals is still a matter of considerable debate. In particular, the role respired CO2 plays in controlling the eventual δ13C of the skeleton remains unclear. In this study, the temporal variability of the δ13C of respired CO2 produced by Montastraea faveolata has been measured at approximately monthly intervals over a 1-year period. In these experiments, three corals maintained on a platform at 8 m depth near Molasses Reef in the Florida Keys were incubated in closed chambers for 24-h periods and samples of the incubation water analyzed for the δ13C of the dissolved inorganic carbon (ΣCO2) at ∼3-h intervals. Throughout the incubation, the concentration of O2 was measured continuously within the chamber. Our results show that during daylight, the δ13C of the ΣCO2 in the incubation water becomes enriched in 13C as a result of fractionation during the fixation of C by photosynthesis, whereas at night the δ13C of the ΣCO2 becomes more negative. The δ13C of the respiratory CO2 ranges from −9‰ in the late spring to values as low as −17‰ in the autumn. The lighter values are significantly more negative than those reported by previous workers for coral tissue and zooxanthellae. An explanation for this discrepancy may be that the corals respire a significant proportion of isotopically negative substances, such as lipids, which are known to have values up to 10‰ lighter compared to the bulk δ13C of the tissue. The clear seasonal cycle in the δ13C of the respiratory CO2 suggests that there is also seasonal variability in either the δ13C of the coral tissue or the type and/or amount of organic material being respired. A similar temporal pattern and magnitude of change was observed in the δ13C of the coral tissue samples collected from a nearby reef at monthly intervals between 1995 and 1997. These patterns are similar in timing to the δ13C measured in the coral skeletons. We have also calculated an annual mean value for the fractionation factor between dissolved CO2 in the external environment and photosynthate fixed by the zooxanthellae of 1.0121 (±0.003). This value is inversely correlated with the ratio of photosynthesis to respiration (P/R) of the entire organism and shows the highest values during the summer months.  相似文献   

4.
Coral proxy records of sea surface temperature (SST) and hydrological balance have become important tools in the field of tropical paleoclimatology. However, coral aragonite is subject to post-depositional diagenetic alteration in both the marine and vadose environments. To understand the impact of diagenesis on coral climate proxies, two mid-Holocene Porites corals from raised reefs on Muschu Island, Papua New Guinea, were analysed for Sr/Ca, δ18O, and δ13C along transects from 100% aragonite to 100% calcite. Thin-section analysis showed a characteristic vadose zone diagenetic sequence, beginning with leaching of primary aragonite and fine calcite overgrowths, transitional to calcite void filling and neomorphic, fabric selective replacement of the coral skeleton. Average calcite Sr/Ca and δ18O values were lower than those for coral aragonite, decreasing from 0.0088 to 0.0021 and −5.2 to −8.1‰, respectively. The relatively low Sr/Ca of the secondary calcite reflects the Sr/Ca of dissolving phases and the large difference between aragonite and calcite Sr/Ca partition coefficients. The decrease in δ18O of calcite relative to coral aragonite is a function of the δ18O of precipitation. Carbon-isotope ratios in secondary calcite are variable, though generally lower relative to aragonite, ranging from −2.5 to −10.4%. The variability of δ13C in secondary calcite reflects the amount of soil CO2 contributing 13C-depleted carbon to the precipitating fluids. Diagenesis has a greater impact on Sr/Ca than on δ18O; the calcite compositions reported here convert to SST anomalies of 115°C and 14°C, respectively. Based on calcite Sr/Ca compositions in this study and in the literature, the sensitivity of coral Sr/Ca-SST to vadose-zone calcite diagenesis is 1.1 to 1.5°C per percent calcite. In contrast, the rate of change in coral δ18O-SST is relatively small (−0.2 to 0.2°C per percent calcite). We show that large shifts in δ18O, reported for mid-Holocene and Last Interglacial corals with warmer than present Sr/Ca-SSTs, cannot be caused by calcite diagenesis. Low-level calcite diagenesis can be detected through X-ray diffraction techniques, thin section analysis, and high spatial resolution sampling of the coral skeleton and thus should not impede the production of accurate coral paleoclimate reconstructions.  相似文献   

