首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The River Gash Basin is filled by the Quaternary alluvial deposits, unconformably overlying the basement rocks. The alluvial deposits are composed mainly of unconsolidated layers of gravel, sand, silt, and clays. The aquifer is unconfined and is laterally bounded by the impermeable Neogene clays. The methods used in this study include the carry out of pumping tests and the analysis of well inventory data in addition to the river discharge rates and other meteorological data. The average annual discharge of the River Gash is estimated to be 1,056?×?106 m3 at El Gera gage station (upstream) and 587?×?106 m3 at Salam-Alikum gage station (downstream). The annual loss mounts up to 40% of the total discharge. The water loss is attributed to infiltration and evapotranspiration. The present study proofs that the hydraulic conductivity ranges from 36 to 105 m/day, whereas the transmissivity ranges from 328 to 1,677 m2/day. The monitoring of groundwater level measurements indicates that the water table rises during the rainy season by 9 m in the upstream and 6 m in the midstream areas. The storage capacity of the upper and middle parts of the River Gash Basin is calculated as 502?×?106 m3. The groundwater input reach 386.11?×?106 m3/year, while the groundwater output is calculated as 365.98?×?106 m3/year. The estimated difference between the input and output water quantities in the upper and middle parts of the River Gash Basin demonstrates a positive groundwater budget by about 20?×?106 m3/year  相似文献   

2.
The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114?×?104 m3/year in 2017 to 11,875?×?104 m3/year in 2021, and to 17,039?×?104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277?×?104 m3/year in 2017 to 1857?×?104 m3/year in 2021, and to 510?×?104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.  相似文献   

3.
The Nyamandhlovu aquifer is the main water resource in the semi-arid Umguza district in Matebeleland North Province in Zimbabwe. The rapid increase in water demand in the city of Bulawayo has prompted the need to quantify the available groundwater resources for sustainable utilization. Groundwater recharge estimation methods and results were compared: chloride mass balance method (19–62 mm/year); water-table fluctuation method (2–50 mm/year); Darcian flownet computations (16–28 mm/year); 14C age dating (22–25 mm/year); and groundwater modeling (11–26 mm/year). The flownet computational and modeling methods provided better estimates for aerial recharge than the other methods. Based on groundwater modeling, a final estimate for recharge (from precipitation) on the order of 15–20 mm/year is believed to be realistic, assuming that part of the recharge water transpires from the water table by deep-rooted vegetation. This recharge estimate (2.7–3.6% of the annual precipitation of 555 mm/year) compares well with the results of other researchers. The advantages/disadvantages of each recharge method in terms of ease of application, accuracy, and costs are discussed. The groundwater model was also used to quantify the total recharge of the Nyamandhlovu aquifer system (20?×?106–25?×?106 m3/year). Groundwater abstractions exceeding 17?×?106 m3/year could cause ecological damage, affecting, for instance, the deep-rooted vegetation in the area.  相似文献   

4.
The carbonate aquifers of Lora and Mingo form part of the hydrogeological unit of Sierra de Estepa (SE Spain). By means of time series analysis and a 1D numerical groundwater model, groundwater exploitation was quantified and the mean annual recharge in both systems was estimated (2001–2004). During this period, the Lora and Mingo aquifers received an average groundwater recharge of 0.29 × 106 m3/year and 0.14 × 106 m3/year, respectively, whereas an average of 0.34 × 106 m3/year and 0.21 × 106 m3/year, respectively, was extracted. These conditions led to a conspicuous lowering of the water table in both systems. In addition, the analysis of the evolution of the main hydrogeochemical parameters of the groundwater showed that the increased pumping rates produced an increase in total dissolved solids, and chloride and sodium ions in both aquifers. In the case of the Lora aquifer, the only ion that presented decreased levels was nitrate. The results show that groundwater pumping in both aquifers should not exceed the mean annual recharge of 0.29 × 106 m3/year and 0.14 × 106 m3/year in the Lora and Mingo aquifers, respectively. Nevertheless, it would be advisable to reduce pumping rates to below these values in order to restore piezometric levels and improve groundwater quality for different uses in the future.  相似文献   

