首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Experiments on man-made flawed rock-like materials are applied extensively to study the mechanical behaviour of rock masses as well as crack initiation modes and crack coalescence types. A large number of experiments on specimens containing two or three pre-existing flaws were previously conducted. In the present work, experiments on rock-like materials (formed from a mixture of sand, plaster, limestone and water at mass ratio of 126:9:9:16) containing multiple flaws subjected to uniaxial compression were conducted to further research the effects of the layout of pre-existing flaws on mechanical properties, crack initiation modes and crack coalescence types. Compared with previous experiments in which only three types of cracks were found, the present experiments on specimens containing multiple flaws under uniaxial compression revealed five types of cracks, including wing cracks, quasi-coplanar secondary cracks, oblique secondary cracks, out-of-plane tensile cracks and out-of-plane shear cracks. Ten types of crack coalescence occurred through linkage among wing cracks, quasi-coplanar secondary cracks, oblique secondary cracks, out-of-plane shear cracks and out-of-plane tensile cracks. Moreover, the effects of the non-overlapping length and flaw angle on the complete stress–strain curves, the stress of crack initiation, the peak strength, the peak strain and the elastic modulus were also investigated in detail.  相似文献   

2.
Crack coalescence in rock masses was studied by performing a series of biaxial compresion tests on specimens made of rock-like material. Specimens of size 63.5 × 27.9 × 20.3 cm, made of 72% silica sand, 16% cement (Type I) and 12% water by weight were tested. The joint inclination angle was maintained at 45°, while the offset angle i.e. angle between the plane of the joint and the line that connects the two inner tips of the joints, was changed from 0° to 90° with an increment of 15°. Three levels of lateral stress were used; 0.35 MPa, 0.7 MPa and 1.5 MPa on each sample. HP data acquisition system was used to record the data for each sample. In each sample, four LVDTs were fixed to measure the axial and lateral displacement along the sample. The failure mechanisms were monitored by eye inspection and a magnifier to detect crack initiation and propagation. For each test, the failure surfaces were investigated to determine the characteristics of each surface. Wing cracks initiated at the tip of the joint for the low confining stress applied, while at higher confining stresses wing cracks also initiated at the middle of the joint. Secondary cracks initiated at the tip of the joint due to shear stress. Three modes of failure took place due to coalescence of the secondary and wing cracks. The bridge inclination was the main variable that controlled the mode of failure. For bridge inclination of 0°, the coalescence occured due to shear failure and for bridge inclination of 90° the coalescence occurred due to tensile failure while for the other bridge inclinations coalescence occured due to mixed tensile and shear failure.  相似文献   

3.
Cracking and coalescence behavior in a rectangular rock-like specimen containing two parallel (stepped and coplanar) pre-existing open flaws under uniaxial compression load has been numerically studied by a parallel bonded-particle model, which is a type of bonded-particle model. Crack initiation and propagation from two flaws replicate most of the phenomena observed in prior physical experiments, such as the type (tensile/shear) and the initiation stress of the first crack, as well as the coalescence pattern. Eight crack coalescence categories representing different crack types and trajectories are identified. New coalescence categories namely “New 1” and “New 2”, which are first observed in the present simulation, are incorporated into categories 3 and 4, and category 5 previously proposed by the MIT Rock Mechanics Research Group, respectively. The flaw inclination angle (β), the ligament length (L) (spacing between two flaws) and the bridging angle (α) (inclination of a line linking up the inner flaw tips, between two flaws) have different effects on the coalescence patterns, coalescence stresses (before, at or post the peak stress) as well as peak strength of specimens. Some insights on the coalescence processes, such as the initiation of cracks in the intact part of specimens at a distance away from the flaw tips, and coalescence due to the development and linkage of a number of steeply inclined to vertical macro-tensile cracks are revealed by the present numerical study.  相似文献   

