首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 263 毫秒
1.
We compared nekton use ofVallisneria americana Michx. (submerged aquatic vegetation, SAV) with marsh shoreline vegetation and subtidal nonvegetated bottom (SNB) using a 1-m2 drop sampler in the oligohaline area of Barataria Bay, Louisiana. Mean densities of most abundant species were significantly different among six habitat types. Harris mud crabRhithropanopeus harrisii, Ohio shrimpMacrobrachium ohione, blue crabCallinectes sapidus, daggerblade, grass shrimpPalaemonetes pugio, white shrimpLitopenaeus setiferus (fall), rainwater, killifishLucania parva, naked gobyGobiosoma bosc, code gobyGobiosoma robustum (fall), speckled worm eelMyrophis punctatus (fall), and gulf pipefishSyngnathus scovelli (spring), were much more abundant, and species richness also was greater, inVallisneria than over SNB.Vallisneria supported densities of most species that were similar to those in marsh vegetation, although naked goby and gulf pipefish were more abundant inVallisneria, and speckled worm eel and saltmarsh topminnowFundulus jenkinsi were more abundant in marsh. Within theVallisneria bed, densities of Harris mud crab, rainwater killifish, and speckled worm eel were higher at sites near the marsh (SAV Inside Edge) than at sites more distant from the marsh (SAV Outside Edge), and Ohio shrimp (fall) densities were higher in the interior of the bed than along the edges. The mean size of blue crab was larger in marsh thanVallisneria and large inVallisneria than SNB. White shrimp did not differ in size among habitat types.Vallisneria beds may provide an important nursery habitat for young blue crab and white shrimp that use oligohaline estuarine areas. These SAV beds can provide an alternative structural habitat to emergent vegetation during periods of low water, becauseVallisneria occurs in the subtidal and generally persists throughout the year on the Gulf coast. Species whose young thrive in low-salinity waters and also depend on structure would benefit most fromVallisneria habitat in estuaries.  相似文献   

2.
The US Army Corps of Engineers recently dredged and permanently reopened Packery Channel, historically a natural tidal inlet, to allow water exchange between the Gulf of Mexico and the Laguna Madre, TX, USA. The main objective of this study was to characterize estuarine-dependent recruitment and community structure in seagrass habitats adjacent to Packery Channel pre- and post-channel opening. We sampled fish and crustacean abundance using an epibenthic sled in Halodule wrightii seagrass meadows in both control and impact locations over 2 years, 1 year before the opening of Packery Channel (October 2004–May 2005) and 1 year after (July 2005–April 2006). Using the before–after control–impact design, we found significantly fewer nekton post-channel opening. However, we found significantly higher mean densities of newly settled estuarine-dependent species (Sciaenops ocellatus, Micropogonias undulatus, Lagodon rhomboides, Callinectes sapidus, and penaeid shrimp) post-opening. Multivariate analyses showed significant community assemblage changes post-opening with increased contribution of estuarine-dependent species post-opening. Our results show that estuarine-dependent nekton are using Packery Channel as a means of ingress into areas of the upper Laguna Madre’s seagrass meadows that were previously inaccessible, which may lead to higher fisheries productivity for some of these economically and ecologically important fishery species.  相似文献   

