首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
Pore and surface water sulfide variation near artificial ditches and a natural creek are examined in salt marshes bordering the Indian River Lagoon in east-central Florida. Pore water sulfide concentrations ranged from 0 μg-at I?1 to 1,640 μg-at I?1. On average, the natural creek had the lowest sulfide concentrations (mean <1.0 μ-at I?1) and the perimeter ditch of a managed salt marsh impoundment the highest (436.5 μg-at I?1). There was a trend of increasing sulfide concentration in the summer, and sharp peaks in late fall-early winter which correspond with peak litter input into the sediments. Significant differences in sulfide concentration between sites are attributed to differences in water flow and in organic matter content. Delaying the seasonal opening of culverts (which connect impounded marshes with the lagoon) until lagoon water levels rise in fall may prevent massive fish kills that have been associated with high sulfide levels in the impoundment perimeter ditches.  相似文献   

2.
We measured dissolved and particulate organic carbon (DOC and POC) in samples collected along 13 transects of the salinity gradient of Chesapeake Bay. Riverine DOC and POC end-members averaged 232±19 μM and 151±53 μM, respectively, and coastal DOC and POC end-members averaged 172±19 μM and 43±6 μM, respectively. Within the chlorophyll maximum, POC accumulated to concentrations 50–150 μM above those expected from conservative mixing and it was significantly correlated with chlorophylla, indicating phytoplankton origin. POC accumulated primarily in bottom waters in spring, and primarily in surface waters in summer. Net DOC accumulation (60–120 μM) was observed within and downstream of the chlorophyll maximum, primarily during spring and summer in both surface and bottom waters, and it also appeared to be derived from phytoplankton. In the turbidity maximum, there were also net decreases in chlorophylla (?3 μg l?1 to ?22 μg l?1) and POC concentrations (?2 μM to ?89 μM) and transient DOC increases (9–88 μM), primarily in summer. These occurred as freshwater plankton blooms mixed with turbid, low salinity seawater, and we attribute the observed POC and DOC changes to lysis and sedimentation of freshwater plankton. DOC accumulation in both regions of Chesapeake Bay was estimated to be greater than atmospheric or terrestrial organic carbon inputs and was equivalent to ≈10% of estuarine primary production.  相似文献   

3.
Rates of nitrification along an estuarine gradient in Narragansett Bay   总被引:1,自引:0,他引:1  
Rates of pelagic nitrification, measured using N-Serve-sensitive [14C]bicarbonate uptake, varied by as much as an order-of-magnitude among three sites along the salinity gradient of Narragansett Bay (Rhode Island, United States). Rates were always higher at the Providence River estuary site (0.04–11.2 μmol N I?1 d?1) than at either the lower Narragansett Bay site (0.02–0.98 μmol N I?1d?1) or the freshwater Blackstone River site (0.04–1.7 μmol N I?1d?1). Although temperature was the most important variable regulating the annual cycle of nitrification, ammonium concentrations were most likely responsible for the large differences in rates among the three sites in summer. At the levels found in this estuarine system, salinity and concentrations of oxygen or total suspended matter did not appear to have a direct measurable effect on nitrification and pH did only occasionally. Nitrification played an important role in the nitrogen cycle at all three sites. In Narragansett Bay, nitrification contributed 55% of the NO2 ? and NO3 ? entering annually, and was the major source during spring and summer. Water from offshore was the only other large source of NO2 ? and NO3 ?, contributing 34%. High summer rates of nitrification could support much of the phytoplankton uptake of NO2 ? and NO3 ?. In the Providence River estuary, the largest annual input of NO2 ? and NO3 ? was from rivers (54%), although nitrification (28%) and water from lower portions of the bay (11%) also made large contributions. Again, nitrification was most important in the summer. The high rates of nitrification in the Providence River estuary during summer were also likely to be important in terms of oxygen demand, and the production of nitric and nitrous oxides. In the Blackstone River, NO2 ? and NO3 ? concentrations increased as the river flowed through Rhode Island, and nitrification was a possible source.  相似文献   