5.
A study was conducted between April 2004 and September 2005 to estimate groundwater and nutrient discharge to the Neuse River estuary in North Carolina. The largest groundwater fluxes were observed to occur generally within 20 m of the shoreline. Groundwater flux estimates based on seepage meter measurements ranged from 2.86?×?108 to 4.33?×?108 m3 annually and are comparable to estimates made using radon, a simple water-budget method, and estimates derived by using Darcy’s Law and previously published general aquifer characteristics of the area. The lower groundwater flux estimate (equal to about 9 m3 s?1), which assumed the narrowest groundwater discharge zone (20 m) of three zone widths selected for an area west of New Bern, North Carolina, most closely agrees with groundwater flux estimates made using radon (3–9 m3 s?1) and Darcy’s Law (about 9 m3 s?1). A groundwater flux of 9 m3 s?1 is about 40% of the surface-water flow to the Neuse River estuary between Streets Ferry and the mouth of the estuary and about 7% of the surface-water inflow from areas upstream. Estimates of annual nitrogen (333 tonnes) and phosphorus (66 tonnes) fluxes from groundwater to the estuary, based on this analysis, are less than 6% of the nitrogen and phosphorus inputs derived from all sources (excluding oceanic inputs), and approximately 8% of the nitrogen and 17% of the phosphorus annual inputs from surface-water inflow to the Neuse River estuary assuming a mean annual precipitation of 1.27 m. We provide quantitative evidence, derived from three methods, that the contribution of water and nutrients from groundwater discharge to the Neuse River estuary is relatively minor, particularly compared with upstream sources of water and nutrients and with bottom sediment sources of nutrients. Locally high groundwater discharges do occur, however, and could help explain the occurrence of localized phytoplankton blooms, submerged aquatic vegetation, or fish kills.  相似文献   

6.
Annual abstraction of 2.6?×?109 m3 of groundwater in the 53,000 km2 Konya Closed Basin of central Turkey has caused a head decline of 1 m/year over the last few decades. Therefore, understanding the hydrogeology of this large endorheic basin, in a semi-arid climate, is important to sustainable resource management. For this purpose, the groundwater’s radiocarbon age distribution has been investigated along a 150-km transect parallel to regional flow. Results show that the groundwater ranges in age from Recent at the main recharge area of the Taurus Mountains in the south, to about 40,000 years around the terminal Salt Lake located in the north. In this predominantly confined flow system, radiocarbon ages increase linearly by distance from the main recharge area and are in agreement with the hydraulic ages. The mean velocity of regional groundwater flow (3 m/year) is determined by the rate of regional groundwater discharge into the Salt Lake. Calcite dissolution, dedolomitization and geogenic carbon dioxide influx appear to be the dominant geochemical processes that determine the carbon isotope composition along the regional flow path. The groundwater’s oxygen-18 content indicates more humid and cooler paleorecharge. A maximum drop of 5°C is inferred for the past recharge temperature.  相似文献   

7.
Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1–6.2×10?5 m/s. Discharge was estimated at 1.28×10?3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7×10?5–2.0×10?3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3×10?9–2.0×10?4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system.  相似文献   

8.
Stable isotopes of the water molecule (δ18O and δD) for groundwater, lake water, streams, and precipitation were coupled with physical flux measurements to investigate groundwater–lake interactions and to establish a water balance for a structurally complex lake. Georgetown Lake, a shallow high-latitude high-elevation lake, is located in southwestern Montana, USA. The lake is situated between two mountain ranges with highlands primarily to the east and south of the lake and a lower valley to the west. An annual water balance and (δ18O and δD) isotope balance were used to quantify annual groundwater inflows of 2.5?×?107 m3/year and lake leakage outflows of 1.6?×?107 m3/year. Roughly, 57% of total inflow to the lake is from groundwater, and 37% of total outflow at Georgetown Lake is groundwater. Stable isotopes of groundwater and springs around the lake and surrounding region show that the east side of the lake contains meteoric water recharged annually from higher mountain sources, and groundwater discharge to the lake occurs through this region. However, springs located in the lower western valley and some of the surrounding domestic wells west of the lake show isotopic enrichment indicative of strong to moderate evaporation similar to Georgetown Lake water. This indicates that some outflowing lake water recharges groundwater through the underlying west-dipping bedrock in the region.  相似文献   