3.
Habitat-related densities of natant macrofauna were compared between vegetated and nonvegetated areas in aSpartina alterniflora marsh on Galveston Island, Texas. The most abundant macrofauna were crustaceans,Palaemonetes pugio, Penaeus aztecus, Penaeus setiferus, andCallinectes sapidus, and small fish,Gobiosoma bosci, Lagodon rhomboides, Leiostomus xanthurus, Fundulus similis andMicropogonias undulatus. Excluding residentsP. pugio, G. bosci andF. similis, most of the macrofauna were transient juveniles of estuarine-dependent species. Among crustaceans,P. pugio, P. aztecus, andC. sapidus were significantly more dense in vegetated habitat, butP. setiferus was not consistently more abundant in either vegetated or nonvegetated habitat. Of 29 species of fishes, 14 were usually in vegetation, 11 were more often on nonvegetated bottom, and 5 were indifferent to either habitat. Much seasonal variability in abundances ofP. aztecus, P. setiferus, andC. sapidus, but notP. pugio, could be attributed to changes in temperature, salinity and water-level. Strong selection for vegetated habitat byP. aztecus was related to the historical water-level pattern coinciding with seasonal periods of marsh flooding. Apparently, high seasonal tides during the spring and fall facilitated access to vegetated habitat in the marsh and exploitation by transientP. aztecus. In contrast, strong selection for vegetation byP. pugio, abundant year-around in the marsh, was not similarly influenced by seasonal changes in water-level. Overall, habitat-related densities and physical interactions suggest that marsh physiography together with differences in tides may greatly determine the extent to which certain estuarine macrofauna utilize marsh habitats.  相似文献   

4.
Three factors affecting the structure of nekton communities 9fishes and decapod crustaceans) in eelgrass beds were identified and evaluated: contiguous shoreline type, distance from shore, and macrophyte biomass. Throw traps (1 m2) were used to sample eelgrass nekton at seven locations in Great South Bay (New York, U.S.) along Fire Island National Seashore from May through October 1995. Abundances ofGobiosoma ginsburgi, Apeltes quadracus, andOpsanus tau were significantly higher in eelgrass beds adjacent to salt marshes.Menidia menidia, Syngnathus fuscus, Pseudopleuronectes americanus, andPalaemonetes pugio were significantly more abundant in eelgrass adjacent to beaches. Regression analyses indicated thatSyngnathus fuscus, Pseudopleuronectes americanus, andAnguilla rostrata abundances were positively related to eelgrass biomass, andApeltes quadracus andGobiosoma ginsburgi abundances were highest at moderate levels of macroalgae biomass. The distance of an eelgrass bed from shore was also important. Species generally associated with salt marshes (Fundulus heteroclitus, Cyprinodon variegatus, Lucania parva, andPalaemonetes pugio) were more abundant in eelgrass near the marsh shore. Abundances ofApeltes quadracus, Syngnathus fuscus, Menidia menidia, Hippolyte pleuracanthus, andCrangon septemspinosa increased with distance from the shoreline. Shoreline type, distance from shore, and macrophyte biomass appear to affect the abundance and distribution of some nekton species. The effect of shoreline type may be related to the distribution of macrophyte biomass; the biomasses of eelgrass and macroalgae were significantly higher along beach and marsh shorelines, respectively. Explaining within-habitat variability and identifying microhabitat preferences for nekton will aid in the proper design of future studies and habitat restoration efforts.  相似文献   

5.
Seagrass meadows are often cited as important nursery areas for newly settled red drum even though many estuaries, such as Galveston Bay, Texas, support large numbers of red drum and have limited seagrass cover, suggesting the use of alternate nursery areas. We examined patterns of habitat use for newly settled red drum at six sampling areas in Galveston Bay; two areas had seagrass beds and four areas had no seagrass. We measured densities in different habitat types using epibenthic sleds and enclosure samplers. Peak recruitment of young red drum to the estuary occurred during September through December. Highest densities of new settlers were found in seagrass meadows (primarilyHalodule wrightii), but when seagrass was absent, the highest densities of red drum occurred along theSpartina alterniflora marsh edge interface. Densities were relatively low on nonvegetated bottom away from the marsh edge. We also examined density patterns in other habitat types at selected sampling areas and found no red drum within marsh vegetation away from the marsh edge interface (5 and 10 m into the marsh interior). Oyster reefCrassostrea virginica was sampled using lift nets, and we found no red drum using this habitat, although adjacent seagrass and marsh interface habitats were used. Even though red drum densities in marsh edge were low relative to seagrass, the large areal extent of marshes in the bay complex probably makes marsh edge the most important nursery habitat for red drum in Galveston Bay.  相似文献   