4.
The temporal and spatial distributions of salinity, dissolved oxygen, suspended particulate material (SPM), and dissolved nutrients were determined during 1983 in the Choptank River, an estuarine tributary of Chesapeake Bay. During winter and spring freshets, the middle estuary was strongly stratified with changes in salinity of up to 5‰ occurring over 1 m depth intervals. Periodically, the lower estuary was stratified due to the intrusion of higher salinity water from the main channel of Chesapeake Bay. During summer this intrusion caused minimum oxygen and maximum NH4 + concentrations at the mouth of the Choptank River estuary. Highest concentrations of SPM, particulate carbon (PC), particulate nitrogen (PN), total nitrogen (TN), total phosphorous (TP) and dissolved inorganic nitrogen (DIN) occurred in the upper estuary during the early spring freshet. In contrast, minimum soluble reactive phosphate (SRP) concentrations were highest in the upper estuary in summer when freshwater discharge was low. In spring, PC:PN ratios were >13, indicating a strong influence by allochthonous plant detritus on PC and PN concentrations. However, high concentrations of PC and PN in fall coincided with maximum chlorophyll a concentrations and PC:PN ratios were <8, indicating in situ productivity controlled PC and PN levels. During late spring and summer, DIN concentrations decreased from >100 to <10 μg-at l?1, resulting mainly from the nonconservative behavior of NO3 ?, which dominated the DIN pool. Atomic ratios of both the inorganic and total forms of N and P exceeded 100 in spring, but by summer, ratios decreased to <5 and <15, respectively. The seasonal and spatial changes in both absolute concentrations and ratios of N and P reflect the strong influence of allochthonous inputs on nutrient distributions in spring, followed by the effects of internal processes in summer and fall.  相似文献   

5.
The decline of submersed aquatic vegetation (SAV) in tributaries of the Chesapeake Bay has been associated with increasing anthropogenic inputs, and restoration of the bay remains a major goal of the present multi-state “Bay Cleanup” effort. In order to determine SAV response to water quality, we quantified the water column parameters associated with success of transplants and natural regrowth over a three-year period along an estuarine gradient in the Choptank River, a major tributary on the eastern shore of Chesapeake Bay. The improvement in water quality due to low precipitation and low nonpoint source loadings during 1985–1988 provided a natural experiment in which SAV was able to persist upstream where it had not been for almost a decade. Mean water quality parameters were examined during the growing season (May–October) at 14 sites spanning the estuarine gradient and arrayed to show correspondence with the occurrence of SAV. Regrowth of SAV in the Choptank is associated with mean dissolved inorganic nitrogen <10 μM; mean dissolved phosphate <0.35 μM; mean suspended sediment <20 mg l?1; mean chlorophylla in the water column <15 μg l?1; and mean light attenuation coefficient (Kd) <2 m?1. These values correspond well with those derived in other parts of the Chesapeake, particularly in the lower bay, and may provide managers with values that can be used as target concentrations for nutrient reduction strategies where SAV is an issue.  相似文献   