5.
δ18O was determined at high spatial resolution (beam diameter ∼30 μm) by secondary ion mass spectrometry (SIMS) across 1-2 year sections of 2 modern Porites lobata coral skeletons from Hawaii. We observe large (>2‰) cyclical δ18O variations that typically cover skeletal distances equivalent to periods of ∼20-30 days. These variations do not reflect seawater temperature or composition and we conclude that skeletal δ18O is principally controlled by other processes. Calcification site pH in one coral record was estimated from previous SIMS measurements of skeletal δ11B. We model predicted skeletal δ18O as a function of calcification site pH, DIC residence time at the site and DIC source (reflecting the inputs of seawater and molecular CO2 to the site). We assume that oxygen isotopic equilibration proceeds at the rates observed in seawater and that only the aqueous carbonate ion is incorporated into the precipitating aragonite. We reproduce successfully the observed skeletal δ18O range by assuming that DIC is rapidly utilised at the calcification site (within 1 h) and that ∼80% of the skeletal carbonate is derived from seawater. If carbonic anhydrase catalyses the reversible hydration of CO2 at the calcification site, then oxygen isotopic equilibration times may be substantially reduced and a larger proportion of the skeletal carbonate could be derived from molecular CO2. Seasonal skeletal δ18O variations are most pronounced in the skeleton deposited from late autumn to winter (and coincide with the high density skeletal bands) and are dampened in skeleton deposited from spring to summer. We observed no annual pattern in sea surface temperature or photosynthetically active radiation variability which could potentially correlate with the coral δ18O. At present we are unable to resolve an environmental cue to drive seasonal patterns of short term skeletal δ18O heterogeneity.  相似文献   

6.
Stable isotopic ratios of carbon and oxygen (δ13C and δ18O) from mollusk shells reflect the water quality characteristics of Florida Bay and can be used to characterize the great temporal variability of the bay. Values of δ18O are directly influenced by temperature and evaporation and may be related to salinity, δ13C values of δ13C are sensitive to organic and inorganic sources of carbon and are influenced by productivity. Analyses of eight mollusk species from five short-core localities across Florida Bay show large ranges in the values of δ13C and δ18O, and reflect the variation of the bay over decades. Samples from southwester Florida Bay have distinct δ13C values relative to samples collected in northeastern Florida Bay, and intermediate localities have intermediate values.13C values of δ13C grade from marine in the southwest bay to more estuarine in the northeast. Long cores (>1m), with excellent chronologies were analyzed from central and eastern Florida Bay. Preliminary analyses ofBrachiodontes exustus andTransenella spp. from the cores showed that both δ13C and δ18O changed during the first part of the twentieth century. After a century of relative stability during the 1800s, δ13C decreased between about 1910 and 1940, then stabilized at these new values for the next five decades. The magnitude of the reduction in δ13C values increased toward the northeast. Using a carbon budget model, reduced δ13C values are interpreted as resulting from decreased circulation in the bay, probably associated with decreased freshwater flow into the Bay. Mollusk shell δ18O values display several negative excursions during the 1800s, suggesting that the bay was less evaporitic than during the twentieth century. The isotope records indicate a fundamental change took place in Florida Bay circulation early in the twentieth century. The timing of the change links it to railroad building and early drainage efforts in South Florida rather than to flood control and water management measures initiated after World War II.  相似文献   

7.
《International Geology Review》2012,54(15):1909-1921
This paper reports the carbon and oxygen isotope compositions of lacustrine carbonate sediments from the Palaeogene Shahejie Formation, Qikou depression, Bohaiwan Basin, with the aim of determining the palaeoenvironmental conditions in the region. Results from Es2, the second member of the Shahejie Formation, showed values of δ13C and δ18O from –1.2‰ to +2.4‰ (average +0.6‰) and from –6.8‰ to –4.7‰ (average –5.7‰), respectively, suggesting a relatively hot climate attending deposition. The slightly closed nature of the lake, which contains brackish water, resulted in higher carbonate δ13C and δ18O values than in a meteoric environment. The values of δ13C and δ18O preserved within the carbonates of the overlying lower Shahejie I (Es1) varied between +1.3‰ and +4.9‰ (average +3.2‰) and from ?4.4‰ to ?1.8‰ (average ?3.1‰), respectively, indicating that the climate became colder at that time. Subsequently, a marine transgression caused the salinity of the lake water to increase. The values of δ13C and δ18O were controlled by salinity. The high δ13C values were also influenced by the rapid burial of the lake organisms and by algal photosynthesis. Values of δ13C and δ18O from carbonates in upper Es1 ranged from ?8.0‰ to +11.0‰ (average +10.1‰) and from ?5.0‰ to ?1.5‰ (average ?3.4‰), respectively, indicating a slight increase in the temperature over time. In the closed and reducing environment, extremes in δ13C values resulted from biochemical fermentation. The positive δ13C excursion recorded in the carbonates of the Shahejie Formation in the Qikou depression indicates that the palaeoclimate underwent a significant transformation during the Eocene and the Oligocene.  相似文献   