6.
We compared nekton use of prominent habitat types within a lagoonal system of the northeastern Gulf of Mexico (GoM). These habitat types were defined by combinations of structure (cover type) and location (distance from shore) as: Spartina edge (≤1 m from shore), Spartina (3 m from shore); Juncus edge (≤1 m from shore); seagrass located 3, 5, and 20 m from shore; and shallow non-vegetated bottom at various distances from shore. Although seagrass and Spartina edge sites differed little in environmental characteristics, the density and biomass of most abundant taxa, including pink shrimp (Farfantepenaeus duorarum), were higher in seagrass. Most species within seagrass and Spartina did not differ in abundance or biomass with distance from shore. Our study revealed a shift in peak habitat use in the northeastern GoM to seagrass beds from the pattern observed to the west where nekton is concentrated within shoreline emergent vegetation.  相似文献   

7.
Structural equivalence between seagrass restoration sites and adjacent natural seagrass beds on the mid Texas coast was assessed six times between April 1995 and May 1997. Throw traps and corers were used for quantitative sampling. Restoration sites were 2.7 to 6.6 yr old when first sampled and 3.7 to 8.2 yr old when last sampled. There were few significant differences in water column, seagrass, or sediment characteristics, in fish and decapod (nekton) densities, or in nekton and benthos community compositions between restored and natural seagrass habitats at any time during the study period. Differences in densities of dominant benthic invertebrates were regularly observed, with greater densities of more taxa observed in natural seagrasses than in restored beds. Densities of Class Oligochaeta and the polychaetePrionospio heterobranchiata are proposed as potential indicators of structural equivalence in restored seagrasses. This study indicates that seagrass restorations in the vicinity of Corpus Christi, Texas, exhibit minimal quantitative differences in community structure (except for benthos) relative to adjacent natural seagrass beds after 3 to 5 yr.  相似文献   

8.
Many studies compare utilization of different marine habitats by fish and decapod crustaceans; few compare multiple vegetated habitats, especially using the same sampling equipment. Fish and invertebrates in seagrass, mangrove, saltmarsh, and nonvegetated habitats were sampled during May–August (Austral winter) and December–January (Austral summer) in the Barker Inlet-Port River estuary, South Australia. Sampling was undertaken using pop nets in all habitats and seine nets in seagrass and nonvegetated areas. A total of 7,895 fish and invertebrates spanning 3 classes, 9 orders, and at least 23 families were collected. Only one fish species,Atherinosoma microstoma, was collected in all 4 habitats, 11 species were found in 3 habitats (mangroves, seagrass, and nonvegetated), and 13 species were only caught in seagrass and nonvegetated habitats. Seagrass generally supported the highest numbers of fish and invertebrates and had the greatest species richness. Saltmarsh was at the other extreme with 29 individuals caught from two species. Mangroves and nonvegetated habitats generally had more fish, invertebrates, and species than saltmarsh, but less than seagrass. Analyses of abundances of individual species generally showed an interaction between habitat and month indicating that the same patterns were not found through time in all habitats. All habitats supported distinct assemlages although seagrass and nonvegetated assemblages were similar in some months. The generality of these patterns requires further investigation at other estuaries. Loss of vegetated habitats, particularly seagrass, could result in loss of species richness and abundance, especially for organisms that were not found in other habitats. Although low abundances were found in saltmarsh and mangroves, species may use these habitats for varying reasons, such as spawning, and such use should not be ignored.  相似文献   

