首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The Feos Formation of the Nijar Basin comprises sediments deposited during the final stage of the Messinian salinity crisis when the Mediterranean was almost totally isolated. Levels of soft‐sediment deformation structures occur in both conglomeratic alluvial sediments deposited close to faults and the hyposaline Lago Mare facies, a laminated and thin‐bedded succession of whitish chalky marls and intercalated sands alternating with non‐marine coastal plain deposits. Deformation structures in the coarse clastics include funnel‐shaped depressions filled with conglomerate, liquefaction dykes terminating downwards in gravel pockets, soft‐sediment mixing bodies, chaotic intervals and flame structures. Evidence for soft‐sediment deformation in the fine‐grained Lago Mare facies comprises syndepositional faulting and fault‐grading, sandstone dykes, mixed layers, slumping and sliding of sandstone beds, convolute bedding, and pillar and flame structures. The soft‐sediment deformed intervals resemble those ascribed elsewhere to seismic shaking. Moreover, the study area provides the appropriate conditions for the preservation of deformation structures induced by seismicity; such as location in a tectonically active area, variable sediment input to produce heterolithic deposits and an absence of bioturbation. The vertical distribution of soft‐sediment deformation implies frequent seismic shocks, underlining the importance of seismicity in the Betic region during the Late Messinian when the Nijar Basin became separated from the Sorbas Basin to the north. The presence of liquefied gravel injections in the marginal facies indicates strong earthquakes (M ≥ 7). The identification of at least four separate fissured levels within a single Lago Mare interval suggests a recurrence interval for large magnitude earthquakes of the order of millennia, assuming that the cyclicity of the alternating Lago Mare and continental intervals was precession‐controlled. This suggestion is consistent with the present‐day seismic activity in SE Spain.  相似文献   

2.
Past hydrological interactions between the Mediterranean Sea and Black Sea are poorly resolved due to complications in establishing a high‐resolution time frame for the Black Sea. We present a new greigite‐based magnetostratigraphic age model for the Mio‐Pliocene deposits of DSDP Hole 380/380A, drilled in the southwestern Black Sea. This age model is complemented by 40Ar/39Ar dating of a volcanic ash layer, allowing a direct correlation of Black Sea deposits to the Messinian salinity crisis (MSC) interval of the Mediterranean Sea. Proxy records divide these DSDP deposits into four intervals: (i) Pre‐MSC marine conditions (6.1–6.0 Ma); (ii) highstand, fresh to brackish water conditions (~6.0–5.6 Ma); (iii) lowstand, fresh‐water environment (5.6–5.4 Ma) and (iv) highstand, fresh‐water conditions (5.4–post 5.0 Ma). Our results indicate the Black Sea was a major fresh‐water source during gypsum precipitation in the Mediterranean Sea. The introduction of Lago Mare fauna during the final stage of the MSC coincides with a sea‐level rise in the Black Sea. Across the Mio‐Pliocene boundary, sea‐level and salinity in the Black Sea did not change significantly.  相似文献   

3.
Seagrasses are marine angiosperms that form extensive submarine meadows in the photic zone where carbonate producing biota dwell as epiphytes on the leaves or as infaunal forms, and act as prolific carbonate sediment factories. Because seagrasses have a low preservation potential and records of exceptionally well‐preserved and plant material from marine settings are rare, these palaeoenvironments are difficult to identify in the rock record. Consequently, sedimentological and palaeontological proxies are the main indicators of the presence of seagrass‐dominated ecosystems. This work investigates the skeletal assemblage of Modern (Maldivian and western Mediterranean) and fossil (Eocene; Apula and Oman carbonate platforms and Oligocene; Malta platform) seagrass examples to characterize the skeletal assemblage of modern and fossil seagrasses. Two main types of grains, calcareous algae and foraminifera, constitute around 50% of the bioclastic sediment in both tropical Maldivian and temperate Mediterranean scenarios. However, in the tropical setting they are represented by green algae (Halimeda), while in the Mediterranean they are represented by corallinacean red algae. In contrast, in the Eocene examples, the foraminifera are the most conspicuous group and the green algae are also abundant. The opposite occurs in the Maltese Chattian, which is dominated by coralline algae (mean 42%), although the foraminifera are still abundant. It is suggested to use the term foralgal to identify the seagrass skeletal assemblage. To discriminate between red algae and green algae dominance, the introduction of the prefixes ‘GA’ (green algae) and ‘RA’ (red algae) is proposed. The investigated examples provide evidence that the green algae–foralgal assemblage is typical of tropical, not excessively dense seagrass meadows, characterized by a well‐illuminated substrate to support the development and calcification of the Halimeda thallus. Contrarily, the red algae‐foralgal assemblage is typical of high density tropical to subtropical seagrass meadows which create very dense oligophotic conditions on the sea floor or in temperate settings where Halimeda cannot calcify.  相似文献   

