首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 800 毫秒
1.
《Sedimentology》2018,65(5):1731-1760
Many shoreface sandstone reservoirs host significant hydrocarbon volumes within distal intervals of interbedded sandstones and mudstones. Hydrocarbon production from these reservoir intervals depends on the abundance and proportion of sandstone beds that are connected by erosional scours, and on the lateral extent and continuity of interbedded mudstones. Cliff‐face exposures of the Campanian ‘G2’ parasequence, Grassy Member, Blackhawk Formation in the Book Cliffs of east‐central Utah, USA , allow detailed characterization of 128 erosional scours within such interbedded sandstones and mudstones in a volume of 148 m length, 94 m width and 15 m height. The erosional scours have depths of up to 1·1 m, apparent widths of up to 15·1 m and steep sides (up to 35°) that strike approximately perpendicular (N099 ± 36°) to the local north–south palaeoshoreline trend. The scours have limited lateral continuity along strike and down dip, and a relatively narrow range of apparent aspect ratio (apparent width/depth), implying that their three‐dimensional geometry is similar to non‐channelized pot casts. There is no systematic variation in scour dimensions, but ‘scour density’ is greater in amalgamated (conjoined) sandstone beds over 0·5 m thick, and increases upward within vertical successions of upward‐thickening conjoined sandstone beds. There is no apparent organization of the overall lateral distribution of scours, although localized clustering implies that some scours were re‐occupied during multiple erosional events. Scour occurrence is also associated with locally increased amplitude and laminaset thickness of hummocky cross‐stratification in sandstone beds. The geometry, distribution and infill character of the scours imply that they were formed by storm‐generated currents coincident with riverine sediment influx (‘storm floods’). The erosional scours increase the vertical and lateral connectivity of conjoined sandstone beds in the upper part of upward‐thickening sandstone bed successions, resulting in increased effective vertical and horizontal permeability of such intervals.  相似文献   

2.
The Arthur Lineament of northwestern Tasmania is a Cambrian (510 ± 10 Ma) high‐strain metamorphic belt. In the south it is composed of metasedimentary and mafic meta‐igneous lithologies of the ‘eastern’ Ahrberg Group, Bowry Formation and a high‐strain part of the Oonah Formation. Regionally, the lineament separates the Rocky Cape Group correlates and ‘western’ Ahrberg Group to its west from the relatively low‐strain parts of the Oonah Formation, and the correlated Burnie Formation, to its east. Early folding and thrusting caused emplacement of the allochthonous Bowry Formation, which is interpreted to occur as a fault‐bound slice, towards the eastern margin of the parautochthonous ‘eastern’ Ahrberg Group metasediments. The early stages of formation of the Arthur Lineament involved two folding events. The first deformation (CaD1) produced a schistose axial‐planar fabric and isoclinal folds synchronous with thrusting. The second deformation (CaD2) produced a coarser schistosity and tight to isoclinal folds. South‐plunging, north‐south stretching lineations, top to the south shear sense indicators, and south‐verging, downward‐facing folds in the Arthur Lineament suggest south‐directed transport. CaF1 and CaF2 were rotated to a north‐south trend in zones of high strain during the CaD2 event. CaD3, later in the Cambrian, folded the earlier foliations in the Arthur Lineament and produced west‐dipping steep thrusts, creating the linear expression of the structure.  相似文献   

3.
Sequence stratigraphic analysis of four widely spaced outcrops of middle Cenomanian to middle Turonian strata deposited in the Western Interior foreland basin in southern New Mexico, USA, defines ten sequence boundaries in a marine shale‐rich interval ca 200 m thick. The majority of sequence boundaries are based on basinward shifts in lithofacies characterized by either a non‐Waltherian contact between distal‐bar or lower shoreface sandstone and underlying lower offshore shale, or an erosional contact between distal‐bar or lower shoreface sandstone and underlying upper offshore shale. The sequence boundaries commonly correlate basinward to packages of storm‐deposited sandstone and to beds of sandy grainstone composed of winnowed inoceramid shell fragments. In several cases, however, the sequence boundaries pass basinward into presumably conformable successions of lower offshore shale. Maximum flooding surfaces within the sequences are represented by one or more beds of locally phosphatized globiginerid wackestone and packstone or exist within a conformable succession of lower offshore shale. Following initial south/south‐westward transgression into the study area, the regional trend of palaeoeshorelines was north‐west to south‐east, although isopach data indicate that lobes of sandstone periodically spread south‐eastward across the study area. The ten sequences in the study area are arranged into a third‐order composite megasequence that is characterized by overall upward‐deepening followed by upward‐shallowing of sequences. The composite megasequence is similar but not identical to the previously established T‐1 transgression and R‐1 regression in New Mexico. Based on radioisotopic dates of bentonites, the average frequency of the sequences within the study area was ca 327 kyr, which is consistent with fourth‐order cycles of ca 400 kyr interpreted in coeval marine strata elsewhere in the world.  相似文献   