9.
Predation is often the largest source of mortality for juvenile fish and the risk of predation can influence growth rates by either forcing young fish into suboptimal foraging habitats or reducing the amount of time spent foraging. We used field experiments to test effects of predation risk by gulf flounder (Paralichthys albigutta) on juvenile pinfish (Lagodon rhomboides) growth rates by measuring changes in length and weight in three habitats (sand, low density, and high density shoalgrass,Halodule wrightii) in Perdido Key, Florida. Benthic cores, seagrass samples, and stomach contents were also analyzed to examine differences in pinfish prey densities, grass densities and epiphyte coverage, and diet, respectively, among habitat and predator treatments. Both length and weight growth rates were determined and showed similar results. We found that pinfish inhabiting seagrass habitats, particularly low densityHalodule displayed the fastest growth rates in the beginning of the growing season (June) and those in sand had the fastest growth rates later in the season (October). These differences in growth rates did not appear to be influenced by densities of pinfish prey items since the treatment having the highest density of prey was not that in which growth rates were the greatest. This seasonal shift may be attributed to increasing pinfish size. Larger pinfish in October may have been inhibited by high density grass, reducing foraging efficiency. These results demonstrate how occupying a suboptimal foraging habitat can affect juvenile pinfish growth rates. Predation risk significantly reduced length and weight growth rates of pinfish in June, but not October. This suggests that smaller pinfish early in the season traded time spent foraging for predator avoidance, while larger pinfish were likely to have reached a size refuge from predation. This study demonstrates that nonlethal effects from predation are also important influences on juvenile pinfish.  相似文献   

10.
Densities of juvenile and postlarval Farfantepenaeus aztecus, F. duorarum, and Litopenaeus setiferus were compared in vegetated fringing marsh and adjacent nonvegetated areas over a range of environmental conditions in Mobile Bay, Alabama. Densities of all three species were significantly greater in vegetated than nonvegetated areas, with 82% of all penaeids found in vegetated areas. Among vegetated sites, significantly lower densities were found in oligohaline areas, whereas mesohaline areas had the highest densities. Significant positive correlations were found between density and salinity for F. aztecus and F. duorarum but not for L. setiferus. Emergent vegetation is important habitat for F. aztecus and F. duorarum as reported from other locations, and our data support a similar conclusion for L. setiferus. Shoreline emergent marsh vegetation is particularly important in Mobile Bay as it represents the only extensive vegetated habitat readily available to F. aztecus, F. duorarum, and L. setiferus.  相似文献   

11.
A broad-scale survey of seagrass species composition and distribution along Florida's central Gulf Coast (known as the Big Bend region) was conducted in the summer of 2000 to address growing concerns over the potential effects of increased nutrient loading from adjacent coastal rivers. Iverson and Bittaker (1986) originally surveyed seagrass distribution in this region between 1974–1980. We revisited 188 stations from the original survey, recording the presence or absence of all seagrass species. Although factors such as accuracy of station relocation, differences in sampling effort among studies, and length of time between surveys preclude statistical comparisons, several interesting patterns emerged. While the total number of stations occupied by the three most common seagrass species,Thalassia testudinum, Syringodium filiforme, andHalodule wrightii, was similar between the two time periods, we observed a change in the number of records of each species as well as changes in distribution with depth.T. testudinum andHalophila engelmanni occurrence declined in the deepest areas of the region, while the number of stations occupied byS. filiforme andH. wrightii increased in nearby areas. We observed several localized areas of seagrass loss, frequently associated with the mouths of coastal rivers. These results suggest that increased nutrient loading to coastal rivers that discharge into the Big Bend area may be affecting seagrasses by increasing phytoplankton abundance in the water column, thus changing water clarity characteristics of the region.  相似文献   

12.
To assess the potential for habitat isolation effects on estuarine nekton, we used two species with different dispersal abilities and life history strategies, mummichog (Fundulus heteroclitus) and pinfish (Lagodon rhomboides) to examine: (1) distribution trends among estuarine shallow-water flat and various intertidal salt marsh habitats and (2) the influence of salt marsh habitat size and isolation. Collections were conducted using baited minnow traps set within nonisolated interior marshes (interior), nonisolated fringing marshes (nonisolated), isolated island marshes (isolated), and shallow-water flat habitats (flat) that were adjacent to isolated and nonisolated marshes. Size range of individuals collected included juvenile and adult F. heteroclitus (20–82-mm standard length) and L. rhomboides (22–151-mm standard length). During high tide, F. heteroclitus exclusively used marsh habitats, particularly high marsh, whereas L. rhomboides used marshes and flats. F. heteroclitus abundance followed an interior > nonisolated > isolated pattern. L. rhomboides abundance patterns were less consistent but followed a nonisolated > isolated > interior pattern. A size-dependent water depth relationship was observed for both species and suggests size class partitioning of marsh and flat habitats during high tide. Minimum water depth (~31 cm) restricted L. rhomboides populations in marshes, while maximum water depth (~69 cm) restricted F. heteroclitus population use of marshes and movement between marsh habitats. Disparities in F. heteroclitus young of year contribution between isolated compared to nonisolated and interior marsh types suggests isolated marshes acted as population sinks and were dependent on adult emigrants. Resident and transient salt marsh nekton species utilize estuarine habitats in different ways and these fundamental differences can translate into how estuarine landscape might affect nekton.  相似文献   