4.
Ten samples from a Late Messinian section measured at Capo Rossello, a few hundred metres laterally from and stratigraphically immediately below the Miocene/ Pliocene boundary stratotype, have been investigated by various techniques: carbonate content, grain-size analysis, loss on ignition, clay mineral composition, frequency of euryhaline ostracods. Two lithological sub-units. with different palaeoenvironmental implications, are recognized. Both sub-units were deposited after the termination of evaporitic conditions, and immediately after deposition of an ash fall tuff. The lower unit is the Congeria marl which yields the ‘lago-mare’faunal assemblage, the autochthony of which is supported by biometrical analysis of Cyprides agrigentina, indicating brackish, shallow-water conditions with Paratethyan affinities, and the upper, the Arenazzolo, a thin sandy unit indicating a higher energy environment whose duration is estimated at some thousand years. Marine faunas yielded by the Arenazzolo are interpreted as allochthonous. Sedimentary structures suggest a littoral setting at the edge of the lake, or a delta lobe. The main environmental change occurs at the base of the immediately overlying Trubi Formation, where open marine conditions indicative of oceanic depths mark the termination of the Messinian salinity crisis.  相似文献   

5.
How the Messinian Salinity Crisis (MSC) ended is still a matter of intense debate. The Terminal Carbonate Complex (TCC) is a late Messinian carbonate platform system that recorded western Mediterranean hydrological changes from the final stages of evaporite deposition till the advent of Lago-Mare fresh- to brackish water conditions at the very end of Messinian times. A multidisciplinary study has been carried out in three localities in south-eastern Spain to reconstruct the history of TCC platforms and elucidate their significance in the MSC. Overall, this study provides evidence that the TCC formed following a regional 4th order water level rise and fall concomitant with an opening-restriction trend. It can be subdivided into four 5th order depositional sequences (DS1 to DS4) recording two phases: (1) from DS1 to DS3, a tide-dominated ooidic to oobioclastic system with stenohaline faunas developed as a result of a 70 m water level rise. During this period, the TCC developed in a shallow sea with close to normal marine salinity; (2) in depositional sequence 4, a microbialite-dominated platform system developed. This is indicative of a significant environmental change and is attributed to a 30 to 40 m water level fall in the basins under study. These restricted conditions were coeval with intense evaporite deformation and brine recycling. The syn-sedimentary deformation of evaporites had a major impact on platform architecture and carbonate production, affecting the Messinian series throughout south-eastern Spain at the end of the TCC history. At that time, the TCC developed in a lake with fluctuating, brackish- to hypersaline water. These findings suggest a temporary restoration of marine conditions in the western Mediterranean marginal basins due to Atlantic water influxes prompted by a global sea level rise around 5.6 Ma. Whether marine conditions extended to the entire western Mediterranean still needs to be investigated.  相似文献   