4.
The stratigraphic record of many cratonic carbonate sequences includes thick successions of stacked peritidal deposits. Representing accumulation at or near sea‐level, these deposits have provided insights into past palaeoenvironments, sea‐level and climate change. To expand understanding of carbonate peritidal systems, this study describes the geomorphology, sedimentology and stratigraphy of the tidal flats on the Crooked‐Acklins Platform, south‐east Bahamas. The Crooked Island tidal flats extend continuously for ca 18 km on the platformward flank of Crooked Island, reaching up to 2 km across. Tidal flats include four environmental zones with specific faunal and floral associations and depositional characteristics: (i) supratidal (continuous supratidal crust and pavement); (ii) upper intertidal, with the mangrove Avicennia germinans and the cyanobacteria Scytonema; (iii) lower intertidal (with the mangrove Rhizophora mangal) and (iv) non‐vegetated, heavily burrowed subtidal (submarine). These zones have gradational boundaries but follow shore‐parallel belts. Coring reveals that the thickness of this mud‐dominated sediment package generally is <2 m, with depth to Pleistocene bedrock gradually shallowing landward. The facies succession under much of the tidal flat includes a basal compacted, organic‐rich skeletal‐lithoclast lag above the bedrock contact (suggesting initial flooding). This unit grades upward into rhizoturbated skeletal sandy mud (subtidal) overlain by coarsening‐upward peloid‐foraminifera‐gastropod muddy sand (reflecting shallowing to intertidal elevations). Cores from landward positions include stacked thin indurated layers with autoclastic breccia, root tubules and fenestrae (interpreted as supratidal conditions). Collectively, the data reveal an offlapping pattern on this prograding low‐energy shoreline, and these Holocene tidal flats may represent an actualistic analogue for ancient humid progradational tidal flats. Nonetheless, their vertical facies succession is akin to that present beneath channelled belt examples, suggesting that facies successions alone may not provide unambiguous criteria for prediction of the palaeogeomorphology, lateral facies changes and heterogeneity in stratigraphic analogues.  相似文献   

5.
The Drawa sandur, which is the largest, coarse‐grained sandur in Poland, dates from the Pomeranian phase of the Weichselian glaciation (c. 16 ka BP). Using Markov chain analysis we infer that five cycles and five rhythms occur in its proximal part. The cycles dominated by Gt and St lithofacies in the lower part of the sandur succession and by a GDm lithofacies in the upper part, are fining‐upward cycles deposited in braided channels during large ablation floods. Three groups of cycles are distinguished based on their genesis: (i) cycles due to channel‐sheet evolution during large floods; (ii) cycles due to braid‐bar development during initial and advanced diminishing of floods; and (iii) cycles developed in the thalweg or interbar channels. The succession as a whole forms a large‐scale coarsening‐up megacycle (‘sandur megacycle’) which corresponds to a phase of ice‐sheet advance. Because the cyclicity was evident from Markov chain analysis of the sedimentary succession, we suggest that this statistical tool is valuable for reconstruction of glacifluvial sedimentary conditions, particularly as it can shed new light on the palaeogeographical development of sandar.  相似文献   