8.
The build up of the isotopic signal in corals was followed by sampling the newly formed skeleton at a monthly resolution for a period of two years in order to establish the interrelations between the calcification processes and the skeletal isotopic composition. We deployed two underwater sampling schemes, which provide a monitor of the changes in water temperature and δ18O and in the corresponding newly accreted skeleton of undisturbed Porites lutea colonies under natural conditions and four transplanted colonies, which maintained the genetic identity throughout the experiment. The results indicate that δ18O of the newly accreted skeleton does not correlate with ambient temperature although the seasonal temperature variability at the site (winter to summer) is in the order of 6 °C and δ18O of seawater is constant throughout the year. In contrast to the newly formed surface skeleton, the isotopic compositions of the deep and older parts of the skeleton show the predicted annual isotopic pattern with highly significant correlation between δ18Os and SST. The transformation between temperature-independent to temperature-dependent isotopic signal occurs several months after the skeleton was formed at the surface. The position of the skeleton in relation to the open sea may generate the difference between δ18Os of the surface skeleton and that of the skeleton previously accreted further down the tissue layer. Our data support the general model of a multi-step skeletogenesis process, where the temperature independent skeleton is entails the first step, the production of skeletal scaffold, and the environmental temperature signature is captured by the next two other steps: the thickening and the periodic abrupt uplift occurring at the depth of the tissue layer. However, re-examination and development of the current isotopic models for coral calcification are required in order to explain the observed different temperature dependency during the growth’s sequence.  相似文献   

9.
This study uses electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) to identify secondary calcite in coral skeletons. Secondary calcite appears to have nucleated on the original aragonite dissepiments, producing horizontal structures that mimic the morphology of the original coral aragonite, forming dissepiment-like meniscus structures. The Sr/Ca and δ18O of the pristine aragonite and secondary calcite were analysed by secondary ion mass spectrometry (SIMS). The effect of calcite inclusion on the mean geochemistry of the coral carbonate and subsequent sea surface temperature (SST) calculations were determined for both Sr/Ca and δ18O. Inclusion of as little as 1% secondary calcite within the primary coral aragonite elevates the Sr/Ca-derived SST by 1.2 °C and could markedly offset estimates of past tropical climate. Conversely, inclusion of 10% secondary calcite has little effect on the SST estimated from δ18O (+ 0.6 °C) indicating that this proxy is relatively robust to even large amounts of calcite. The different extents to which the two proxies would be influenced by inadvertent inclusion of such meniscus calcite demonstrate the importance of a multi-proxy approach.  相似文献   

10.
Analysis of carbon and oxygen isotopic compositions of large benthic foraminifera tests (Marginopora vertebralis) that lived in the Great Australian Bight during the late Pleistocene, reveal that the tests are enriched by 1 to 3‰ in both 18O and 13C relative to modern specimens from the same region. The intolerance of M. vertebralis for cool waters negates lower ocean water temperature as an explanation for such high δ18O values. The oxygen isotopic compositions are thus interpreted to reflect tests secreted in hypersaline waters of up to 56 ppt salinity, concentrated from seawater by evaporation. M. vertebralis thrives today in waters of similar salinity at Shark Bay, Western Australia. The Pleistocene sedimentary assemblage supports an interpretation that environments broadly similar to those in outer modern-day Shark Bay were wide spread across the Great Australian Bight during portions of marine isotope stages 2, 3 and 4. The high δ13C values of the Pleistocene M. vertebralis are interpreted to reflect enhanced photosynthetic activity that depletes dissolved carbonate in 12C in such shallow, saline settings. These hypersaline environments formed during periods of lower sea-level when shallow-waters (< 20 m depth) extended from the shoreline over ~ 100 km across what is currently a relatively deep shelf. This study indicates that shelf bathymetry was a critical determinant of past environments of deposition across the Great Australian Bight.  相似文献   