6.
The mollusc record from Lago d'Averno, central southern Italy, provides a detailed 1600‐yr record of changes in water quality in response to bradyseismic movements and salinity fluctuations. Bradyseismic vertical land movements and human impact in Roman times led to several transgressions from the Mediterranean Sea, 1 km distant, making the lake a valuable resource for documenting the effect of episodic marine transgressions of a freshwater lake. Low‐oxygen‐tolerant freshwater molluscs suggest that, at around 900–500 bc the lake had a slowly decreasing medium freshwater quality, resulting from contamination of volcanic origin. Disappearance of the obligate freshwater snails and transgression of low‐salinity‐tolerant marine species indicate that, after 500 bc, continuous subsidence resulted in episodic marine transgressions from the nearby sea. The construction of a canal that connected the lake with the sea, in 37 bc, is marked by a considerable increase in the number of shells and by arrival of brackish‐water‐intolerant marine species. Species diversity increased considerably when the area was partly depopulated towards the end of the Roman Empire around ad 400. When the land was slightly uplifted around ad 600–750, the water quality of the lake became less favourable for marine molluscs. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
The salinity crisis of the Mediterranean during Messinian time was one of the most dramatic episodes of oceanic change of the past 20 or so million years, resulting in the deposition of kilometer thick evaporitic sequences. A large and rapid drawdown of the Mediterranean water level caused erosion and deposition of non-marine sediments in a large ‘Lago Mare’ basin. Both the surface loading by the Lower Messinian evaporites, and the removal of the water load resulted in isostatic/flexural rebound that significantly affected river canyons and topographic slopes. We use flexure models to quantitatively predict possible signatures of these events, and verify these expectations at well-studied margins. The highly irregular shape of the reconstructed basin calls for a three-dimensional model. Near basin margins, plate-bending effects are most pronounced which is why flexure is particularly important for a relatively narrow basin like the Mediterranean. We focus on one specific sea level scenario for the Messinian Salinity Crisis, where most of the evaporite load was deposited during a sea level highstand, followed by a rapid desiccation. Evaporite loading at current sea level is expected to cause subsidence of the deep basins by hundreds of meters and simultaneous uplift of continental parts of the margins. Differential uplift may lead to significant slope angle changes and thus gravity flows. The relative scarcity of Lower Evaporite sequences along the margins may be a result of these phenomena. Normal faulting of Lower Evaporite and older sediments and rocks is expected on the margins. Desiccation enhances erosion of the freshly exposed continental shelf and slope. Subsidence and riverbed sedimentation occurs on the continental margins, and significant uplift towards the basin center. Reverse faulting is predicted at the margins. Finally, regional isostatic uplift following Zanclean flooding is predicted to destabilize margin slope deposits, and to cause marginal uplift, river down-cutting, and normal faulting.  相似文献   

8.
Messinian marine deposits of the Guadalhorce River valley in southern Spain record evidence of the last northern gateway that existed between the Mediterranean and the Atlantic. They comprise sandstones and conglomerates with unidirectional cross-bed sets up to nearly 1 km long in their down-sedimentary-dip direction. These cross-bed sets relate to extremely fast (1.0–1.5 m s−1) bottom currents flowing from the Mediterranean into the Atlantic. The Guadalhorce gateway (which had a maximum width of 5 km and a maximum water depth of 120 m) was an important element controlling the Messinian pre-evaporitic oceanic circulation in the Mediterranean Sea, as it acted as a major outflow channel. Its closure limited the exchange of water between the Atlantic and the Mediterranean to the Rifian corridors of Morocco, inducing water-mass restriction and stratification in the western Mediterranean immediately prior to the `Messinian Salinity Crisis'.  相似文献   