6.
Considerable debate surrounds the age of the Middle Pleistocene glacial succession in East Anglia following some recent stratigraphical reinterpretations. Resolution of the stratigraphy here is important since it not only concerns the glacial history of the region but also has a bearing on our understanding of the earliest human occupation of north‐western Europe. The orthodox consensus that all the tills were emplaced during the Anglian (Marine Isotope Stage (MIS) 12) has recently been challenged by a view assigning each major till to a different glacial stage, before, during and after MIS 12. Between Trimingham and Sidestrand on the north Norfolk coast, datable organic sediments occur immediately below and above the glacial succession. The oldest glacial deposit (Happisburgh Till) directly overlies the ‘Sidestrand Unio‐bed’, here defined as the Sidestrand Hall Member of the Cromer Forest‐bed Formation. Dating of these sediments therefore has a bearing on the maximum age of the glacial sequence. This paper reviews the palaeobotany and describes the faunal assemblages recovered from the Sidestrand Unio‐bed, which accumulated in a fluvial environment in a fully temperate climate with regional deciduous woodland. There are indications from the ostracods for weakly brackish conditions. Significant differences are apparent between the Sidestrand assemblages and those from West Runton, the type site of the Cromerian Stage. These differences do not result from contrasting facies or taphonomy but reflect warmer palaeotemperatures at Sidestrand and a much younger age. This conclusion is suggested by the higher proportion of thermophiles at Sidestrand and the occurrence of a water vole with unrooted molars (Arvicola) rather than its ancestor Mimomys savini with rooted molars. Amino acid racemisation data also indicate that Sidestrand is significantly younger than West Runton. These data further highlight the stratigraphical complexity of the ‘Cromerian Complex’ and support the conventional view that the Happisburgh Till was emplaced during the Anglian rather than the recently advanced view that it dates from MIS 16. Moreover, new evidence from the Trimingham lake bed (Sidestrand Cliff Formation) above the youngest glacial outwash sediments (Briton's Lane Formation) indicates that they also accumulated during a Middle Pleistocene interglacial – probably MIS 11. All of this evidence is consistent with a short chronology placing the glacial deposits within MIS 12, rather than invoking multiple episodes of glaciation envisaged in the ‘new glacial stratigraphy’ during MIS 16, 12, 10 and 6. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The Bristol Channel, including onshore areas, is critical for reconstructing Pleistocene glacial limits in southwest Britain. Debate about the precise regional southern limits of Devensian (Oxygen Isotope Stage (OIS) 2) and Anglian (OIS 12) glaciations has recently been rekindled. The Paviland Moraine (Llanddewi Formation), Gower, south Wales is conventionally regarded as Anglian in age. Its ‘old’ age has been based on reported highly weathered clasts, a subdued morphology and ‘field relationships’ to fossil beach sediments of now disputed age(s). Relatively little about its sedimentary characteristics has been previously published. This paper: (i) presents new sedimentological evidence including lithofacies analysis, XRF analysis and electrical resistivity tomography (ERT) of sediment cores and electrical resistivity of a tied 3D field grid; (ii) re‐assesses the proposed ‘old’ age; (iii) suggests a likely depositional origin; and (iv) discusses implications for regional glacial dynamics and future research priorities. The sediments comprise mostly dipping glacigenic diamict units containing mainly Welsh Coalfield erratics. The location and subdued moraine morphology are attributed to the hydrological influence of the underlying limestone, the local topography and ice‐sheet behaviour rather than to long‐term degradation. Moraine formation is attributed mainly to sediment gravity flows that coalesced to produce an ice‐frontal apron. Neither geochemical data nor clasts indicate prolonged subaerial weathering and in‐situ moraine sediments are restricted to a limestone plateau above and inland of fossil beach sediments. We recommend rejecting the view that the moraine represents the only recognized OIS 12 deposit in Wales and conclude that instead it marks the limit of relatively thin Last Glacial Maximum (LGM) ice in west Gower. This requires revision of the accepted view of a more restricted LGM limit in the area. We suggest that substrate hydrological conditions may be a more influential factor in moraine location and form than is currently acknowledged.  相似文献   

8.
One of the most significant, but poorly understood, tectonic events in the east Lachlan Fold Belt is that which caused the shift from mafic, mantle‐derived calc‐alkaline/shoshonitic volcanism in the Late Ordovician to silicic (S‐type) plutonism and volcanism in the late Early Silurian. We suggest that this chemical/isotopic shift required major changes in crustal architecture, but not tectonic setting, and simply involved ongoing subduction‐related magmatism following burial of the pre‐existing, active intraoceanic arc by overthrusting Ordovician sediments during Late Ordovician — Early Silurian (pre‐Benambran) deformation, associated with regional northeast‐southwest shortening. A review of ‘type’ Benambran deformation from the type area (central Lachlan Fold Belt) shows that it is constrained to a north‐northwest‐trending belt at ca 430 Ma (late Early Silurian), associated with high‐grade metamorphism and S‐type granite generation. Similar features were associated with ca 430 Ma deformation in east Lachlan Fold Belt, highlighted by the Cooma Complex, and formed within a separate north‐trending belt that included the S‐type Kosciuszko, Murrumbidgee, Young and Wyangala Batholiths. As Ordovician turbidites were partially melted at ca 430 Ma, they must have been buried already to ~20 km before the ‘type’ Benambran deformation. We suggest that this burial occurred during earlier northeast‐southwest shortening associated with regional oblique folds and thrusts, loosely referred to previously as latitudinal or east‐west structures. This event also caused the earliest Silurian uplift in the central Lachlan Fold Belt (Benambran highlands), which pre‐dated the ‘type’ Benambran deformation and is constrained as latest Ordovician — earliest Silurian (ca 450–440 Ma) in age. The south‐ to southwest‐verging, earliest Silurian folds and thrusts in the Tabberabbera Zone are considered to be associated with these early oblique structures, although similar deformation in that zone probably continued into the Devonian. We term these ‘pre’‐ and ‘type’‐Benambran events as ‘early’ and ‘late’ for historical reasons, although we do not consider that they are necessarily related. Heat‐flow modelling suggests that burial of ‘average’ Ordovician turbidites during early Benambran deformation at 450–440 Ma, to form a 30 km‐thick crustal pile, cannot provide sufficient heat to induce mid‐crustal melting at ca 430 Ma by internal heat generation alone. An external, mantle heat source is required, best illustrated by the mafic ca 430 Ma, Micalong Swamp Igneous Complex in the S‐type Young Batholith. Modern heat‐flow constraints also indicate that the lower crust cannot be felsic and, along with petrological evidence, appears to preclude older continental ‘basement terranes’ as sources for the S‐type granites. Restriction of the S‐type batholiths into two discrete, oblique, linear belts in the central and east Lachlan Fold Belt supports a model of separate magmatic arc/subduction zone complexes, consistent with the existence of adjacent, structurally imbricated turbidite zones with opposite tectonic vergence, inferred by other workers to be independent accretionary prisms. Arc magmas associated with this ‘double convergent’ subduction system in the east Lachlan Fold Belt were heavily contaminated by Ordovician sediment, recently buried during the early Benambran deformation, causing the shift from mafic to silicic (S‐type) magmatism. In contrast, the central Lachlan Fold Belt magmatic arc, represented by the Wagga‐Omeo Zone, only began in the Early Silurian in response to subduction associated with the early Benambran northeast‐southwest shortening. The model requires that the S‐type and subsequent I‐type (Late Silurian — Devonian) granites of the Lachlan Fold Belt were associated with ongoing, subduction‐related tectonic activity.  相似文献   