11.
Diploastrea heliopora forms dense, robust, dome-shaped coral colonies throughout the reef ecosystems of the tropical Pacific and Indian Oceans. This slow-growing (2 to 6 mm/yr) coral has the potential to yield continuous paleoclimate records spanning up to 1000 yr for the warmest waters on Earth, the Indo-Pacific Warm Pool, and has a long fossil history as a single recognizable species. Despite the potential of Diploastrea to be an important new paleoclimate archive, little is known about the systematics of geochemical tracers incorporated into its skeleton. To fill this knowledge gap, we compared skeletal δ18O signatures in live Diploastrea and Porites colonies from Southwest Lagoon, near Amédée Lighthouse, New Caledonia (at the southern latitudinal limit for Diploastrea) and Alor, Indonesia (in the core area of the Indo-Pacific Warm Pool). We designed a new microsampling technique to minimize smoothing and distortion of the isotopic records due to the complex calyx architecture and slow growth of Diploastrea. High-resolution isotope profiles from the septal portion of the Diploastrea corallite are attenuated, whereas those restricted to the central columella are similar in quality to those extracted from the well-established Porites coral archive. The δ18O-temperature relationship for the columellar portion of Diploastrea (−0.18‰/°C) is in good agreement with that derived for a nearby Porites (−0.19‰/°C; Quinn et al., 1996), on the basis of comparison with an in situ sea surface temperature record from Amédée Lighthouse. There is a measurable difference of 0.3 ± 0.1‰ between the kinetic/biological disequilibrium offsets from seawater δ18O composition for Diploastrea and Porites. Despite this offset in mean δ18O, Diploastrea accurately records the regional differences in mean temperature and salinity between New Caledonia and the Indo-Pacific Warm Pool. Additional tests show that Diploastrea records El Niño-Southern Oscillation (ENSO) interannual variability in sea surface temperature and salinity across the southwestern Pacific, indicating that it should yield dependable paleo-ENSO records. Based on these results, we propose that D. heliopora has the potential to provide an important new coral archive of tropical paleoclimate.  相似文献   

12.
There is a net discharge of water and nutrients through Long Key Channel from Florida Bay to the Florida Keys National Marine Sanctuary (FKNMS). There has been speculation that this water and its constituents may be contributing to the loss of coral cover on the Florida Keys Reef tract over the past few decades, as well as speculation that changes in freshwater flow in the upstream Everglades ecosystem associated with the Comprehensive Everglades Restoration Plan may exacerbate this phenomenon. The results of this study indicate that although there is a net export of approximately 3,850 (±404) ton N year?1 and 63 (±7) ton P year?1, the concentrations of these nutrients flowing out of Florida Bay are the same as those flowing in. This implies that no significant nutrient enrichment is occurring in the waters of the FKNMS in the vicinity of Long Key Channel. Because of the effect of restricted southwestward water flow through Florida Bay by shallow banks and small islands, the volume of relatively high-nutrient water from central and eastern portions of the bay exiting through the channel is small compared to the average tidal exchange. Nutrient loading of relatively enriched bay waters is mediated by tidal exchange and mixing with more ambient concentrations of the western Florida Bay and Hawk Channel. System-wide budgets indicate that the contribution of Florida Bay waters to the inorganic nitrogen pool of the Keys coral reef is small relative to offshore inputs.  相似文献   