9.
The dynamics of artificial recharge of winter surface flows coupled with increased summer groundwater use for irrigation in the Sokh aquifer (Central Asia) have been investigated. Water release patterns from the giant Toktogul reservoir have changed, as priority is now given to hydropower generation in winter in Kyrgyzstan. Winter flows have increased and summer releases have declined, but the Syr Darya River cannot pass these larger winter flows and the excess is diverted to a natural depression, creating a 40?×?109m3 lake. A water balance study of all 18 aquifers feeding the Fergana Valley indicated the feasibility of winter groundwater recharge in storage created by summer abstraction. This modeling study examines the dynamics of the process in one aquifer over a 5-year period, with four scenarios: the current situation; increased groundwater abstraction of around 625 million (M) m3/year; groundwater abstraction with an artificial recharge of 144 Mm3/year, equivalent to the volume available in low flow years in the Sokh River; and with a larger artificial recharge of 268 Mm3/year, corresponding to high flow availability. Summer surface irrigation diversions can be reduced by up to 350 Mm3 and water table levels can be lowered.  相似文献   

10.
Pollution and overexploitation of scarce groundwater resources is a serious problem in the Zarqa River catchment, Jordan. To estimate this resource’s potential, the amount and spatial distribution of groundwater recharge was calculated by applying the hydrological model J2000. The simulation period is composed of daily values gathered over a 30-year period (July 1977 to June 2007). The figure finally obtained for estimated groundwater recharge of the Zarqa River catchment is 105 × 106 m3 per year (21 mm a?1). This is 19 % higher than the value previously assumed to be correct by most Jordanian authorities. The average ratio of precipitation to groundwater recharge is 9.5 %. To directly validate modelled groundwater recharge, two independent methods were applied in spring catchments: (1) alteration of stable isotope signatures (δ18O, δ2H) between precipitation and groundwater and (2) the chloride mass balance method. Recharge rates determined by isotopic investigations are 25 % higher, and recharge rates determined by chloride mass balance are 9 % higher than the modelled results for the corresponding headwater catchments. This suggests a reasonably modelled safe yield estimation of groundwater resources.  相似文献   

11.
A methodological procedure is proposed for determining the renewal period (RP), which expresses the ratio of total storage to recharge of carbonate aquifers, and it was applied to the overexploited moderate-size Becerrero carbonate aquifer (southern Spain). To this end, geological and subsurface data—time domain electromagnetic (TEM) soundings and borehole logs—were integrated to construct a three-dimensional (3D) geological model of the aquifer. The interconnected porosity was estimated by analyzing 73 rock samples. The resulting 3D geometrical model makes it possible to quantify the fractions of the aquifer having a confined or unconfined behaviour. Based on the total storage capacity (179?·?106–514?·?106 m3) and available aquifer recharge estimation (4.8?·?106–6.4?·?106 m3/year), an RP between 37 and 106 years is obtained. In view of the RP, an exploitation rate slightly lower than the average recharge of the system is recommended, so that the piezometric level will be stable but below the discharge head that is produced through the springs in natural conditions. The proposed methodology to obtain an aquifer RP and the management strategies designed accordingly are of broad interest, especially for carbonate aquifers, which are abundant in arid and semiarid regions.  相似文献   

12.
The present study indicates that the factors controlling the hydraulic relation between surface water and groundwater at the western lake shoreline change from one locality to another. This depends upon the lithological characteristics and the major structures. In the southern sectors, sedimentation at the bottom and sides of the lake prevents the water movement to the Nubian sandstone aquifer. The potentiometric map reveals that the water level altitudes range between 170 m in the vicinity of the lakeshore line and 110 m west of the lake. The groundwater flow lines show that the main recharge to the aquifer comes from the southwest direction, as well as from the lake inland to variable distances (about 30 Km). During the present study, Darcy’s law was applied to calculate the recharge from the western shoreline of Lake Nasser to the adjacent Nubian aquifer. The maximum value of seepage was at Garf Hussein (27.71?×?106 m³/year), which may be related to high permeability and hydraulic gradient. Also, it may be related to the N–S strike faults that cut the area on both sides of the Lake, and the groundwater is expected to have free circulation through the faults of this trend. The minimum value was recorded in Adindan section (0.61?×?106 m³/year). This may be related to the limited recharge from the lake to the aquifer, due to the sedimentation that dislocates this recharge.  相似文献   