9.
Recent robotic missions to Mars have offered new insights into the extent, diversity and habitability of the Martian sedimentary rock record. Since the Curiosity rover landed in Gale crater in August 2012, the Mars Science Laboratory Science Team has explored the origins and habitability of ancient fluvial, deltaic, lacustrine and aeolian deposits preserved within the crater. This study describes the sedimentology of a ca 13 m thick succession named the Pahrump Hills member of the Murray formation, the first thick fine‐grained deposit discovered in situ on Mars. This work evaluates the depositional processes responsible for its formation and reconstructs its palaeoenvironmental setting. The Pahrump Hills succession can be sub‐divided into four distinct sedimentary facies: (i) thinly laminated mudstone; (ii) low‐angle cross‐stratified mudstone; (iii) cross‐stratified sandstone; and (iv) thickly laminated mudstone–sandstone. The very fine grain size of the mudstone facies and abundant millimetre‐scale and sub‐millimetre‐scale laminations exhibiting quasi‐uniform thickness throughout the Pahrump Hills succession are most consistent with lacustrine deposition. Low‐angle geometric discordances in the mudstone facies are interpreted as ‘scour and drape’ structures and suggest the action of currents, such as those associated with hyperpycnal river‐generated plumes plunging into a lake. Observation of an overall upward coarsening in grain size and thickening of laminae throughout the Pahrump Hills succession is consistent with deposition from basinward progradation of a fluvial‐deltaic system derived from the northern crater rim into the Gale crater lake. Palaeohydraulic modelling constrains the salinity of the ancient lake in Gale crater: assuming river sediment concentrations typical of floods on Earth, plunging river plumes and sedimentary structures like those observed at Pahrump Hills would have required lake densities near freshwater to form. The depositional model for the Pahrump Hills member presented here implies the presence of an ancient sustained, habitable freshwater lake in Gale crater for at least ca 103 to 107 Earth years.  相似文献   

10.
This study reviews the origin of two approximately east‐west‐trending synclines in the Lake Julius area at the eastern edge of the Leichhardt Rift. The genesis of one of these structures can be found in a north‐south shortening event (D1) that occurred at the beginning of the compressional Isan Orogeny (at ca 1600 Ma). Metasediments in a cross‐rift were rammed against a competent buttress defined by the pre‐existing rift architecture, producing the approximately east‐west‐trending Somaia Syncline and its associated axial‐plane slaty cleavage. In contrast, the Lake Julius Syncline was produced by reorientation of an originally approximately north‐south‐trending (D2) fold, in a transpressional zone adjacent to a strike‐slip fault, at the end of the Isan orogeny. The effects of late fault movement can be partially reconstructed, based on correlations assuming that regionally developed trains of upright folds formed during the peak of the Isan Orogeny (D2). These folds have been offset, as well as having been tightened and disrupted at the same time as fault movements took place. The overall pattern of movement in the Lake Julius region can be explained as the result of an ‘indentor’ ramming into the ancient edge of the Leichhardt Rift, which acted as a buttress.  相似文献   