13.
Understanding the influence of climatic and non-climatic factors on geochemical signals in corals is critical for assessing coral-derived records of tropical climate variability. Porites microatolls form large, disk-shaped colonies constrained in their upward growth by exposure at or close to mean spring low water level, and occur on Indo-Pacific reefs. Microatolls appear suitable for paleoclimate reconstruction, however the systematics of the microatoll chemistry-climate relationship are yet to be characterized. In this study, the δ18O signal in Porites microatolls from well-flushed reef flats on Kiritimati (Christmas) Island, central Pacific was investigated for intra-coral (growth aspect and extension rate effects) and between-coral effects, and to explore the climate signal contained within their skeletons. Samples for δ18O analysis were taken from six individual transects from different positions within Porites microatoll XM22. The results show that: (1) the average standard deviation for the mean δ18O values of transects that represent the same time periods is 0.03‰, and is within measurement error for a single analysis (0.04‰); (2) the average standard deviation for time-equivalent, near-monthly samples along the transects within the same microatoll is 0.07‰ and; (3) comparison of the average δ18O values of records for different microatolls from across Kiritimati Island show only a small between-coral differences of 0.04‰ and 0.11‰ for different time periods. These differences in mean δ18O are within the range for intra- and inter-colony differences in seasonal and interannual δ18O reported for dome-shaped Porites. Based on these results, a stacked microatoll δ18O record was constructed for the period 1978-2007 for comparison with published coral δ18O records for nearby dome-shaped Porites. There is a systematic offset between the two types of records, which is probably due to variations in δ18O seawater across Kiritimati Island. Despite the offset, all records show similar amplitudes for the seasonal-cycle of δ18O, and there is a strong correlation (= −0.71) between microatoll δ18O and local sea surface temperature (SST). The δ18O-SST slope relationship for microatolls is −0.15‰/°C, very similar to that reported for fast-growing domed corals (−0.18‰ to −0.22‰/°C). Statistical analysis of the stacked microatoll δ18O record shows that it is correlated with both local and large-scale climate variables (primarily SST) at semiannual, annual and interannual timescales. Our results show that the signal reproducibility and fidelity of skeletal δ18O in coral microatolls is comparable to that observed for more conventional coral growth forms. Longer-lived, and fossil, Porites microatolls, where they have grown in suitably flushed environments, are likely to contain δ18O signals that can significantly extend instrumental records of tropical climate variability.  相似文献   

14.
Surface lake sediments,28 from Hoh Xil,24 from northeastern China,99 from Lake Bosten,31 from Ulungur and 26 from Heihai were collected to determine δ13C and δ18O values.Considering the impact factors,conductivity,alkalinity,pH,TOC,C/N and carbonate-content in the sediments,Cl,P,S,and metal element ratios of Mg/Ca,Sr/Ca,Fe/Mn of bulk sediments as environmental variables enable evaluation of their influences on δ13C and δ18O using principal component analysis(PCA) method.The closure and residence time of lakes can influence the correlation between δ13C and δ18O.Lake water will change from fresh to brackish with increasing reduction and eutrophication effects.Mg/Ca in the bulk sediment indicates the characteristic of residence time,Sr/Ca and Fe/Mn infer the salinity of lakes.Carbonate formation processes and types can influence the δ13C–δ18O correlation.δ18O will be heavier from Mg-calcite and aragonite formed in a high-salinity water body than calcite formed in freshwater conditions.When carbonate content is less than 30%,there is no relationship with either δ13C or δ18O,and also none between δ13C and δ18O.More than 30%,carbonate content,however,co-varies highly to δ13C and δ18O,and there is also a high correlation between δ13C and δ18O.Vegetation conditions and primary productivity of lakes can influence the characteristics of δ13C and δ18O,and their co-variance.Total organic matter content(TOC) in the sediments is higher with more terrestrial and submerged plants infilling.In northeastern and northwestern China,when organic matter in the lake sediments comes from endogenous floating organisms and algae,the δ13C value is high.δ13C is in the range of 4‰ to 0‰ when organic matter comes mainly from floating organisms(C/N<6);in the range of 4‰ to 8‰ when organic matter comes from diatoms(C/N=6 to 8);and 8‰ to 4‰ when organic matter comes from aquatic and terrestrial plants(C/N>8).  相似文献   