13.
The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86?×?106 to 209.42?×?106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.  相似文献   

14.
Modeling of groundwater flow for Mujib aquifer, Jordan   总被引:4,自引:0,他引:4  
Jordan is an arid country with very limited water resources. Groundwater is the main source for its water supply. Mujib aquifer is located in the central part of Jordan and is a major source of drinking water for Amman, Madaba and Karak cities. High abstraction rates from Mujib aquifer during the previous years lead to a major decline in water levels and deterioration in groundwater quality. Therefore, proper groundwater management of Mujib aquifer is necessary; and groundwater flow modeling is essential for proper management. For this purpose, Modflow was used to build a groundwater flow model to simulate the behavior of the flow system under different stresses. The model was calibrated for steady state condition by matching observed and simulated initial head counter lines. Drawdown data for the period 1985–1995 were used to calibrate the transient model by matching simulated drawdown with the observed one. Then, the transient model was validated by using drawdown data for the period 1996–2002. The results of the calibrated model showed that the horizontal hydraulic conductivity of the B2/A7 aquifer ranges between 0.001 and 40m/d. Calibrated specific yield ranges from 0.0001 to 0.15. The water balance for the steady state condition of Mujib aquifer indicated that the total annual direct recharge is 20.4 × 106m3, the total annual inflow is 13.0 × 106 m3, springs discharge is 15.3 × 106 m3, and total annual outflow is 18.7 × 106 m3. Different scenarios were considered to predict aquifer system response under different conditions. The results of the sensitivity analysis show that the model is highly sensitive to horizontal hydraulic conductivity and anisotropy and with lower level to the recharge rates. Also the model is sensitive to specific yield  相似文献   

15.
A numerical groundwater model of the weathered crystalline aquifer of Ursuya (a major water source for the north-western Pyrenees region, south-western France) has been computed based on monitoring of hydrological, hydrodynamic and meteorological parameters over 3 years. The equivalent porous media model was used to simulate groundwater flow in the different layers of the weathered profile: from surface to depth, the weathered layer (5?·?10?8?≤?K?≤?5?·? 10?7 m s?1), the transition layer (7?·?10?8?≤?K?≤?1?·? 10?5 m s?1, the highest values being along major discontinuities), two fissured layers (3.5?·?10?8?≤?K?≤?5?·?? 10?4 m s?1, depending on weathering profile conditions and on the existence of active fractures), and the hard-rock basement simulated with a negligible hydraulic conductivity (K = 1 10 ?9 ). Hydrodynamic properties of these five calculation layers demonstrate both the impact of the weathering degree and of the discontinuities on the groundwater flow. The great agreement between simulated and observed hydraulic conditions allowed for validation of the methodology and its proposed use for application on analogous aquifers. With the aim of long-term management of this strategic aquifer, the model was then used to evaluate the impact of climate change on the groundwater resource. The simulations performed according to the most pessimistic climatic scenario until 2050 show a low sensitivity of the aquifer. The decreasing trend of the natural discharge is estimated at about ?360 m3 y?1 for recharge decreasing at about ?5.6 mm y?1 (0.8 % of annual recharge).  相似文献   