11.
The Ediacaran to lowermost Cambrian successions of south‐eastern Uruguay preserve an unusual and significant record of deposits generated during the Gondwana assembly (ca 590 to 535 Ma). This study presents a review of data obtained through extensive field‐based mapping coupled with detailed sedimentology and stratigraphy of key formations. The geological units within the study area consist of the Maldonado Group (Playa Hermosa, Las Ventanas and San Carlos formations), the Arroyo del Soldado Group (Yerbal, Polanco Limestones, Barriga Negra and Cerro Espuelitas formations) and the Arroyo de la Pedrera Group (Piedras de Afilar and Cerro Victoria formations). The Maldonado Group is characterized by a glacially influenced volcanogenic‐sedimentary sequence with ice‐rafted debris and dropstones in the Playa Hermosa and Las Ventanas formations. The Arroyo del Soldado Group is a mixed siliciclastic‐carbonate succession, mainly represented by an intercalation of basal pink dolostones, banded siltstones, rhythmites of dolostone‐limestone, iron formations, cherts and conglomerates. Carbonates in the Polanco Limestones Formation are characterized by a negative δ13C excursion up to ?3·26‰ PeeDeeBelemnite. The Arroyo de la Pedrera Group consists of quartz arenites and stromatolitic/oolitic dolostones. Preliminary data indicate that the Precambrian–Cambrian could be contained within or at the base of this group. The entire succession is almost 6000 m thick, and contains a rich fossil assemblage composed of organic‐walled microfossils and small shelly fauna, including the index fossil Cloudina riemkeae. The stratigraphic and chemostratigraphic features are suggestive of a Gaskier age (ca 580 Ma) for the basal glacial‐related units. In this scenario, the results show the importance of lithostratigraphic, biostratigraphic and chemostratigraphic data of these Ediacaran units in the global correlation of terminal Proterozoic sedimentary rocks.  相似文献   

12.
The Pennsylvanian to Permian lower Cutler beds comprise a 200 m thick mixed continental and shallow marine succession that forms part of the Paradox foreland basin fill exposed in and around the Canyonlands region of south‐east Utah. Aeolian facies comprise: (i) sets and compound cosets of trough cross‐bedded dune sandstone dominated by grain flow and translatent wind‐ripple strata; (ii) interdune strata characterized by sandstone, siltstone and mudstone interbeds with wind‐ripple, wavy and horizontal planar‐laminated strata resulting from accumulation on a range of dry, damp or wet substrate‐types in the flats and hollows between migrating dunes; and (iii) extensive, near‐flat lying wind‐rippled sandsheet strata. Fluvial facies comprise channel‐fill sandstones, lag conglomerates and finer‐grained overbank sheet‐flood deposits. Shallow marine facies comprise carbonate ramp limestones, tidal sand ridges and bioturbated marine mudstones. During episodes of sand sea construction and accumulation, compound transverse dunes migrated primarily to the south and south‐east, whereas south‐westerly flowing fluvial systems periodically punctuated the dune fields from the north‐east. Several vertically stacked aeolian sequences are each truncated at their top by regionally extensive surfaces that are associated with abundant calcified rhizoliths and bleaching of the underlying beds. These surfaces record the periodic shutdown and deflation of the dune fields to the level of the palaeo‐water‐table. During episodes of aeolian quiescence, fluvial systems became more widespread, forming unconfined braid‐plains that fed sediment to a coastline that lay to the south‐west and which ran approximately north‐west to south‐east for at least 200 km. Shallow marine systems repeatedly transgressed across the broad, low‐relief coastal plain on at least 10 separate occasions, resulting in the systematic preservation of units of marine limestone and calcarenite between units of non‐marine aeolian and fluvial strata, to form a series of depositional cycles. The top of the lower Cutler beds is defined by a prominent and laterally extensive marine limestone that represents the last major north‐eastward directed marine transgression into the basin prior to the onset of exclusively non‐marine sedimentation of the overlying Cedar Mesa Sandstone. Styles of interaction between aeolian, fluvial and marine facies associations occur on two distinct scales and represent the preserved expression of both small‐scale autocyclic behaviour of competing, coeval depositional systems and larger‐scale allocyclic changes that record system response to longer‐term interdependent variations in climatic and eustatic controlling mechanisms. The architectural relationships and system interactions observed in the lower Cutler beds demonstrate that the succession was generated by several cyclical changes in both climate and relative sea‐level, and that these two external controls probably underwent cyclical change in harmony with each other in the Paradox Basin during late Pennsylvanian and Permian times. This observation supports the hypothesis that both climate and eustasy were interdependent at this time and were probably responding to a glacio‐eustatic driving mechanism.  相似文献   