13.
We sampled nekton (fishes and decapod crustaceans) in submerged aquatic vegetation (SAV) (Potanogeton nodosus, Najas guadalupensis), in emergent marsh vegetation (Sagittaria spp. andScirpus americanus), and over unvegetated bottom associated with three islands in the Atchafalaya River Delta, Louisiana. The purpose of our study was to quantify nekton densities in these major aquatic habitat types and to document the relative importance of these areas to numerically dominant aquatic organisms. We collected a total of 33 species of fishes and 7 species of crustaceans in 298 1-m2 throw trap samples taken over three seasons: summer (July and August 1994), fall (September and October 1994), and spring (May and June 1995). Fishes numerically accounted for >65% of the total organisms collected. Vegetated areas generally supported much higher nekton densities than unvegetated sites, although bay anchoviesAnchoa mitchilli were more abundant over unvegetated bottom than in most vegetated habitat types. Among vegetation types, most species showed no apparent preference between SAV and marsh. However, inland silversidesMenidia beryllina and freshwater gobiesGobionellus shufeldti were most abundant inScirpus marsh in summer, and blue crabsCallinectes sapidus were most abundant in SAV (Potamogeton) in spring. Several species (sheepshead minnowCyprinodon variegatus, rainwater killifishLucania parva, and blue crab) apparently selected the vegetated backmarsh of islands (opposite of riverside) over stream-sideScirpus marsh. Freshwater gobies, in contrast, were most abundant in streamsideScirpus marsh. Densities of juvenile blue crabs were high (up to 17 m−2) in vegetated delta habitat types and comparable to values reported from more saline regions of Gulf Coast estuaries. Shallow vegetated habitat types of the Atchafalaya River Delta and other tidal freshwater systems of the Gulf Coast may be important nursery areas for blue crabs and other estuarine species.  相似文献   

14.
The use of the Tejo estuary, Portugal, salt marsh creeks by nekton was examined based on sampling surveys with a fyke net from September 1998 until August 2001. From the 20 taxa (14 fish species, 5 decapod crustacean species, and 1 cephalopod species) identified in the studied creeks, 16 were regularly caught throughout the sampling period. The shrimpPalaemonetes varians was the most numerically abundant species in the creeks, while the biomass was dominated by the mulletLiza ramada. The nekton assemblage was mainly represented by marine-estuarine opportunist species, comprising 85% of the total. A high seasonality was detected on the species abundance patterns: the most abundant species (P. varians, Crangon crangon, L. ramada, Pomatoschistus microps, Syngnathus sp., andAnguilla anguilla) occurred throughout the sampling period,Sardina pilchardus, Dicentrarchus, labrax, andAtherina boyeri were particularly abundant in spring and summer, andEngraulis encrasicholus, Liza aurata, Gambusia holbrooki, Palaemon longirostris, andPalaemon serratus were most abundant in autumn and winter.L. ramada occurred in the tidal creeks in high numbers during neap tides, while the majority of the remaining taxa were most abundant during spring tides, suggesting a differential pattern of habitat use occording to species.  相似文献   

