首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
This review describes significant developments in trace element determination using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS) that were reported in 2004 and 2005. It focuses on the application of ICP techniques to geological and environmental samples; fundamental studies in ICP-MS and ICP-AES instrumentation are not included. The literature reviewed indicated that the majority of new publications concerned advances in ICP-MS analysis rather than ICP-AES. However, ICP-AES developments are still being published, particularly in the areas of sample preconcentration and sample introduction. The trend in increasing publication of developments in hyphenated speciation techniques looks set to persist as knowledge of elemental speciation becomes critical for many environmental studies. Collision or reactions cells were the most reported technique for spectral interference removal in ICP-MS, probably reflecting the growing adoption of cell instruments in laboratories during the last few years.  相似文献   

2.
Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS.  相似文献   

3.
This GGR biennial critical review covers developments and innovations in key analytical methods published since January 2014, relevant to the chemical, isotopic and crystallographic characterisation of geological and environmental materials. In nine selected analytical fields, publications considered to be of wide significance are summarised, background information is provided and their importance evaluated. In addition to instrumental technologies, this review also presents a summary of new developments in the preparation and characterisation of rock, microanalytical and isotopic reference materials, including a précis of recent changes and revisions to ISO guidelines for reference material characterisation and reporting. Selected reports are provided of isotope ratio determinations by both solution nebulisation MC‐ICP‐MS and laser ablation‐ICP‐MS, as well as of radioactive isotope geochronology by LA‐ICP‐MS. Most of the analytical techniques elaborated continue to provide new applications for geochemical analysis; however, it is noted that instrumental neutron activation analysis has become less popular in recent years, mostly due to the reduced availability of nuclear reactors to act as a neutron source. Many of the newer applications reported here provide analysis at increasingly finer resolution. Examples include atom probe tomography, a very sensitive method providing atomic scale information, nanoscale SIMS, for isotopic imaging of geological and biological samples, and micro‐XRF, which has a spatial resolution many orders of magnitude smaller than conventional XRF.  相似文献   

4.
Elemental and isotopic ratio analyses of U ore concentrate samples, from the 3 operating U mining facilities in Australia, were carried out to determine if significant variations exist between their products, thereby allowing the U ore concentrate’s origin to be identified. Elemental analyses were conducted using inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence spectrometry (XRF). Lead isotope ratios were measured using ICP-MS and U isotope analyses were conducted using thermal ionisation mass spectrometry (TIMS). Minute quantities of sample, such as that obtained from a swipe, were also examined for elemental concentrations using secondary ion mass spectrometry (SIMS). The results of multivariate statistical analysis show clear patterns in the trace elemental composition of the processed U ores, indicating that it is possible to use this feature as a unique identifier of an Australian U ore concentrate’s source. Secondary ion mass spectrometry analyses also allow individual particles to be differentiated using this ‘fingerprinting’ technique. Isotope ratios determined using TIMS reveal that there is a significant difference in the n(234U)/n(238U) isotope ratio between the U ore concentrate from each mine.  相似文献   

5.
High precision isotope ratio and trace element determination can be achieved with modern quadrupole ICP-MS provided that short and long-term instrument performance is accurately monitored. Here we present results for the isotope ratios 6Li/7Li, 147Sm/149Sm, 160Dy/161Dy, 207Pb/206Pb, 208Pb/206Pb, 206Pb/204Pb and 235U/238U with which we determined long-term isotope ratio stability of relevance to both trace element and isotope determination. With respect to trace element determination, we first present long-term observations regarding oxide formation rates of Ba and Nd on light REE and heavy REE, as well as Zr on Ag. These showed good correlations and could be used to correct effectively the interference. The efficacy of this correction was demonstrated with analyses of the rock reference material BHVO-2 at both low and high oxide formation rates. Next, we studied the long-term reproducibility of a Dy isotope ratio that was measured to correct for the isobaric interference on Gd. It was found that, regardless of tuning condition, the ratio reproduced very well (0.58% RSD, 1s) and that the estimate of the Gd concentration did not suffer from the large correction (> 10%) caused by the Dy isobar. Long-term reproducibilities of Li, Sm and U isotope ratios, required for accurate mass bias correction when isotopically enriched internal standards of these elements are employed, were measured in the rock reference materials AGV-2 and JA-3 over a time period of up to 3 years. As expected, the Li isotope ratio showed the largest variability (RSD = 7%), but the other two ratios had relative external reproducibilities of only 1.01% (1s, U) and 0.67% (Sm). The mass bias-induced scatter in measurements for Sm and U was so small that the internal standard correction was effective, even for samples with high concentrations of these elements. With regard to Pb-isotope ratio determination, we also present long-term reproducibility for NIST SRM 982, run as an unknown and two accuracy tests for Pb separated from granitoids and from meteorites. It is demonstrated that the obtained ratios, including those involving 204Pb, are accurate relative to MC-ICP-MS determinations and of comparable precision to conventional TIMS analysis. The excellent agreement between all data sets shows the potential of modern quadrupole ICP-MS instrumentation for Pb-isotope determination, particularly for samples with very low Pb content.  相似文献   