16.
In this study, an approach for runoff and recharge estimations that can be applied in arid regions which suffer from lack of data is presented. Estimating groundwater recharge in arid regions is an extremely important but difficult task, the main reason is the scarcity of data in arid regions. This is true for the Eastern Egyptian Desert where groundwater is used for irrigation purposes in agricultural reclamation along the Red Sea coast line. As a result of the scarcity of hydrologic information, the relation between rainfall and runoff was calculated depending on the paleo-flood hydrology information. Two models were used to calculate the rainfall–runoff relationships for El Hawashyia basin and Ghazala sub-basin. Two computer programs known as Gerinne (meaning channel in German) and SMADA6 (Stormwater Management and Design Aid, version 6) were conjunctively used for this purpose. As a result of the model applied to El Hawashyia basin, a rainfall event of a total of 18.3 mm with duration 3 h at the station of Hurghada, which has an exceedance probability of 5–10 %, produces a discharge volume of 10.2 × 106 m3 at the delta, outlet of the basin, as 4.7 mm of the rainfall infiltrates (recharge). For the Ghazala sub-basin, the model yields a runoff volume of 3.16 × 106 m3 transferred from a total rainfall of 25 mm over a period of 3 h, as 3.2 mm of it was lost as infiltration.  相似文献   

17.
In many cases, the development of groundwater resources to boost agricultural production in dry areas has led to a continuous decline in groundwater levels; this has called into question the sustainability of such exploitation. In developing countries, limited budgets and scarce hydrological data often do not allow groundwater resources to be assessed through groundwater modeling. A case study is presented of a low-cost water-balance approach to groundwater resource assessments in a 1,550 km2 semi-arid region in northwestern Syria. The past development of irrigated agriculture and its effect on the groundwater system were studied by analysis of Landsat images and long-term groundwater level changes, respectively. All components of the groundwater balance were determined. Groundwater recharge was estimated using the chloride mass balance method. Over the past three decades, groundwater levels have declined, on average, 23 m, coinciding with a two-fold increase in the groundwater-irrigated area. Groundwater resources are currently depleted by a value that lies between 9.5×106 and 118×106 m3 year?1, which is larger than can be compensated for by a future decrease in natural discharge or changes in boundary conditions. However, groundwater resources are likely to be sufficient to supply domestic and livestock needs in the area.  相似文献   

18.
It is important to have both a qualitative and quantitative understanding of the hydraulic exchange between groundwater and surface water to support the development of effective management plans for sustainable use of water resources. Groundwater is a major source of surface-water recharge and plays an important role in maintaining the integrity of ecosystems, especially within wetlands in semi-arid regions. The Ordos Desert Plateau of Inner Mongolia (China) is a vulnerable ecosystem that suffers from an extreme lack of water. The hydraulic exchange between groundwater and lake water in Dakebo Lake (the largest of hundreds of lakes on the Ordos Desert Plateau) was evaluated using multiple environmental methods. Continuous monitoring of the groundwater and lake-water levels indicated that the lake was recharged vertically by groundwater. Application of hydrodynamic and temperature tracing methods to the western side of the lake indicated that the rate of groundwater discharge to the lake was about 2?×?10?6 to 3?×?10?6 m/s in spring, summer, and autumn, but that there was no recharge in winter because the hypolentic zone (HZ) was frozen. Mixing ratios of groundwater and lake water in the HZ, estimated from the 18O and 2H ratios, showed that there were spatial variations in the hydrodynamic exchange between groundwater and lake water within the HZ.  相似文献   

19.
The Wadi Watir delta, in the arid Sinai Peninsula, Egypt, contains an alluvial aquifer underlain by impermeable Precambrian basement rock. The scarcity of rainfall during the last decade, combined with high pumping rates, resulted in degradation of water quality in the main supply wells along the mountain front, which has resulted in reduced groundwater pumping. Additionally, seawater intrusion along the coast has increased salinity in some wells. A three-dimensional (3D) groundwater flow model (MODFLOW) was calibrated using groundwater-level changes and pumping rates from 1982 to 2009; the groundwater recharge rate was estimated to be 1.58?×?106 m3/year. A variable-density flow model (SEAWAT) was used to evaluate seawater intrusion for different pumping rates and well-field locations. Water chemistry and stable isotope data were used to calculate seawater mixing with groundwater along the coast. Geochemical modeling (NETPATH) determined the sources and mixing of different groundwaters from the mountainous recharge areas and within the delta aquifers; results showed that the groundwater salinity is controlled by dissolution of minerals and salts in the aquifers along flow paths and mixing of chemically different waters, including upwelling of saline groundwater and seawater intrusion. Future groundwater pumping must be closely monitored to limit these effects.  相似文献   

20.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号