9.
The Upper Gypsum unit of the Caltanissetta Basin (Sicily) records the last phase of the Messinian salinity crisis comprising the so‐called ‘Lago Mare’ event. A new facies analysis study recognizes nine to ten depositional cycles consisting of seven rhythmically interbedded primary gypsum bodies, and two to three sandstone bodies separated by marly terrigenous horizons showing laterally persistent vertical organization. A basal thin gypsum bed is overlain by a cluster of five thicker gypsum bodies. A marly interval containing two distinct sandstone horizons separates this cluster from the overlying uppermost (seventh) gypsum body. The terrigenous Arenazzolo Formation, in turn followed by the lower Pliocene Trubi Formation, is considered here to form the uppermost part of the Upper Gypsum unit. The rhythmic alternation in the sandy marls and gypsum/sandstone bodies records the response of sediments from shelfal to deltaic systems to precession‐driven arid‐wet climate fluctuations causing cyclical changes of both base‐level and water concentration. During wet climate phases (at insolation maxima) marl and sandstone were deposited in a hypohaline environment as suggested by: (i) the typical Lago Mare faunal assemblage and (ii) the negative δ18O values. During arid phases (at insolation minima) the reduced meteoric supply, recorded by higher δ18O values in the carbonate, caused the development of a negative hydrological budget leading to evaporite precipitation. At a basinal scale the Upper Gypsum unit unconformably overlies a mainly clastic evaporite unit containing carbonate breccia (the so‐called ‘Calcare di Base’) and/or clastic gypsum. Towards the basin centres, where the basal contact becomes conformable, a primary gypsum cumulate horizon is present. This layer is interpreted as a possible lateral equivalent of the Halite unit present only in the deepest depocentres. Based on astronomical calibration of the depositional cycles, the Upper Gypsum unit, including the Arenazzolo Formation, spans the interval between 5·33 and 5·53 Ma. This new age calibration allows the deposition of the Halite unit to be dated between 5·6 Ma (top of the Lower Evaporites) and 5·55 Ma (base of the Upper Evaporites) corresponding to isotopic stages TG12 and/or TG14.  相似文献   

10.
Jos  M. Martí  n  Juan C. Braga 《Sedimentary Geology》1994,90(3-4):257-268
The Messinian (Late Miocene) marine stratigraphic record of the Sorbas Basin (S.E. Spain) is well preserved and can be considered as being representative of the entire western Mediterranean. It exhibits a series of features relating to: (1) the composition, characteristics and evolution of coral reefs; (2) changes between temperate and subtropical climates; and (3) the extensive development of microbial carbonates (stromatolites and thrombolites) at the end of the Messinian. Each of these features has global significance.

Porites, which is the major and almost only coral component in reefs, is heavily encrusted with stromatolites. These reefs grew at the edge of the subtropical belt and were totally eliminated at the end of the Messinian because of global cooling.

Lowermost-Messinian carbonate sediments in the Sorbas Basin reflect a temperate climate, whereas those immediately above, which contain bioherms and coastal reefs, are subtropical. The shift from temperate to subtropical conditions during the early Messinian was accompanied by an important change in water circulation within the western Mediterranean. Temperate times were marked by cold surface Atlantic waters entering the Mediterranean, whereas subtropical times coincided with warm surface waters entering the western Mediterranean from the east. The subtropical waters were thermally stratified, which favoured the deposition of euxinic marls and diatomites at the centre of the basin. The upwelling of nutrient-rich water promoted stromatolite development within reefs and Halimeda growth on adjacent slopes.

Lastly, microbial carbonates (stromatolites and thrombolites) attained giant dimensions during the late Messinian, which can be regarded as a measure of their success in occupying a variety of ecological niches. This abundance of available habitats is believed to have resulted from the Messinian “salinity crisis”, which was followed by a re-colonization of the western Mediterranean. In this context stromatolite proliferation was due to opportunism of microbial communities in colonizing the new environments, rather than to a complete absence of other competitive biota. We do not believe that hypersaline conditions were a causal factor in stromatolite development because of the normal-marine biota associated with them.  相似文献   