13.
Regional mapping of Middle Albian, shallow‐marine clastic strata over ca 100 000 km2 of the Western Canada Foreland Basin was undertaken to investigate the relationship between large‐scale stratal architecture and lithology. Results suggest that, over ca 5 Myr, stratal geometry and facies were dynamically linked to tectonic activity in the adjacent Cordillera. Higher frequency modulation of accommodation is most reasonably ascribed to eustasy. The Harmon and Cadotte alloformations were deposited at the southern end of an embayment of the Arctic Ocean. The Harmon alloformation, forming the lower part of the succession, constitutes a wedge of marine mudstone that thickens westward over 400 km from <5 m near the forebulge to >150 m in the foredeep. Constituent allomembers are also wedge‐shaped but lack distinct clinothems, a rollover point or downlapping geometry. Ubiquitous wave ripples indicate that the sea floor lay above storm wave base. Deposition took place on an extremely low‐gradient ramp, where accommodation was limited by effective wave base. Lobate, river‐dominated deltas fringed the southern margin of the basin. The largest deltas are stacked in the same area, suggesting protracted stability of the feeder river. A buried palaeo‐valley on the underlying sub‐Cretaceous unconformity may have influenced compaction and controlled river location for ca 3 Myr. Adjacent to the western Cordillera, a predominantly mudstone succession is interbedded with abundant storm beds of very fine‐grained sandstone and siltstone that reflect supply from the adjacent orogen. Bioturbation indices in the Harmon alloformation range from zero to six which reflects the influence of stressors related to river‐mouth proximity. Harmon alloformation mudstone grades abruptly upward into marine sandstone and conglomerate of the overlying Cadotte alloformation. The Cadotte is composed of three allomembers ‘CA’ to ‘CC’, that represent the deposits of prograding strandplains 200 × 300 km in extent. Allomembers ‘CA’ and ‘CB’ are strongly sandstone‐dominated, whereas allomember ‘CC’ contains abundant conglomerate in the west. The dominantly aggradational wedge of Harmon alloformation mudstone records flexural subsidence driven by active thickening in the adjacent orogen: the high accommodation rate trapped coarser clastic detritus close to the basin margin. In contrast, the tabular, highly progradational sandstone and conglomerate bodies of the Cadotte alloformation record a low subsidence rate, implying tectonic quiescence in the adjacent orogen. Erosional unloading of the orogen through Cadotte time steepened rivers to the extent that they delivered gravel to the shore. These observations support an ‘anti‐tectonic’ model of gravel supply proposed previously for the United States portion of the Cretaceous foreland basin. Because Cadotte allomembers do not thicken appreciably into the foredeep, accommodation changes that controlled these transgressive–regressive successions were probably of eustatic origin.  相似文献   

14.
The term ‘cap carbonate’ is commonly used to describe carbonate units associated with glacigenic deposits in Neoproterozoic successions. Attempts to use carbonate units as stratigraphic markers have been counfounded by inconsistent identification of ‘cap carbonates’ and a somewhat broad use of the term. Systematic sedimentological and geochemical analysis of carbonate rocks (mostly dolomite) associated with glacigenic deposits from the Neoproterozoic succession of the Kimberley region, north‐western Australia, shows that it is possible to characterize such units by their specific mineralogical, sedimentological, petrographic, geochemical and stratigraphic features. Hence, it is possible to differentiate true ‘cap carbonates’ from other carbonate units that are associated with glacigenic deposits. In the Kimberley successions two broad carbonate types are identified that reflect two stratigraphically distinct depositional realms. Carbonate rocks from the Egan Formation and Boonall Dolomite (the youngest carbonate units in the succession) are characterized by sedimentary components and features that are consistent with deposition on shallow platforms or shelves, analogous to Phanerozoic warm‐water carbonate platform deposits. In contrast, dolomite from the Walsh, Landrigan and Moonlight Valley Tillites preserves a suite of sedimentary and geochemical characteristics that are distinctly different from Phanerozoic‐like carbonate rocks; they are thin (ca 6 m), laterally persistent units of thinly laminated dolomicrite/dolomicrospar recording δ13C fluctuations from −1‰ to −5‰. These latter features are consistent with a ‘Marinoan‐style cap‐carbonate’ rock described from other Neoproterozoic successions. The similarity and broad distribution of these rocks in Australia, when considered within the context of genetic models suggesting a global oceanographic–atmospheric event, support their use as a lithostratigraphic marker horizon for the start of the Ediacaran Period at ca 635 Ma.  相似文献   