6.
Intensive research in Chesapeake Bay has indicated that reductions in nitrogen inputs to the bay will be necessary to restore water quality to levels needed for resurgence of bay living resources. Fall-line water quality monitoring efferts have characterized diffuse-source nitrogen inputs from a large percentage of the bay drainage basin, but relatively little information exists regarding rates of nitrogen delivery to tidal waters from coastal plain regions. Extensive nitrate contamination of shallow groundwater due to agricultural activities, coupled with the dominant role of subsurface flow in discharge from Coastal Plain regions of the drainage basin, creates the potential for high rates of nitrogen delivery to tidal waters via groundwater seepage. This study utilized intensive hydrologic and water chemistry monitoring from April 1992 through September 1994 to determine the spatial characteristics of the groundwater-estuarine interface, as well as the rates of subsurface nitrogen transport from an agricultural field into nearshore waters of the Wye River, a subestuary of Chesapeake Bay. The hydrogeologic characteristics of the study site resulted in groundwater discharge to the Wye River occurring almost exclusively within 15 m of the shoreline. Calculated groundwater discharge rates were found to vary widely in the short term due to tidal fluctuations but in the long term were driven by seasonal changes in groundwater recharge rates. The zone of groundwater discharge contracted shoreward during summer months of low discharge, and expanded to a maximum width of approximately 15 m during high discharge periods in late winter. Average discharge rates were more than five times higher in winter versus summer months. Groundwater nitrate concentrations entering the discharge zone were relatively stable throughout the study period, with little evidence of denitrification or nitrate uptake by riparian vegetation. Consequently, nitrogen discharge patterns reflected the strong seasonality in groundwater discharge. Annual nitrate-N discharge was approximately 1.2 kg m?1 of shoreline, indicating drainage basin rates of nitrogen delivery to tidal waters of approximately 60 kg ha?1.  相似文献   

7.
Two different approaches to measuring phytoplankton nitrogen (N) use were compared in late summer 2004 along the main axis of Chesapeake Bay. Uptake of 15N-labeled ammonium and nitrate and dual-labeled (15N and 13C) urea and dissolved free amino acids (DFAA) were measured in surface water samples from upper, mid, and lower bay stations. Two distinct methods were used to assess the relative uptake of N substrates by phytoplankton and correct for bacterial artifacts: (1) traditional filtration using Whatman glass fiber (GF/F) filters and (2) flow cytometric (FCM) sorting of chlorophyll-containing cells. The concentration of dissolved inorganic N (DIN) decreased with distance south along the bay, whereas dissolved organic N (DON) concentrations were relatively constant. Absolute N uptake rates measured using the traditional approach exceeded those of FCM-sorted phytoplankton, thereby suggesting the possibility of bacterial “contamination.” Ammonium was the dominant N form used throughout the transect, although FCM-sorted phytoplankton relied more on urea and DFAA as the ratio of DON/DIN increased toward the bay mouth. Overall, ammonium comprised 74 ± 17%, urea 10 ± 9%, DFAA 9 ± 7%, and nitrate 7 ± 12% of total measured N uptake by phytoplankton. Results suggest that bacteria relied primarily on DFAA and ammonium for N nutrition but also used N from urea at a rate similar to that of phytoplankton, whereas bacterial nitrate uptake was insignificant. On average, phytoplankton uptake of ammonium, urea, and DFAA was overestimated by 61%, 53%, and 135%, respectively, as a result of bacterial retention on GF/F filters.  相似文献   

8.
Concentrations and rates of uptake of dissolved organic nitrogen (DON, free amino acids, and urea) and inorganic nitrogen (DIN, nitrate, and ammonium) were measured along two transects in the Gulf of Riga, a sub-basin of the Baltic Sea, during May and July 1996. Concentrations of total dissolved nitrogen (TDN) were 23±3 μg-at N 1−1 in the northern region (mouth) and 41±5 μg-at N 1−1 in the southern region (head) of the Gulf. Rates of nitrogen uptake, determined with15N-labeled substrates, reflected differences in TDN concentration between the regions. In May, uptake of DIN+DON measured 0.17 and 0.43 μg-at N 1−1 h−1 in the northern and southern parts of the Gulf, respectively. In July, DIN+DON uptake measured 0.38 and 0.68 μg-at N 1−1 h−1 in the north and south, respectively. Most of the variability in total nitrogen flux between the northern and southern regions was due to heterogeneity of DON utilization. Uptake of urea and dissolved free amino acid were up to 6 and 3 times greater in the south compared to the north. As evidenced by size-fractionation, plankton size structure appeared to play a role in the uptake of DON. The community in the southern part was largely composed of cells <5 μm, while up to 67% of the community in the northern part was composed of cells >5 μm. Our results indicate that DON was a major source of nitrogen to phytoplankton, particularly in the southern part of the Gulf.  相似文献   