11.
Abstract Successions across the Middle–Upper Jurassic disconformity in the Lusitanian Basin (west‐central Portugal) are highly varied, and were probably developed on a large westward‐inclined hangingwall of a half‐graben. The disconformity is preceded by a complex forced regression showing marked variations down the ramp, and provides an example of the effects of rapid, relative sea‐level falls on carbonate ramp systems. In the east, Middle Jurassic inner ramp carbonates (‘Candeeiros’ facies) are capped by a palaeokarstic surface veneered by ferruginous clays or thick calcretes. In the west, mid‐outer ramp marls and limestones (‘Brenha’ facies) are terminated by two contrasting successions: (1) a sharp‐based carbonate sandbody capped by a minor erosion surface, overlain by interbedded marine–lagoonal–deltaic deposits with further minor erosion/exposure surfaces; (2) a brachiopod‐rich limestone with a minor irregular surface, overlain by marls, lignitic marls with marine and reworked non‐marine fossils and charophytic limestones, with further minor irregular surfaces and capped by a higher relief ferruginous erosional surface. The age ranges from Late Bathonian in the east to Late Callovian in the west. This disconformity assemblage is succeeded by widespread lacustrine–lagoonal limestones with microbial laminites and evaporites (‘Cabaços’ facies), attributed to the Middle Oxfordian. Over the whole basin, increasingly marine facies were deposited afterwards. In Middle Jurassic inner‐ramp zones in the east, the overall regression is marked by a major exposure surface overlain by continental sediments. In Middle Jurassic outer‐ramp zones to the west, the regression is represented initially by open‐marine successions followed by either a sharp marine erosion surface overlain by a complex sandbody or minor discontinuities and marginal‐marine deposits, in both cases capped by the major lowstand surface. Reflooding led to a complex pattern of depositional conditions throughout the basin, from freshwater and brackish lagoonal to marginal‐ and shallow‐marine settings. Additional complications were produced by possible tilting of the hangingwall of the half‐graben, the input of siliciclastics from westerly sources and climate change from humid to more seasonally semi‐arid conditions. The Middle–Late Jurassic sea‐level fall in the Lusitanian Basin is also recorded elsewhere within the Iberian and other peri‐Atlantic regions and matches a transgressive to regressive change in eustatic sea‐level curves, indicating that it is related in part to a global event.  相似文献   

12.
Several gateways connected the Mediterranean with the Atlantic during the late Miocene but the timing of closure and therefore their role prior to and during the Messinian Salinity Crisis (5.97–5.33 Ma) is still under debate. The timing of closure of the Guadalhorce Corridor is especially disputed as the common lack of marine microfossils hampers precise age determination. Here we present new biostratigraphic age constraints on the sediments of the Ronda, Antequera and Arcos regions, which formed the northern part of the Guadalhorce Corridor. The general presence of Globorotalia menardii 4 in the youngest deep‐marine sediments of all three regions indicates a late Tortonian age, older than 7.51 Ma. We conclude that the Guadalhorce Corridor closed during the late Tortonian, well before the onset of the Messinian Salinity Crisis and that the late Tortonian tectonic uplift of the eastern Betics extended into the western Betics.  相似文献   

13.
The informally called ‘Continental intercalaire’ is a series of continental and brackish deposits that outcrops in several regions of North Africa. The age of the series is not well-constrained, but its upper part, visible in the ‘Kem Kem beds’ in Morocco and in Bahariya in Egypt, is regarded as early Cenomanian in age. Spinosaurid remains are an important component of this series, but records of this dinosaur are surprisingly rare in Algerian localities of the ‘Continental intercalaire’. Here, we describe a vertebrate assemblage from two localities, Kénadsa and Menaguir, situated in the Guir basin, Western Algeria. The assemblage comprises hybodont sharks, sarcopterygian fishes, ray-finned fishes, turtles, crocodiles and dinosaurs. Among the latter, only teeth of theropods have been recovered and 94% belong to Spinosaurus. The assemblage is taxonomically very similar to the Moroccan and Egyptian assemblages mentioned above. This study: 1) suggests a likely early Cenomanian age for the Guir basin deposits containing the assemblage; 2) provides a new evidence of the homogeneity of the early Cenomanian vertebrate fauna throughout North Africa; and 3) confirms the overabundance of theropod dinosaurs, especially spinosaurs, in the assemblage showing a possible shortcut in the vertebrate food chain. The northern most locality, Menaguir, shows sedimentological and ichnological evidence of marine influences indicating that the palaeoenvironment shows spatial heterogeneities.  相似文献   

14.
A new locality of Messinian fossil fish has been found in the diatomite outcropping in the surroundings of the former “Ferme Giraud”, in the Murdjadjo Massif (near Oran, Algeria). It has yielded an oligospecific fish fauna, including five species indicative of a littoral marine environment that may have occurred in a gulf bottom. This was probably linked to a brackish lagoon, as indicated by the diatom flora.  相似文献   