15.
Two new Permian‐aged formations ‘Kariz Now Formation’ and ‘Aliyak Formation’ are proposed for a 65–150 m‐thick succession in the Kariz Now area, with the type section for both (79.5 m thick) located 9 km northeast of Aliyak village ca. 100 km southeast of Mashhad city, northeastern Iran. The lower Kariz Now Formation is composed of siliciclastics. The age of this Formation is poorly constrained but its correlation with the Shah Zeid Formation in the Central Alborz suggests a possible Asselian‐Hermagorian age for the Kariz Now Formation, which implies a hiatus of Yakhtashian–mid Midian (Artinskian–mid Capitanian) age between the siliciclastics of the Kariz Now Formation and carbonates of the disconformably overlying Aliyak Formation. There is also the possibility of a potential correlation of this Formation with the Kungurian Faraghan Formation in the Zagros area. The succeeding Aliyak Formation is mostly composed of carbonate rocks capped by a thin basaltic lava flow. The Aliyak Formation is unconformably overlain by dolostones that are correlated with the Middle Triassic Shotori Formation. Samples were collected from the Kariz Now and Aliyak formations, but fossils were only recovered from the Aliyak Formation. These include calcareous algae, small foraminiferans, fusulinids, crinoid stems and brachiopods. The recovered fusulinid assemblage from the Aliyak Formation is consistent with that of the upper Capitanian Monodiexodina kattaensis–Codonofusiella erki and Afghanella schencki–Sumatrina brevis zones of the Zagros Mountains and with the upper part of the Ruteh Fm in the Alborz Mountains. Although not radiometrically dated, the basaltic lava flow most probably corresponds to similar basaltic lava flows occurring in the uppermost part of the Ruteh Formation in Central Alborz. Thus, the Permian in the studied region developed in a basin that extended westward as far as the Central Alborz. A late Capitanian age for the Aliyak Formation implies it correlates with the Capitanian KS5 in Al Jabal Al‐Akhdar in Oman, with Aliyak Unit 5 potentially representing the Permian maximum flooding surface MFS P25. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Palaeoseismological and archaeological analysis of a trench enabled us to estimate the Holocene slip rates on the East Helike Fault, flanking the south-western Gulf of Corinth. We recognized two major fault strands within the trench: the ‘north fault’ controls a succession of three colluvial wedges and the deposition of a 2.7 m thick sedimentary sequence. The ‘south fault’ controls the deposition of a 2.9-m thick brownish-red colluvium. Based on colluvial stratigraphy, radiocarbon dating of the sediments suggests that the slip rate was c. 0.3 mm yr−1 from 10 250 to c. 1400 bp , when it increased dramatically to c. 2.0 mm yr−1 after a strong earthquake event near 1400 bp . The faster slip rate evidently increased the sedimentation rate.  相似文献   

17.
The Upper Permian (Zechstein) slope carbonates in the Roker Formation (Zechstein 2nd‐cycle Carbonate) in North‐east England consist of turbidites interbedded with laminated lime‐mudstone. Studies of turbidite bed thickness and relative proportion of turbidites (percentage turbidites in 20 cm of section) reveal well‐developed cyclicities consisting of thinning‐upward and thickening‐upward packages of turbidite beds. These packages are on four scales, from less than a metre, up to 50 m in thickness. Assuming that the laminae of the hemipelagic background sediment are annual allows the durations of the cycles to be estimated. In addition, counting the number and thickness of turbidite beds in 20 cm of laminated lime‐mudstone, which is approximately equivalent to 1000 years (each lamina is 200 μm), gives the frequencies of the turbidite beds, the average thicknesses and the overall sedimentation rates through the succession for 1000 year time‐slots. Figures obtained are comparable with modern rates of deposition on carbonate slopes. The cyclicity present in the Roker Formation can be shown to include: Milankovitch‐band ca 100 kyr short‐eccentricity, ca 20 kyr precession and ca 10 kyr semi‐precession cycles and sub‐Milankovitch millennial‐scale cycles (0·7 to 4·3 kyr). Eccentricity and precession‐scale cycles are related to ‘highstand‐shedding’ and relative sea‐level change caused by Milankovitch‐band orbital forcing controlling carbonate productivity. The millennial‐scale cycles, which are quasi‐periodic, probably are produced by environmental changes controlled by solar forcing, i.e. variations in solar irradiance, or volcanic activity. Most probable here are fluctuations in carbonate productivity related to aridity–humidity and/or temperature changes. Precession and millennial‐scale cycles are defined most strongly in early transgressive and highstand parts of the larger‐scale short‐eccentricity cycles. The duration of the Roker Formation as a whole can be estimated from the thickness of the laminated lithotype as ca 0·3 Myr.  相似文献   