9.
Sediment-water oxygen and nutrient (NH4 +, NO3 ?+NO2 ?, DON, PO4 3?, and DSi) fluxes were measured in three distinct regions of Chesapeake Bay at monthly intervals during 1 yr and for portions of several additional years. Examination of these data revealed strong spatial and temporal patterns. Most fluxes were greatest in the central bay (station MB), moderate in the high salinity lower bay (station SB) and reduced in the oligohaline upper bay (station NB). Sediment oxygen consumption (SOC) rates generally increased with increasing temperature until bottom water concentrations of dissolved oxygen (DO) fell below 2.5 mg l?1, apparently limiting SOC rates. Fluxes of NH4 + were elevated at temperatures >15°C and, when coupled with low bottom water DO concentrations (<5 mg l?1), very large releases (>500 μmol N m?2 h?1) were observed. Nitrate + nitrite (NO3 ?+NO2 ?) exchanges were directed into sediments in areas where bottom water NO3 ?+NO2 ? concentrations were high (>18 μM N); sediment efflux of NO3 ?+NO2 ? occurred only in areas where bottom water NO3 ?+NO2 ? concentrations were relatively low (<11 μM N) and bottom waters well oxygenated. Phosphate fluxes were small except in areas of hypoxic and anoxic bottom waters; in those cases releases were high (50–150 μmol P m?2 h?1) but of short duration (2 mo). Dissolved silicate (DSi) fluxes were directed out of the sediments at all stations and appeared to be proportional to primary production in overlying waters. Dissolved organic nitrogen (DON) was released from the sediments at stations NB and SB and taken up by the sediments at station MB in summer months; DON fluxes were either small or noninterpretable during cooler months of the year. It appears that the amount and quality of organic matter reaching the sediments is of primary importance in determining the spatial variability and interannual differences in sediment nutrient fluxes along the axis of the bay. Surficial sediment chlorophyll-a, used as an indicator of labile sediment organic matter, was highly correlated with NH4 ?, PO4 3?, and DSi fluxes but only after a temporal lag of about 1 mo was added between deposition events and sediment nutrient releases. Sediment O:N flux ratios indicated that substantial sediment nitrification-denitrification probably occurred at all sites during winter-spring but not summer-fall; N:P flux ratios were high in spring but much less than expected during summer, particularly at hypoxic and anoxic sites. Finally, a comparison of seasonal N and P demand by phytoplankton with sediment nutrient releases indicated that the sediments provide a substantial fraction of nutrients required by phytoplankton in summer, but not winter, especially in the mid bay region.  相似文献   

10.
We continuously measured dissolved silicate concentrations and fluxes discharged from various Rhode River subwatersheds for a period of 14 yr from 1984 to 1998 and for 15 mo in 1971–1972. We also measured dissolved silicate concentrations along a transect from the head of the tide in Rhode River estuary to Chesapeake Bay. The average concentration of dissolved silicate discharged from the Rhode River watershed was 10.8 mg Si l?1. There were consistent and significant differences in silicate concentrations discharged over time and space among subwatersheds. Mean annual silicate flux from the watershed was 26.6 kg Si ha?1 and 93% of this occurred during the winter and spring seasons. There were large interannual variations in silicate flux, due primarily to differences in precipitation and water discharge, rather than silicate concentration. Land use had little or no effect on silicate flux from various subwatersheds. Silicate concentrations discharged from a subset of subwatersheds in 1995–1996 were 25% to 35% lower than in a period with similar precipitation in 1971–1972. Mean annual concentrations of silicate discharged from nine subwatersheds have been declining about 1.5% yr?1 or by 0.21–0.26 mg Si l?1 yr?1 over the last 25 yr. Despite high average silicate fluxes from the watershed, at times the Rhode River estuary developed low dissolved silicate concentrations, which could have been limiting to the growth of diatoms. Examples were in the spring after a winter with low watershed discharge (as low as 0.019 mg Si l?1 in 1995) and after protracted drought (as low as 0.041 mg Si l?1 in 1993).  相似文献   