15.
In the arid sub-Saharan of southern Morocco, groundwater salinization poses a direct threat for agricultural production in six oases’ basins that are irrigated by water imported from the High Atlas Mountains. Here the geospatial distribution of salinity is evaluated in shallow groundwater, springs and surface waters in the Drâa Basin, integrating major and trace element geochemistry and isotopic tracers (O, H, Sr and B). The data show that water discharge from the High Atlas Mountains to the Upper section of the Drâa Basin is characterized by both low and high salinity, a distinctive low δ18O and δ2H composition (as low as −9‰ and −66‰, respectively), typical for meteoric water from high elevation, a 87Sr/86Sr range of 0.7078–0.7094, and δ11B of 12–17‰. The Ca–Mg–HCO3, Na–Cl–SO4, and Ca–SO4 compositions as well as the Br/Cl, 87Sr/86Sr, and δ11B values of the saline water suggest dissolution of Lower Jurassic carbonates and evaporite rocks in the High Atlas Mountain catchment. Storage and evaporation of the imported water in a man-made open reservoir causes an enrichment of the stable isotope ratios with a δ18O/δ2H slope of <8 but no change in the Sr and B isotope fingerprints. Downstream from the reservoir, large salinity variations were documented in the shallow groundwater from the six Drâa oases, with systematically higher salinity in the three southern oases, up to 12,000 mg/L. The increase of the salinity is systematically associated with a decrease of the Br/Cl ratio, indicating that the main mechanism of groundwater salinization in the shallow aquifers in the Drâa oases is via salt dissolution (gypsum, halite) in the unsaturated zone. Investigation of shallow groundwater that flows to the northern Drâa oases revealed lower salinity (TDS of 500–4225) water that is characterized by depleted 18O and 2H (as low as −9‰ and −66‰, respectively) and higher 87Sr/86Sr ratios (∼0.7107–0.7115) relative to irrigation water and groundwater flow from the Upper Drâa Basin. This newly-discovered low-saline groundwater with a different isotopic imprint flows from the northeastern Anti-Atlas Jabel Saghro Mountains to the northern oases of the Lower Drâa Basin. This adjacent subsurface flow results in a wide range of Sr isotope ratios in the shallow oases groundwater (0.7084–0.7131) and appears to mitigate salinization in the three northern Drâa oases. In contrast, in the southern oases, the higher salinity suggests that this mitigation is not as affective and increasing salinization through cycles of water irrigation and salt dissolution appears inevitable.  相似文献   

16.
The integrity of coral-based reconstructions of past climate variability depends on a comprehensive knowledge of the effects of post-depositional alteration on coral skeletal geochemistry. Here we combine millimeter-scale and micro-scale coral Sr/Ca data, scanning electron microscopy (SEM) images, and X-ray diffraction with previously published δ18O records to investigate the effects of submarine and subaerial diagenesis on paleoclimate reconstructions in modern and young sub-fossil corals from the central tropical Pacific. In a 40-year-old modern coral, we find secondary aragonite is associated with relatively high coral δ18O and Sr/Ca, equivalent to sea-surface temperature (SST) artifacts as large as −3 and −5 °C, respectively. Secondary aragonite observed in a 350-year-old fossil coral is associated with relatively high δ18O and Sr/Ca, resulting in apparent paleo-SST offsets of up to −2 and −4 °C, respectively. Secondary Ion Mass Spectrometry (SIMS) analyses of secondary aragonite yield Sr/Ca ratios ranging from 10.78 to 12.39 mmol/mol, significantly higher compared to 9.15 ± 0.37 mmol/mol measured in more pristine sections of the same fossil coral. Widespread dissolution and secondary calcite observed in a 750-year-old fossil coral is associated with relatively low δ18O and Sr/Ca. SIMS Sr/Ca measurements of the secondary calcite (1.96-9.74 mmol/mol) are significantly lower and more variable than Sr/Ca values from more pristine portions of the same fossil coral (8.22 ± 0.13 mmol/mol). Our results indicate that while diagenesis has a much larger impact on Sr/Ca-based paleoclimate reconstructions than δ18O-based reconstructions at our site, SIMS analyses of relatively pristine skeletal elements in an altered coral may provide robust estimates of Sr/Ca which can be used to derive paleo-SSTs.  相似文献   