15.
Modeling the distribution and habitat capacities of key estuarine species can be used to identify hot spots, areas where species density is significantly higher than surrounding areas. This approach would be useful for establishing a baseline for evaluating future environmental scenarios across a landscape. We developed species distribution models for early juvenile life stages of brown shrimp (Farfantepenaeus aztecus), white shrimp (Litopenaeus setiferus), blue crab (Callinectes sapidus), and spotted seatrout (Cynoscion nebulosus) in order to delineate the current coastal hot spots that provide the highest quality habitat conditions for these estuarine-dependent species in Louisiana. Response curves were developed from existing long-term fisheries-independent monitoring data to identify habitat suitability for fragmented marsh landscapes. Response curves were then integrated with spatially explicit input data to generate species distribution models for the coastal region of Louisiana. Using spatial autocorrelation metrics, we detected clusters of suitable habitat across the Louisiana coast, but only 1% of the areas were identified as true hot spots with the highest habitat quality for nekton. The regions identified as hot spots were productive fringing marsh habitats that are considered the most vulnerable to natural and anthropogenic impacts. The species distribution models identify the coastal habitats which currently provide the greatest capacity for key estuarine species and will be used in the Louisiana coastal planning process to evaluate how species distributions may change under various environmental and restoration scenarios.  相似文献   

16.
Seasonal ichthyoplankton surveys were made in the lower Laguna Madre, Texas, to compare the relative utilization of various nursery habitats (shoal grass,Halodule wrightii; manatee grass,Syringodium filiforme; and unvegetated sand bottom) for both estuarine and offshore-spawned larvae. The species composition and abundance of fish larvae were determined for each habitat type at six locations in the bay. Pushnet ichthyoplankton sampling resulted in 296 total collections, yielding 107,463 fishes representing 55 species in 24 families. A broad spectrum of both the biotic and physical habitat parameters were examined to link the dispersion and distribution of both pre-settlement and postsettlement larvae to the utilization of shallow seagrass habitats. Sample sites were grouped by cluster analysis (Ward’s minimum variance method) according to the similarity of their fish assemblages and subsequently examined with a multiple discriminant function analysis to identify important environmental variables. Abiotic environmental factors were most influential in defining groups for samples dominated by early larvae, whereas measures of seagrass complexity defined groups dominated by older larvae and juveniles. Juvenile-stage individuals showed clear habitat preference, with the more shallowHalodule wrightii being the habitat of choice, whereas early larvae of most species were widely distributed over all habitats. As a result of the recent shift of dominance fromHalodule wrightii toSyringodium filiforme, overall reductions in the quality of nursery habitat for fishes in the lower Laguna Madre are projected.  相似文献   

17.
Fish and decapod entry into small (1.5 m2) artificial seagrass habitats positioned on an open sand area in a New Jersey estuary was examined to determine if immigration varied between day and night. To encounter the structured habitats, colonizers had to cross an expanse of bare sand, with its presumably higher predation risk. Contrasts in abundance in the artificial seagrass plots between dawn and dusk indicated higher nighttime immigration for four species, including the fishesFundulus heteroclitus andMyoxocephalus aenaeus, and the caridean shrimpsPalaemonetes vulgaris andHippolyte pleuracanthus. Size-frequency distributions of colonizers varied between day and night for two fish species,Menidia menidia andSyngnathus fuscus, with a greater proportion of smaller individuals immigrating to the artificial seagrass at night.Callinectes sapidus also displayed a diel contrast in size distribution but, for this species, proportionately more small individuals colonized the plots during the day. We suggest that diel variability in predation risk and/or diel patterns in motor activity may be responsible for these patterns in immigration.  相似文献   