15.
The late Palaeozoic western Tianshan high‐pressure /low‐temperature belt extends for about 200 km along the south‐central Tianshan suture zone and is composed mainly of blueschist, eclogite and epidote amphibolite/greenschist facies rocks. P–T conditions of mafic garnet omphacite and garnet–omphacite blueschist, which are interlayered with eclogite, were investigated in order to establish an exhumation path for these high‐pressure rocks. Maximum pressure conditions are represented by the assemblage garnet–omphacite–paragonite–phengite–glaucophane–quartz–rutile. Estimated maximum pressures range between 18 and 21 kbar at temperatures between 490 and 570 °C. Decompression caused the destabilization of omphacite, garnet and glaucophane to albite, Ca‐amphibole and chlorite. The post‐eclogite facies metamorphic conditions between 9 and 14 kbar at 480–570 °C suggest an almost isothermal decompression from eclogite to epidote–amphibolite facies conditions. Prograde growth zoning and mineral inclusions in garnet as well as post‐eclogite facies conditions are evidence for a clockwise P–T path. Analysis of phase diagrams constrains the P–T path to more or less isothermal cooling which is well corroborated by the results of geothermobarometry and mineral textures. This implies that the high‐pressure rocks from the western Tianshan Orogen formed in a tectonic regime similar to ‘Alpine‐type’ tectonics. This contradicts previous models which favour ‘Franciscan‐type’ tectonics for the southern Tianshan high‐pressure rocks.  相似文献   

16.
The study focuses on the formation of lacustrine dolomite in late Miocene lakes, located at the East Mediterranean margins (Northern Israel). These lakes deposited the sediments of the Bira (Tortonian) and Gesher (Messinian) formations that comprise sequences of dolostone and limestone. Dolostones are bedded, consist of small‐sized (<7 μm), Ca‐rich (52 to 56 mol %) crystals with relatively low ordering degrees, and present evidence for replacement of CaCO3 components. Limestones are comprised of a wackestone to mudstone matrix, freshwater macrofossils and intraclasts (mainly in the Bira Formation). Sodium concentrations and isotope compositions differ between limestones and dolostones: Na = ~100 to 150 ppm; ~1000 to 2000 ppm; δ18O = ?3·8 to ?1·6‰; ?2·0 to +4·3‰; δ13C = ?9·0 to ?3·4‰; ?7·8 to 0‰ (VPDB), respectively. These results indicate a climate‐related sedimentation during the Tortonian and early Messinian. Wet conditions and positive freshwater inflow into the carbonate lake led to calcite precipitation due to intense phytoplankton blooms (limestone formation). Dry conditions and enhanced evaporation led to precipitation of evaporitic CaCO3 in a terminal lake, which caused an increased Mg/Ca ratio in the residual waters and penecontemporaneous dolomitization (dolostone formation). The alternating lithofacies pattern reveals eleven short‐term wet–dry climate‐cycles during the Tortonian and early Messinian. A shift in the environmental conditions under which dolomite formed is indicated by a temporal decrease in δ18O of dolostones and Na content of dolomite crystals. These variations point to decreasing evaporation degrees and/or an increased mixing with meteoric waters towards the late Messinian. A temporal decrease in δ13C of dolostones and limestones and appearance of microbial structures in close association with dolomite suggest that microbial activity had an important role in allowing dolomite formation during the Messinian. Microbial mediation was apparently the main process that enabled local growth of dolomite under wet conditions during the latest Messinian.  相似文献   

17.
We challenge the former interpretation of the ‘sedimentary mélange’ of the Makran accretionary complex as a tectonic mélange diapirically emplaced from below and provide evidence for its sedimentary gravitational emplacement from the north during Tortonian–Messinian times (between 11.8 and 5.8 Ma). It is an olistostrome that includes blocks of ophiolites and oceanic sediments derived from the ‘coloured mélange’ to the north, and reworked chunks of the turbidites on which it rests with an erosional truncation. The chaotic scattering of blocks of any size and lithology and the weak, soft‐sediment deformation of the matrix argue against a tectonic emplacement of the chaotic formation. Its size and internal structure, together with the size of the individual blocks, make the olistostrome a fossil equivalent of the large, gravitationally emplaced debris flows observed along present‐day continental margins and unstable volcanic edifices.  相似文献   