4.
李铮  郭德平  周小平  王允腾 《岩土力学》2019,40(12):4711-4721
脆性岩石材料在压应力作用下常出现两类裂纹:翼型张拉裂纹和次生剪切裂纹。近场动力学是一种新型的无网格数值计算方法。在近场动力学理论中,采用积分形式的控制方程代替微分形式的控制方程使得该数值算法在断裂问题上具有独特的优势。将Mohr-Coulomb准则和最大主应力准则引入非普通“态”基近场动力学理论中,分别用于模拟材料常见的压剪和张拉破坏。这种扩展的非普通“态”基近场动力学可以有效地模拟脆性岩石材料在多种受力状态下的裂纹起裂、扩展和连接问题。通过5个不同的数值算例说明该数值算法在处理脆性岩石材料断裂问题的有效性和准确性。首先,通过模拟含圆孔的弹性板拉伸数值试验说明该数值算法的有效性和准确性。其次,数值模拟了简单三点弯曲试验以及不使用其他外部准则条件下动荷载作用下裂纹的分叉试验,所得结果与其他试验结果或数值结果相吻合,从而验证了该理论的有效性。然后,模拟了包含斜裂纹的巴西圆盘试验,裂纹扩展路径和计算所得的断裂韧度同样吻合于试验结果。最后,模拟了单轴压缩状态下,预制裂纹试样的裂纹扩展和连接问题。将该数值算法与试验结果对比表明,所提出的数值方法可以模拟和预测岩石类材料的张拉和压剪裂纹的起裂、扩展和连接行为。  相似文献   

5.
Fracture mechanisms of offset rock joints-A laboratory investigation   总被引:3,自引:0,他引:3  
To study the failure mechanisms of joints and rock bridges in jointed rock masses a series of uniaxial compression tests were performed on specimens made of rock-like material. Specimens of size 63.5cm × 27.9cm × 20.3cm, made of 72% silica sand, 16% cement (Type I) and 12% water by weight were tested. The joint inclination angle was maintained at 45°, while the offset angle i.e. angle between the plane of the joint and the line that connects the two inner tips of the joints, was changed from 0°–120° with an increment of 15°. The tests were performed using a 2000kN universal compression machine and a HP data acquisition system. In each sample, five LVDTs were fixed to measure the displacements along and across both the bridge and the joint segment, and the total displacement along the total length of the sample. The failure mechanism was monitored by visual inspection and a magnifier to detect cracks initiation. For each test the failure surfaces were investigated to determine the characteristics of each surface. In all of the tested samples curvilinear cracks called wing cracks initiated at the joints tips due to high tensile stresses concentration. These wing cracks were directed along the direction of the uniaxial load. The coalescence mechanism of two cracks was investigated. Results showed that open cracks could coalesce by shear failure or tensile failure. The coalescence path was found to be mainly dependent on the inclination of the rock bridge between the cracks.  相似文献   

6.
Wang  Yun-Teng  Zhou  Xiao-Ping  Kou  Miao-Miao 《Acta Geotechnica》2019,14(4):1161-1193

A 3-D conjugated bond-pair-based peridynamic model is developed to comprehensively investigate failure characteristics of rock-like materials with intermittent fissures in the compressive-shear loading tests. Rock-like specimens containing one single central fissure are first simulated. Numerical results indicate that the 3-D conjugated bond-pair-based peridynamic model can faithfully reproduce failure characteristics of rock-like materials under compressive-shear loads. Then, the failure characteristics of rock-like specimens containing two parallel central intermittent fissures are numerically investigated. Effects of fissure inclination angle, fissure ligament length and rock bridge angle on fracturing behaviors, such as crack coalescence patterns, are also studied as well as crack initiation stress and coalescence stress.

  相似文献   

7.
刘刚  姜清辉  熊峰  张小波 《岩土力学》2016,37(Z1):151-158
为了研究不同倾角下多节理岩体力学行为,采用10 MN微机控制电液伺服大型多功能动静力三轴仪,开展包含较多预制非贯通节理类岩石试件的单轴压缩试验,研究了多节理岩体裂纹的特征、贯通模式、破坏模式、应力-应变特征等与节理倾角之间的关系。试验结果表明,(1)多节理岩体的裂纹类型主要有翼裂纹和次生共面裂纹,翼裂纹的扩展路径与单个节理情况下的扩展路径差异较大,翼裂纹起裂后沿起裂方向存在较长的扩展长度,直接与相邻节理或翼裂纹形成贯通,并且裂纹的贯通表现出四种不同的模式;(2)多节理岩体的破坏模式归纳为3种类型:平面破坏、块体转动式破坏和台阶式破坏;(3)根据多节理岩体的应力-应变曲线在应变软化阶段所表现出的不同非线性变形行为特征,可以将曲线归纳为4种类型;(4)多节理岩体的强度和变形各向异性特征非常显著,强度和弹性模量均在节理倾角30°时最小,90°时最大。  相似文献   