17.
Uptake of anthropogenic CO2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state (Ωarag). The objectives of this long-term study were to investigate the viability of two ecologically important reef-building coral species, massive Porites sp. and Stylophora pistillata, exposed to high pCO2 (or low pH) conditions and to observe possible changes in physiologically related parameters as well as skeletal isotopic composition. Fragments of Porites sp. and S. pistillata were kept for 6-14 months under controlled aquarium conditions characterized by normal and elevated pCO2 conditions, corresponding to pHT values of 8.09, 7.49, and 7.19, respectively. In contrast with shorter, and therefore more transient experiments, the long experimental timescale achieved in this study ensures complete equilibration and steady state with the experimental environment and guarantees that the data provide insights into viable and stably growing corals. During the experiments, all coral fragments survived and added new skeleton, even at seawater Ωarag < 1, implying that the coral skeleton is formed by mechanisms under strong biological control. Measurements of boron (B), carbon (C), and oxygen (O) isotopic composition of skeleton, C isotopic composition of coral tissue and symbiont zooxanthellae, along with physiological data (such as skeletal growth, tissue biomass, zooxanthellae cell density, and chlorophyll concentration) allow for a direct comparison with corals living under normal conditions and sampled simultaneously. Skeletal growth and zooxanthellae density were found to decrease, whereas coral tissue biomass (measured as protein concentration) and zooxanthellae chlorophyll concentrations increased under high pCO2 (low pH) conditions. Both species showed similar trends of δ11B depletion and δ18O enrichment under reduced pH, whereas the δ13C results imply species-specific metabolic response to high pCO2 conditions. The skeletal δ11B values plot above seawater δ11B vs. pH borate fractionation curves calculated using either the theoretically derived αB value of 1.0194 (Kakihana et al. (1977) Bull. Chem. Soc. Jpn.50, 158) or the empirical αB value of 1.0272 (Klochko et al. (2006) EPSL248, 261). However, the effective αB must be greater than 1.0200 in order to yield calculated coral skeletal δ11B values for pH conditions where Ωarag ? 1. The δ11B vs. pH offset from the seawater δ11B vs. pH fractionation curves suggests a change in the ratio of skeletal material laid down during dark and light calcification and/or an internal pH regulation, presumably controlled by ion-transport enzymes. Finally, seawater pH significantly influences skeletal δ13C and δ18O. This must be taken into consideration when reconstructing paleo-environmental conditions from coral skeletons.  相似文献   

18.
Eight pectinid shells were collected and subjected to quantitative study using δ18O and δ13C isotopic analysis in order to study the paleoenvironment which prevailed during their calcification. The scalerochronological variations in δ18O and δ13C values, among these shells are also discussed. The Early Miocene pectinid shells display highly depleted δ18O and δ13C signature as a result of paleo-meteoric water with heavy rainfall that was produced by Tropical Cyclones when the Mediterranean Sea was open. The Early Pliocene pectinid shells reveal depleted δ18O values, related to the influx of fresh water influenced by monsoonal activity following the formation of the Tibetan Plateau. Their enrichment in the δ13C isotopic excursion is referred to high productivity of the Indian Ocean, which was the main source of the Red Sea water. The Pleistocene pectinid shell shows highly depleted δ18O and δ13C signature with obvious diagenetic shell structure, indicating that a wetter humid climate prevailed during the Early–Middle Pleistocene and long sub-arial exposure of the shell. The Recent Mediterranean pectinid shell displays slight enrichment in δ18O and δ13C values referring to deeper inhabitation of this species with a low temperature and high salinity environment. The scalerochronological variations in both δ18O and δ13C values, along these shells is referred to seasonal variations or kinetic effects.  相似文献   

19.
The reef corals Pocillopora damicornis and Montipora verrucosa were cultured under various controlled temperature and light conditions. The corals were analyzed for growth rate, tissue pigment content and skeletal 13C and 18O. Coral skeletal δ13C values varied with light dose and correlated with changes in zooxanthellar pigment. The δ13C values of skeletal aragonite seem to be modified by oxidation of photosynthetically produced organic matter.Functionally significant relationships between coral skeletal δ18O values and temperature have been determined. The temperature coefficients of the δ18O values [?4.4°C (%.)?1] are similar to the first order coefficient in the equilibrium paleotemperature equation, but the δ18O values have taxonomically consistent offsets from equilibrium. The offsets may be attributed to the coral metabolism with slight but statistically significant differences between the two genera. Environmental and metabolic variables other than temperature have little or no effect on skeletal δ18O.  相似文献   

20.
Stable carbon and oxygen isotope measurements of biogenic carbonate provide information for reconstructing past oceanic environments. In particular, 18O/16O ratios correlate with the temperature and salinity of seawater and 13C/12C is a proxy for dissolved inorganic carbon in seawater and symbiont photosynthesis. Here, we report 13C/12C and 18O/16O values for skeletons of corals (genus Porites) with various growth rates. In faster-growing corals, 13C/12C and 18O/16O showed out-of-phase annual fluctuations. In slower-growing corals, the isotopes fluctuated in phase. We developed a simple vector notation to show two patterns of 13C/12C annual fluctuation, each with a different offset in relation to 18O/16O annual fluctuation. The phase offset between 13C/12C and 18O/16O annual fluctuations depends on the relative intensities of kinetic isotope effects on calcification and metabolic isotope effects such as photosynthesis. This model might improve our ability to infer past climate and oceanographic conditions from coral skeletons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号