18.
Outcrops, offshore wells, electric logs and seismic profiles from northern Tunisia provide an opportunity to decipher the Messinian Salinity Crisis in the Strait of Sicily. Messinian deposits (including gypsum beds) near the Tellian Range reveal two successive subaerial erosional surfaces overlain by breccias and marine Zanclean clays, respectively. In the Gulf of Tunis, Messinian thick evaporites (mostly halite) are strongly eroded by a fluvial canyon infilled with Zanclean clays. The first erosional phase is referred to the intra-Messinian tectonic phase and is analogous to that found in Sicily. The second phase corresponds to the Messinian Erosional Surface that postdates the marginal evaporites, to which the entire Sicilian evaporitic series must refer. The Western and Eastern Mediterranean basins were separated during deposition of the central evaporites.  相似文献   

19.
Inclined heterolithic stratification in the Lower Cretaceous McMurray Formation, exposed along the Steepbank River in north‐eastern Alberta, Canada, accumulated on point bars of a 30 to 40 m deep continental‐scale river in the fluvial–marine transition. This inclined heterolithic stratification consists of two alternating lithologies, sand and fine‐grained beds. Sand beds were deposited rapidly by unidirectional currents and contain little or no bioturbation. Fine‐grained beds contain rare tidal structures, and are intensely bioturbated by low‐diversity ichnofossil assemblages. The alternations between the sand and fine‐grained beds are probably caused by strong variations in fluvial discharge; that are believed to be seasonal (probably annual) in duration. The sand beds accumulated during river floods, under fluvially dominated conditions when the water was fresh, whereas the fine‐grained beds accumulated during the late stages of the river flood and deposition continued under tidally influenced brackish‐water conditions during times of low‐river flow (i.e. the interflood periods). These changes reflect the annual migration in the positions of the tidal and salinity limits within the fluvial–marine transition that result from changes in river discharge. Sand and fine‐grained beds are cyclically organized in the studied outcrops forming metre‐scale cycles. A single metre‐scale cycle is defined by a sharp base, an upward decrease in sand‐bed thickness and upward increases in the preservation of fine‐grained beds and the intensity of bioturbation. Metre‐scale cycles are interpreted to be the product of a longer term (decadal) cyclicity in fluvial discharge, probably caused by fluctuations in ocean or solar dynamics. The volumetric dominance of river‐flood deposits within the succession suggests that accumulation occurred in a relatively landward position within the fluvial–marine transition. This study shows that careful observation can reveal much about the interplay of processes within the fluvial–marine transition, which in turn provides a powerful tool for determining the palaeo‐environmental location of a deposit within the fluvial–marine transition.  相似文献   

20.
The Melilla carbonate complex (NE Morocco) is the only area of the Paleo-Mediterranean Sea where volcanic activity was present throughout most of the Messinian. 40Ar/39Ar dating of volcanic tuffs interbedded within the upper Messinian sedimentary deposits, known as the Terminal Carbonate Complex (TCC), yields accurate ages of paleoenvironmental and sea-level changes related to the Messinian Salinity Crisis. The new chronologic data (1) provide an average of 5.95–5.99 Ma for the base of the TCC, thus being synchronous with the onset of the Messinian Salinity Crisis, (2) demonstrate for the first time that the basal unconformity of the TCC does not represent a hiatus of long duration, (3) define a precise time line at 5.87±0.02 Ma (2σ) corresponding to sedimentary rocks exhibiting a lateral transition between continental and marine deposits typical of the TCC and (4) yield evidence that emersion of the Melilla platform during deposition of the TCC is partly related to tectono-magmatic activity. An erosional surface, capping the TCC deposits in the Melilla basin, is related to the major Messinian Mediterranean drawdown. The duration of the hiatus, associated with this surface, is estimated to be at most 450 kyr, but is probably shorter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号