11.
The amount of nitrogen present as ammonia, nitrate, nitrite, dissolved organic nitrogen, and particulate nitrogen was determined for nearshore Georgia shelf waters and for tidal water inundating a 0.5 hectare dikedSpartina alterniflora salt marsh in the adjacent estuary. Concentrations of ammonia, nitrate, and nitrite were comparatively low in offshore water (<2.2 μg-at N/1), and in high tide water in the marsh (<9.9 μg-at N/1). High concentrations of ammonia, up to 73.4 μg-at N/1, were measured in low tide water draining from marsh. The largest pools of nitrogen in offshore water and in high tide water in the marsh creek were dissolved organic nitrogen (DON) (2.5 to 20.4 μg-at N/1) and particulate nitrogen (PN) (0.1 to 30.0 μg-at N/1). Concentrations in marsh creek water at low tide were higher, ranging from 4.4 to 38.0 μg-at N/1 for DON and from 13.0 to 239.0 μg-at N/1 for PN. Comparisons of the average concentrations of dissolved and particulate forms of nitrogen in the marsh tidal creek during flood and during ebb tide suggested no net movement of the inorganic nitrogen nutrients, a net influx of PN to the marsh, and a net outflux of DON from the marsh.  相似文献   

12.
As part of the Microbial Exchanges and Coupling in Coastal Atlantic Systems (MECCAS) Project, crab larvae were collected in the shelf waters off Chesapeake Bay in June and August 1985 and April 1986. We conducted hydrographic (temperature, salinity, nutrients) and biological (chlorophyll, copepods) mapping in conjunction with Eulerian and Lagrangian time studies of the vertical distribution of crab larvae in the Chesapeake Bay plume. These abundance estimates are used with current meter records and drifter trajectories to infer mechanisms of larval crab dispersion to the shelf waters and recruitment back into Chesapeake Bay. The highest numbers of crab larvae were usually associated with the Chesapeake Bay plume, suggesting that it was the dominant source of crab larvae to shelf waters. Patches of crab larvae also were found in the higher salinity shelf waters, and possibly were remnants of previous plume discharge events. The distribution of crab larvae in the shelf waters changed on 1–2 d time scales as a consequence of both variations in the discharge rate of the Chesapeake Bay plume and local wind-driven currents. Downwelling-favorable winds (NW) intensified the coastal jet and confined the plume and crab larvae along the coast. In April during a downwelling event (when northwesterly winds predominated), crab zoeae were transported southward along the coast at speeds that at times exceeded 168 km d−1. During June and August the upwelling-favorable winds (S, SW) opposed the anticyclonic turn of the plume and, via Ekman circulation, forced the plume and crab larvae to spread seaward. Plume velocities during these conditions generally were less than 48 km d−1. The recruitment of crab larvae to Chesapeake Bay is facilitated in late summer by the dominance of southerly winds, which can reverse the southward flow of shelf waters. Periodic downwelling-favorable winds can result in surface waters and crab larvae moving toward the entrance of Chesapeake Bay. Approximately 27% of the larval crabs spend at least part of the day in bottom waters, which have a residual drift toward the bay mouth. There appears to be a variety of physical transport mechanisms that can enhance the recruitment of crab larvae into Chesapeake Bay.  相似文献   