8.
Cracking processes have been extensively studied in brittle rock and rock-like materials. Due to the experimental limitations and the complexity of rock texture, details of the cracking processes could not always be observed and assessed comprehensively. To contribute to this field of research, a numerical approach based on the particle element model was used in present study. It would give us insights into what is happening to crack initiation, propagation and coalescence. Parallel bond model, a type of bonded-particle model, was used to numerically simulate the cracking process in rock-like material containing a single flaw under uniaxial vertical compression. The single flaw’s inclinations varied from 0° to 75° measured from the horizontal. As the uniaxial compression load was increased, multiple new microcracks initiated in the rock, which later propagated and eventually coalesced into longer macrocracks. The inclination of the pre-existing flaw was found to have a strong influence on the crack initiation and propagation patterns. The simulations replicated most of the phenomena observed in the physical experiments, such as the type, the initiation location and the initiate angle of the first cracks, as well as the development of hair-line cracks, which later evolved to macrocracks. Analyses of the parallel bond forces and displacement fields revealed some important mechanisms of the cracking processes. The first cracks typically initiated from the tensile stress concentration regions, in which the tensile stress was partially released after their initiation. The tensile stress concentration regions subsequently shifted outwards close to the propagating tips of the first cracks. The initiation and propagation of the first cracks would not significantly influence the compressive stress singularity at the flaw tips, which was the driving force of the initiation of secondary cracks. The initiation of microcracking zone consisting almost exclusively of micro-tensile cracks, and that of microcracking zone consisting of micro-tensile cracks and mixed micro-tensile and shear cracks, were found to be correlated with two distinct types of displacement fields, namely type I (DF_I) and type II (DF_II), respectively.  相似文献   

9.
刘红岩  李俊峰 《岩土力学》2016,37(Z1):95-100
作为岩体组成部分的非贯通节理对岩体力学特性有着重要影响,然而几乎目前所有的岩体损伤变量计算方法都仅考虑节理几何参数对岩体力学特性的影响。对含单组非贯通节理的岩体力学特性进行研究,提出一个能够同时考虑节理几何及强度参数对岩体力学特性影响的新的岩体损伤变量计算方法。首先,采用弹性余能等效假设代替Lemaitre应变等效假设研究由节理引起的岩体各向异性损伤,并基于断裂力学中单个节理引起的附加应变能增量与损伤力学应变能释放量相关联的观点,推导出由单条节理引起的损伤变量计算公式。其次,根据断裂力学理论获得了单轴压缩下单条节理尖端应力强度因子(SIF)KⅠ、KⅡ的计算公式。最后,通过考虑节理间的相互作用给出了单组单排或多排节理尖端应力强度因子KⅠ、KⅡ的计算公式,得到了单组节理引起的岩体损伤变量计算公式,并与已有试验结果的对比分析证明了该公式的合理性。  相似文献   

10.
黄正红  邓守春  李海波  于崇 《岩土力学》2018,39(Z1):267-274
采用自制的压–拉转换装置,配合RMT 150C岩石力学试验系统及数字散斑相关方法,对双边非对称裂纹类岩石平板试样进行直接拉伸试验,得到类岩石试样的拉应力–应变曲线、试样表面应变场演化过程和裂纹扩展模式。研究发现,类岩石试样直接拉伸的拉应力–应变曲线大致可以分为4个阶段:(1)近似线性阶段,预制裂纹基本不起作用,应力随应变增加较快,试样表面应变场的分布主要受试样内部的孔隙及颗粒的影响;(2)整体缓慢增加阶段,两预制裂纹和试样内部的孔隙及颗粒共同影响试样表面应变场的分布,整体上应力随应变呈增加趋势;(3)短暂峰值过渡阶段,试样中某个预制裂纹对试样表面应变场的分布起决定性作用;(4)破坏阶段,裂纹起裂位置在应变场相对集中区域,并扩展导致试样破坏。对于直接拉伸条件下的双边非对称裂纹平板试样,其中某条预制裂纹会率先扩展,先向远离前方裂纹的方向扩展,再向靠近前方裂纹的方向扩展,对采用数值模拟方法研究张拉应力状态下裂纹相互作用扩展规律具有重要意义。  相似文献   