6.
激光剥蚀电感耦合(LA-ICP-MS)等离子体以其高空间分辨率、高灵敏度、多元素同时测定并可提供同位素比值信息的检测能力在原位微区分析中已得到广泛应用。现从仪器的发展、基础研究等方面评述了近年来LA-ICP-MS微区分析的进展,重点介绍了与等离子体质谱(ICP-MS)联用的激光器(纳秒和飞秒激光器)的发展、校正方法、分馏效应及其在地球科学微量元素、同位素、包裹体分析中的应用。并简要地阐述了LA-ICP-MS分析技术存在的局限和发展趋势。  相似文献   

7.
激光剥蚀-等离子体质谱(LA-ICPMS)已成为地球化学、宇宙化学和环境研究领域元素和同位素原位分析最重要的技术之一。文章介绍了多种类型的质谱仪及其使用的激光器。用途最广的LA-ICPMS仪器之一是单接收器扇形磁场质谱仪,配有Nd:YAG激光剥蚀系统(激光波长分为193 nm和213 nm两种),MPI Mainz实验室使用的就是这套系统,文章对此作一详细介绍。文中阐述了数据优化技术及其多种校正过程;介绍LA-ICPMS在痕量元素和同位素分析领域的一些应用,包括参考物质的研制,Hawaiian玄武岩、Martian陨石、生物骨针和珊瑚虫中痕量元素分析及熔融包裹体和富钙-铝碳质球粒陨石中的铅和锶同位素测量。  相似文献   

8.
Inductively coupled plasma mass spectrometry (ICP-MS) is a technique that provides rapid and sensitive multielement and isotope analysis of various environmental materials. This technique has developed into a valuable tool for data acquisition in geochemistry. Quadrupole and magnetic sector mass analysers are the most important types of mass filters that are commercially available with these instruments. Magnetic sector instruments are more expensive than quadrupole-based instruments, but provide enhanced sensitivity and higher mass resolution. This paper reviews applications of single- and multiple-collector magnetic sector ICP-MS in different fields of geochemistry and shows where the use of magnetic sector ICP-MS is advantageous.  相似文献   

9.
辉光放电质谱(GDMS)是利用辉光放电源作为离子源的一种无机质谱方法。GDMS采用固体进样,样品准备过程简单、分析速度快、基体效应小、线性范围宽,是痕量分析的一种重要分析手段,在国外已经成为高纯金属和半导体分析的行业标准方法。GDMS可以进行深度分析,选择合适的放电条件,可以在样品表面获得平底坑,深度分辨率可以满足对微米量级的层状样品进行测量。目前商业化的GDMS都是直流放电源,这些仪器需要用第二阴极法或混合法才能对非导电材料进行测量,从而限制了GDMS在非导体材料分析方面的应用。GDMS放电源和单接收方式并不能满足同位素丰度精确测量的要求,在精确度要求不高的情况下,GDMS在固体样品同位素丰度的快速测量方面还是有一定的应用价值。文章总结了近几年国内外GDMS在各领域的应用进展和定量分析技术发展方向。GDMS已经成为一种高纯导电材料分析的重要方法;在深度分析、非导电材料分析、固体同位素丰度快速测量中有一定的应用前景。在定量测量方面,由于受到基体、测量条件等影响因素较多,缺乏合适的基体匹配的标准物质用于校正,GDMS主要停留在定性和半定量分析阶段。目前,国外已有关于GDMS定量分析的报道,采用掺杂的方法合成校正样品,利用一系列校正样品获得的标准曲线实现定量分析,这种方法过程较为复杂,但可以获得较好的定量分析结果,是一种不错的校正方法。  相似文献   

10.
Eleven synthetic silicate and phosphate glasses were prepared to serve as reference materials for in situ microanalysis of clinopyroxenes, apatite and titanite, and other phosphate and titanite phases. Analytical results using different micro-analytical techniques showed that the glass fragments were homogeneous in major and trace elements down to the micrometre scale. Trace element determinations using inductively coupled plasma-mass spectrometry (ICP-MS), multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS), laser-ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) and secondary ionisation mass spectrometry (SIMS) showed good agreement for most elements (Li, Be, B, Cs, Rb, Ba, Sr, Ga, Pb, U, Th, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Er, Tm, Yb, Lu, Zr, Hf, Ta, Nb) studied and provide provisional recommended values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号