18.
Cedar Bayou, a natural tidal inlet, was recently dredged to allow for direct water exchange between the Gulf of Mexico and Mesquite Bay, TX, USA. We quantified changes in densities of juvenile nekton (fish, shrimps, and crabs) and community structure in Mesquite Bay after Cedar Bayou was reopened by collecting samples at both control and impact sites using an epibenthic sled 1 year before (October 2013–April 2014) and after (October 2014–April 2015) opening. Significantly higher densities of total nekton were observed at the impact sites after opening using a before-after control-impact design. Red Drum (Sciaenops ocellatus), Atlantic Croaker (Micropogonias undulatus), post-larval penaeid shrimps (Farfantepenaeus aztecus, F. duorarum, and Litopenaeus setiferus), and Blue Crabs (Callinectes sapidus) were significantly more abundant at impact sites after Cedar Bayou was opened. Multivariate analysis showed a significant change in impact site communities after opening and was driven by an increased presence of estuarine-dependent species. Overall, this study demonstrates that opening tidal inlets, such as Cedar Bayou, and reconnecting Mesquite Bay to the Gulf of Mexico increased the presence of numerous estuarine-dependent species, many of which were not present or occurred at very low densities prior to reopening. Thus, reestablishing the historical connectivity between a productive estuary and the open Gulf of Mexico via Cedar Bayou should reinstitute natural nekton recruitment processes important to the Aransas, Mesquite, and San Antonio Bay regions.  相似文献   

19.
We examined nekton community-level responses to Hurricanes Frances and Jeanne, which made landfall 20 d apart in the St. Lucie estuary in southeastern Florida in 2004. The passage of these storms contributed to large freshwater discharges that exceeded 150 m3 s−1, as well as estuary-wide reductions in salinity and near-hypoxic conditions in the North Fork of the estuary that persisted for several months. Although such environmental variations are not uncommon, seasonal patterns of community structure were disturbed throughout much of the estuary, likely in response to uncharacteristically-rapid reductions in salinity. Immediately following the hurricanes, abundances of several freshwater and oligohaline taxa (i.e., blue crabCallinectes sapidus, shadDorosoma spp., and ladyfishElops saurus) increased markedly in the inner estuary, while abundances of several other fishes (i.e., striped mulletMugil cephalus, white mulletM. curema, lookdownSelene vomer, pigfishOrthopristis chrysoptera, and pinfishLagodon rhomboides) declined. Nekton communities recovered quickly, and by spring, community structure throughout much of the estuary was indistinguishable from pre-hurricane conditions. Although nekton communities were resilient to hurricane-related disturbances, projected increases in Atlantic hurricane activity and associated freshwater discharges over the coming decades may test the resilience of estuarine communities in Florida.  相似文献   

20.
We compared nekton densities over a range of measured flooding conditions and locations withinPhragmites australis andSpartina alterniflora (salt marsh cordgrass) at the Charles Wheeler Salt Marsh, located on the lower Housatonic River estuary in southwestern Connecticut. Nekton were sampled on nine spring high tide events from May to October 2000 using bottomless lift nets positioned between 0–5 and 10–20 m from the creek edge. Flooding depth, duration, and frequency were measured from each vegetation type during each sampling month. Benthic macroinvertebrate density was also measured within each vegetation type in May, July, and September. Frequency of flooding was 52% lower and flooding depth and duration were also significantly reduced inP. australis relative toS. alterniflora. A total of 4,197 individuals representing 7 species, mostlyPalaemonetes pugio (dagger-blade grass shrimp) andFundulus heteroclitus (common mummichog), were captured.P. pugio densities were significantly greater inS. alterniflora as were benthic macroinvertebrate density and taxa richness during May, but not during June or October. Total fish density was not significantly different betweenP. australis andS. alterniflora and was independent of location on the marsh. Significantly more juvenileF. heteroclitus were collected withinS. alterniflora relative toP. australis in June and July, suggesting that recruitment of this species may be lower inP. australis habitat. Fish density generally did not vary predictably across the range of flooding depth and duration; there was a positive relationship between flooding depth and fish density inS. alterniflora. The measured reduction in flooding frequency (52%) withinP. australis at the Housatonic site would result in an average total monthly fish use, expressed as density, of 447 ind m−2 forP. australis and 947 ind m−2 forS. alterniflora. WhenP. australis expansion results in reduction of flooding frequency and duration, nekton community composition can change, access to the marsh surface is reduced twofold, and nursery habitat function may be impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号