11.
基于二维颗粒流软件PFC2D的人工合成岩体技术(SRM),研究了岩桥倾角和节理间距不同组合形式的含顺层断续节理岩质边坡在地震作用下的破坏模式与动力响应规律。研究结果显示:在地震动力作用下,含单潜在滑动面的顺层断续节理岩质边坡呈现出滑移-倾倒的混合破坏特征,含多潜在滑动面的顺层断续节理岩质边坡则主要发生倾倒破坏;由顺层断续节理以及岩桥交替连接所组成的潜在滑动面是控制边坡动力稳定性的关键因素。在地震动力作用下,最靠近坡脚的岩桥段首先萌生翼裂纹,使得拉应力得到释放,随后各节理相继萌生裂纹并扩展、贯通,最终导致坡体发生阶梯状整体失稳。裂纹扩展受顺层断续节理控制,萌生裂纹中以张拉裂纹为主,且裂纹数量与输入地震波的加速度曲线具有同步性。另一方面,节理面的存在对边坡动力响应产生明显影响,沿坡表以及沿水平方向上的峰值速度、峰值位移随着岩桥倾角的增大、节理间距的减小而增大,同时节理间距和岩桥倾角对于峰值加速度(PGA)放大系数的影响范围主要集中在坡表、坡肩;沿竖直方向上,峰值位移随着岩桥倾角、节理间距的增大而减小,PGA放大系数曲线随高程变化总体呈现U型分布特征。  相似文献   

12.
Cracks and joints are common in rock masses and play a crucial role in rock mass stability. This study prepared specimens with multiple parallel pre-existing flaws by embedding iron sheets in rock-like materials and used the samples to investigate the crack growth characteristics of these materials. Biaxial compression experiments were performed on sixty specimens, and the influences of the number of pre-existing flaws, their angles and the lateral stress on crack growth were investigated based on video recordings of the crack growth. The results demonstrate that structural failure will occur due to crack growth when the sample contains a small number of pre-existing flaws and that as the number of cracks increases, the specimens will fail due to local failures. In addition, the types of rock bridge failures are summarized, including wing cracks, secondary shear cracks between horizontally-separated pre-existing flaws and secondary shear cracks between vertically-separated pre-existing flaws. Wing cracks play a significant role in the failure of the specimens. The results increase the understanding of crack growth in brittle materials that contain multiple parallel pre-existing flaws under biaxial compression.  相似文献   

13.
Crack initiation and coalescence behavior of rock or rock-like specimens containing artificial flaws under uniaxial compression have been subjects of intensive investigation in the past. Most of these investigations however focused on crack initiation and coalescence between two or more parallel flaws. Although there have been few experimental studies on non-parallel flaws, these studies did not address the influence of geometrical factors such as ligament length and ligament angle on the crack initiation and coalescence behavior of non-parallel flaws. To investigate whether the individual geometrical factors have similar effects on the crack initiation and coalescence behavior of both parallel and non-parallel flaws, we conducted uniaxial compression tests to investigate crack cracking and coalescence processes in rock like material containing two non-parallel flaws. The paper presents the influence of individual geometrical factors on the crack initiation process and coalescence pattern of non-parallel flaws. Initiation of primary first cracks from all the tips of the two flaws did not occur simultaneously in all the flaw configurations. The flaw configuration of the non-parallel flaws influences the crack initiation, crack trajectories and coalescence behavior. The crack coalescence pattern changes with an increasing ligament angle from indirect to shear crack or mixed tensile-shear crack to tensile crack coalescence. The chance of direct coalescence is reduced with an increase in ligament length. In conclusion, the crack initiation and coalescence behavior of prismatic rock-like specimens with non-parallel flaws, as influenced by the geometrical factors, are analogous to the cracking and coalescence pattern observed in specimens with parallel flaws.  相似文献   