13.
Measurements of uptake rates of inorganic (NO3 and NH4+) and organic (urea, glycine, and glutamic acid) N, and indirect estimates of total N uptake by bacteria, were made in four contrasting environments in sub-tropical Hong Kong waters in summer of 2008. In addition, the effects of several days of rain on N uptake rates were studied in eastern waters. Although ambient NO3 was the dominant form of N in Hong Kong waters, the dominant N form taken up by phytoplankton was usually NH4+ and organic N, including urea and amino acids, rather than NO3. Hence, because of the low NO3 uptake, there was a long turnover time for NO3 (100 days), and most of the NO3 was apparently transported offshore into deeper shelf waters. In eastern waters where NH4+ was undetectable, NO3 uptake rates were positively correlated with phytoplankton cell size. In contrast, potential rates of glutamic acid uptake were negatively correlated with phytoplankton size. N uptake rates in the smaller size fraction (0.7–2.8 μm) were less affected by the rain event, and smaller phytoplankton appeared to outcompete larger cells after several days of rain. The surface (PN)-specific N uptake rates in the >8-μm fraction decreased from 0.02 to 0.0001 h−1, while the smaller fraction only exhibited a one- to threefold decrease after the rainfall. In contrast, bacterial production and N uptake were not affected by the rain event, and bacteria N uptake accounted for 10–60% of the total N uptake by phytoplankton.  相似文献   

14.
Samples collected in December 1990 and July 1991 show that dissolved Cd, Cu, Ni, and Zn distributions in the Gulf of the Farallones are dominated by mixing of two end-members: (1) metal-enriched San Francisco Bay water and (2) offshore California Current water. The range of dissolved metal concentrations observed is 0.2–0.9 nmol kg?1 for Cd, 1–20 nmol kg?1 for Cu, 4–16 nmol kg?1 for Ni, and 0.2–20 nmol kg?1 for Zn. Effective concentrations in fresh water discharged into San Francisco Bay during 1990–1991 (estimated by extrapolation to zero salinity) are 740–860 μmol kg?1 for silicate, 21–44 μmol kg?1 for phosphate, 10–15 nmol kg?1 for Cd, 210–450 nmol kg?1 for Cu, 210–270 nmol kg?1 for Ni, and 190–390 nmol kg?1 for Zn. Comparison with effective trace metal and nutrient concentrations for freshwater discharge reported by Flegal et al. (1991) shows that input of these constituents to the northern reaches of San Francisco Bay accounts for only a fraction of the input to Gulf of the Farallones from the estuary system as a whole. The nutrient and trace metal composition of shelf water outside a 30-km radius from the mouth of the estuary closely resembles that of California Current water further offshore. In contrast to coastal waters elsewhere, there is little evidence of Cd, Cu, Ni, and Zn input by sediment diagenesis in continental shelf waters of California.  相似文献   

15.
Submarine groundwater discharge (SGD) was quantified at select sites in San Francisco Bay (SFB) from radium (223Ra and 224Ra) and radon (222Rn) activities measured in groundwater and surface water using simple mass balance box models. Based on these models, discharge rates in South and Central Bays were 0.3?C7.4?m3?day?1?m?1. Although SGD fluxes at the two regions (Central and South Bays) of SFB were of the same order of magnitude, the dissolved inorganic nitrogen (DIN) species associated with SGD were different. In the South Bay, ammonium (NH 4 + ) concentrations in groundwater were three-fold higher than in open bay waters, and NH 4 + was the primary DIN form discharged by SGD. At the Central Bay site, the primary DIN form in groundwater and associated discharge was nitrate (NO 3 ? ). The stable isotope signatures (??15NNO3 and ??18ONO3) of NO 3 ? in the South Bay groundwater and surface waters were both consistent with NO 3 ? derived from NH 4 + that was isotopically enriched in 15N by NH 4 + volatilization. Based on the calculated SGD fluxes and groundwater nutrient concentrations, nutrient fluxes associated with SGD can account for up to 16?% of DIN and 22?% of DIP in South and Central Bays. The form of DIN contributed to surface waters from SGD may impact the ratio of NO 3 ? to NH 4 + available to phytoplankton with implications to bay productivity, phytoplankton species distribution, and nutrient uptake rates. This assessment of nutrient delivery via groundwater discharge in SFB may provide vital information for future bay ecological wellbeing and sensitivity to future environmental stressors.  相似文献   