18.
Peat mires retain a sensitive record of water‐table (base‐level) fluctuations throughout their accumulation. On this basis, coals provide one of the best opportunities to interpret high‐resolution base‐level change in ancient non‐marine deposits. The petrographic composition of 275 samples collected from 11 localities along a 100 km south‐west to north‐east transect across the regionally extensive (>37 000 km2) Pennsylvanian (Upper Carboniferous) Fire Clay coal of the Central Appalachian Basin, USA was analysed to determine its internal stratigraphy. The coal is positioned within the late lowstand/early transgressive systems tract of a fourth‐order depositional sequence. The results of the petrographic analyses reveal a cyclicity in the composition of the Fire Clay coal, which defines six units that are correlated over more than 100 km. Each coal cycle is characterized by a gradual upward transition from vitrinite‐dominated to inertinite‐dominated coal, which represents a ‘drying‐up’ succession. Increased concentrations of resistant peat components at the top of the drying‐up successions indicate reduced peat accumulation rates associated with slowing rate of water‐table rise, and may represent a residue of peat remaining from a phase of exposure and erosion resulting from a falling water table. These drying‐up successions are bound by surfaces that display an abrupt coal facies shift from inertinite‐rich to vitrinite‐rich coal, representing a rapid water‐table rise. Each cycle represents markedly different mire conditions with different aerial distributions, which supports the notion of temporal disconnection between each unit of coal, and suggests that considerable time may be ‘locked‐up’ in unit bounding exposure surfaces. Recognition that the rate of peat accumulation in a mire may vary considerably through time, has important implications for studies which assume that peat and coal successions provide continuous and time‐invariant records of base‐level fluctuations or palaeoecological change.  相似文献   

19.
Studies of Cenozoic lavas and associated sediments in the Kiandra‐Cabramurra and Adaminaby‐Cooma areas identify and date tectonic deformations responsible for differential uplift and drainage development of the region. Volcanic activity on the northern Monaro was mainly Eocene‐Oligocene but in the extreme north there are Early Miocene sediments and lavas. Volcanic activity and folding began to rearrange the drainage in the Eocene‐Oligocene. The headwaters of the Murrumbidgee River originally flowed south into the Eucumbene River but Early Miocene folding and faulting uplifted the Monaro Range and created a large lake near Adaminaby. Lake overtopping rerouted the drainage east and then south along the basalt‐filled valley of an old north‐flowing tributary, the ‘Adaminaby River’, forming the present‐day Murrumbidgee River. The folding also produced a 300 m height difference between the Berridale and Adaminaby Plateaus and formed a section of the Great Divide. This fold displacement ranks with the largest Cenozoic fault displacements. In the Kiandra area tectonism associated with Early Miocene volcanism rearranged the drainage and tilted the Kiandra area and Kosciuszko Block to the north.  相似文献   

20.
The Middle Devonian Narva succession in the Baltic Basin represents a significant turnaround in the history of the basin. The detailed study of core and outcrop sections and the three‐dimensional correlations across the Baltic Basin reveal a carbonate‐dominated, mixed retrogressive succession, overlain by a siliciclastic‐dominated, progradational succession. The palaeogeographic reconstructions show how the shallow, tide‐influenced basin expanded from south‐west to north‐east and, later during the transgression, also to the north, south and east. The transgressive portion of the basin fill is dominated by carbonate‐rich sabkha and supratidal to intertidal deposits on the basin margins, and subtidal carbonates in the basin centre. Siliciclastic material was derived by tidal currents and storm waves from the south‐west through a tidal inlet and flood‐tidal delta complex. This initial transgressive phase is characterized by the lack of subsidence or even episodic uplifts in the northern/north‐western part of the basin margin, shown by convergence of timelines and the thin (30 m) transgressive succession. In contrast, on the southern margin, the facies associations stack vertically into a 70 to 80 m thick succession, indicating significantly higher subsidence rates. The upper part of the transgressive phase indicates subsidence across the whole basin. The upper, progradational portion of the basin fill is dominated by coarse, siliciclastic, tide‐influenced deltaic deposits that rapidly prograded from north‐west to south‐east. This detailed study on the Narva succession shows that siliciclastic and carbonate deposition was coeval and that mixing occurred at different temporal and spatial scales. The mixing was controlled by grain‐size, volume and location of siliciclastic input rather than relative sea‐level changes as suggested in widely used reciprocal mixing models. It is suggested that the forebulge of the Scandinavian Caledonian fold‐and‐thrust belt migrated to the north‐western margin of the Baltic Basin during the earliest Eifelian, as indicated by the lack of subsidence and probable uplift in the northern/north‐western margin during the early transgressive phase. The forebulge migration ceased although the forebulge had already started to subside during the later stages of the transgressive phase. The deltaic progradation is interpreted to be associated with the orogenic collapse and uplift in the Scandinavian Caledonides that caused the erosion of the foreland basin fill and the coarse sediment transport into the Baltic Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号