14.
Crack propagation process in pre-cracked rock like specimens has been studied experimentally and numerically considering three cracks in the middle part of each specimen. The rock-like specimens are specially prepared from Portland pozzolana cement, fine sands and water. These pre-cracked cylindrical specimens (each containing a single inclined crack in the neighborhood of two iso-path cracks) are experimentally tested under compressive loading. The same problems are numerically simulated by a modified displacement discontinuity method using higher order displacement discontinuity elements and higher order special crack tip elements for crack tip treatment to increase the accuracy of the Mode I and Mode II stress intensity factors obtained based on linear elastic fracture mechanics theory. The crack propagation and coalescence paths of the inclined crack are estimated by implementing a suitable iteration algorithm of incremental crack length extension in a direction predicted by using the maximum tangential stress criterion. The numerical and analytical crack extension analyses are compared which are in good agreement and show the validity, applicability and accuracy of the present work.  相似文献   

15.
Summary ?Cracks that initiate from pre-existing discontinuities can link with other cracks or with other discontinuities and produce failure in a rock mass. The Displacement Discontinuity Method (DDM), FROCK, is used in this investigation to model experimental observations on pre-cracked specimens of gypsum. In these experiments two fractures, which were either both open or closed, were placed through the thickness of the specimens, and detailed observations of the cracking process were performed as the specimens were loaded in uniaxial compression. The following aspects are studied for both open and closed fractures: 1) crack initiation stress; 2) direction and propagation of the new cracks; 3) type of coalescence and stress at which it occurs. Modeling is done considering the actual size of the specimens. Relations between the direction of initiation for each type of crack, the orientation of the initial fractures, and the type and coalescence are established. In addition, comparisons between results from experiments and predictions from the model are presented. The numerical results are in agreement with the experiments.  相似文献   

16.
岩体内部赋存的裂隙很多表现为折线型,为探究这类岩体的断裂机制,制备含折线型裂隙砂岩试件并对其进行单轴压缩试验。采用数字图像相关(DIC)方法计算加载过程中的变形场演化,根据新生裂纹两侧的位移差异识别裂纹类型;运用扩展有限元法(XFEM)模拟断裂过程,根据应力分布特征解释翼型裂纹起裂与扩展机制。DIC计算结果表明,新生裂纹处出现应变局部化带,裂纹两侧发生相对分离;含直线型和折线型裂隙砂岩试件的翼型裂纹分别萌生于预制裂隙端部以及折角处,这是因为裂隙几何形态会改变拉应力集中位置;含折线型裂隙砂岩试件的起裂应力小于含直线型裂隙砂岩试件,这是因为相同加载条件下前者的最大拉应力值更大;这2类试件的裂纹扩展均是由于裂纹尖端集中的拉应力引起的,裂纹依然呈张开状态;裂隙几何形态未改变试件的最终破坏模式,均表现为对角剪切破坏。  相似文献   

17.
为研究不同边界条件下剪切速率对岩石节理剪切力学特性的影响,采用RDS-200型岩石节理剪切试验系统对人工浇筑的具有相同节理形貌的不规则水泥节理试样进行了常法向应力和常法向刚度2种边界条件下5种剪切速率的直剪试验。结果表明:(1)常法向应力边界条件下,随剪切速率增大,相同法向应力下的类岩石节理峰前剪切刚度减速增大,峰值剪切强度和残余剪切强度呈对数降低;随剪切速率增大,类岩石节理黏聚力减速增大,内摩擦角呈对数降低。(2)常法向刚度边界条件下,随剪切速率增大,相同法向应力的类岩石节理峰前剪切刚度减速增大,峰值剪切强度呈对数降低,较高法向应力下的残余剪切强度先增大后减小;随剪切速率增大,类岩石节理黏聚力呈对数降低,内摩擦角减速增大。(3)与常法向应力边界条件相比,常法向刚度条件下,节理黏聚力平均增加了115.85%,内摩擦角平均降低了8.44%;相同初始法向应力和剪切速率下,峰前剪切刚度、峰值剪切强度和残余剪切强度分别平均增加了11.96%、19.47%和32.32%,峰值法向位移平均降低了40.12%。该研究结论可为不同剪切速率下地表和地下工程岩体节理的剪切失稳评价提供一定参考。  相似文献   

18.
梁东旭  张农  荣浩宇 《岩土力学》2023,(4):1217-1229
对预制交叉裂隙岩石试样进行裂纹扩展试验,研究了裂纹萌生、扩展、聚合过程,分析了主裂隙和轴向载荷夹角及主次裂隙夹角对裂纹起裂应力和聚合应力的影响,并用混合有限元-离散元程序,即图形处理器并行化的3D Y-HFDEM代码对试验进行了仿真计算,实现了岩石破坏从连续介质向非连续介质的过渡,对裂纹类及损伤破坏模式进行了识别,捕捉到了试验中难以发现的现象。研究表明:随主裂隙与轴向载荷夹角增加,裂纹聚合区的拉伸裂纹数量增加;裂纹起裂和聚合应力与主裂隙与轴向载荷夹角成正比;主次裂隙夹角增加,岩石的破坏模式由拉伸破坏转为剪切破坏,交叉裂隙加剧岩石破碎程度;主裂隙尖端萌生扩展的拉伸-剪切混合裂缝引起的破坏在岩石破坏中占主导地位,是导致岩体失去承载能力的主控裂纹;混合有限元-离散元仿真软件GPGPU并行化的3D Y-HFDEM IDE在岩石裂纹扩展研究中具有优势,可以捕捉实验室难以发现的损伤断裂类型,可以作为岩石裂纹扩展研究的有力工具。  相似文献   

19.
袁小清  刘红岩  刘京平 《岩土力学》2015,36(10):2804-2814
针对非贯通裂隙岩体工程结构中的受荷岩体,提出受荷细观损伤与裂隙宏观损伤的概念。以完整岩石的初始损伤状态作为基准损伤状态,综合考虑裂隙宏观缺陷的存在、微裂纹细观缺陷在受荷下的损伤扩展以及宏细观缺陷在受荷过程中的耦合,基于Lemaitre应变等效假设,推导了考虑宏细观缺陷耦合的复合损伤变量,并给出同时考虑试件尺寸、裂隙几何与力学特性的宏观损伤变量的计算公式,从而建立了基于宏细观缺陷耦合的非贯通裂隙岩体在荷载作用下的损伤本构模型。用宏细观损伤耦合的本构模型来描述非贯通裂隙岩体在受荷过程中的细观损伤演化与宏观损伤行为,与非贯通裂隙岩体实际受荷情况符合较好。研究结果表明:(1)完整岩样和裂隙岩样的应力-应变行为在峰值强度之前差异较大,峰值强度以后差异逐渐减小,最后趋于一致,二者具有相近的残余强度;(2)裂隙岩体强度随裂隙贯通率的增加而增大,随裂隙倾角的变化具有明显的各向异性,同时还与裂隙面的内摩擦角有关;(3)裂隙倾角为90°时,裂隙岩样的峰值强度最高;张开型裂隙岩样的裂隙倾角为45°时,峰值强度最低;(4)非贯通裂隙岩体工程结构中的受荷岩体,其力学性能由受荷细观损伤与裂隙宏观损伤及其耦合效应所决定,基于宏细观损伤耦合的复合损伤变量可以较好地反映非贯通裂隙岩样的力学特性。  相似文献   

20.
最新研制了一种完全透明、较低温度下拉压比可达1/6.6的树脂,其与岩石特性的相似性较前人的研究有大幅度提高。制作了一组含三维内置平行双裂隙组的试件,详细描述并分析了单轴加载下试件的裂隙扩展与贯通过程,研究其产生的条件和机制。试验结果表明:试件的破坏大致经历4个阶段,三维裂隙组的断裂比二维情况复杂得多,产生了多种不同形态的裂纹。在FLAC3D软件框架内建立了一种新的弹脆性本构关系,并采用超细单元和合理形态的网格建模。将数值模拟结果与相关试验进行对比,相符程度良好,表明新数值模拟方法的有效性。当双轴加载时,模拟结果也与前人类似试验结果有很好一致性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号