16.
Methods were developed for determining rates of denitrification in coastal marine sediments by measuring the production of N2 from undisturbed cores incubated in gas-tight chambers. Denitrification rates at summer temperatures (23°C) in sediment cores from Narragansett Bay, Rhode Island, were about 50μmol N2m?2 hr?1. This nitrogen flux is equal to approximately one-half of the NH+4flux from the sediments at this temperature and is of the magnitude necessary to account for the anomalously low N/P and anomalously high O/N ratios often reported for benthic nutrient fluxes. The loss of fixed nitrogen as N2 during the benthic remineralization of organic matter, coupled with the importance of benthic remineralization processes in shallow coastal waters may help to explain why the availability of fixed nitrogen is a major factor limiting primary production in these areas. Narragansett Bay sediments are also a source of N2O, but the amount of nitrogen involved was only about 0.2 μmol m?2 hr?1 at 23°C.  相似文献   

17.
Sediment oxygen uptake and net sediment-water fluxes of dissolved inorganic and organic nitrogen and phosphorus were measured at two sites in Fourleague Bay, Louisiana, from August 1981, through May 1982. This estuary is an extension of Atchafalaya Bay which receives high discharge and nutrient loading from the Atchafalaya River. Sediment O2 uptake averaged 49 mg m?2 h?1. On the average, ammonium (NH4 +) was released from the sediments (mean flux =+129 μmol m?2 h?1), and NO3 ? was taken up (mean flux =?19 μmol m?2h?1). However, very different NO3 ? fluxes were observed at the two sites, with sediment uptake at the upper, river-influenced, high NO3 ? site (mean flux =?112 μmol m?2 h?1) and release at the lower, marine-influenced low NO3 ? site (mean flux =+79 μmol m?2 h?1). PO4 3? fluxes were low and often negative (mean flux =?8 μmol m?2 h?1), while dissolved organic phosphorus fluxes were high and positive (mean flux =+124 μmol m?2 h?1). Dissolved organic nitrogen fluxes varied greatly, ranging from a mean of +305 μmol m?2 h?1 at the lower bay, to ?710 μmol m?2 h?1 at the upper bay. Total dissolved nitrogen and phosphorus fluxes indicated the sediments were a nitrogen (mean flux =+543 μmol m?2 h?1) and phosphorus source (mean flux =+30 μmol m?2 h?1) at the lower bay, and a nitrogen sink (mean flux =?553 μmol m?2 h?1) and phosphorus source (mean flux =+17 μmol m?2 h?1) in the upper bay. Mean annual O∶N ration of the positive inorganic sediment fluxes were 27∶1 at the upper bay and 18∶1 at the lower bay. Based on these data we hypothesize that nitrification and denitrification are important sediment processes in the upper bay. We further hypothesize that Atchafalaya River discharge affects sediment-water fluxes through seasonally high nutrient loading which leads to net nutrient uptake by sediments in the upper bay and release in the lower bay, where there is less river influnces.  相似文献   

18.
A retrospective analysis of freshwater discharge, riverine dissolved nutrient loads, dissolved nutrients, and chlorophyll in the Chesapeake Bay from 1985 to 2008 is presented. It is evident that each field displays an interannual variability averaged over the Bay. The N and P loads peaked in 1997 and have fluctuated with a decreasing trend since early 2004. Dissolved nutrient concentrations in the Bay appear to be largely controlled by riverine nutrient loads. The temporal variability of chlorophyll is positively correlated with nutrient loads and concentrations. Over the study period, N:P (DIN:DIP) molar ratios were consistently higher than the Redfield ratio (N:P?=?16:1) and strongly correlated with river discharge (R 2?=?0.68, p??16:1), and N is the limiting nutrient in summer and early autumn (N:P?4 from anoxic sediments. Long-term climate indices, such as El Niño Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), appear to exert only a moderate control over the riverine discharge to the Bay or over the ecosystem response in terms of chlorophyll in the Bay. While not all related mechanisms can be inferred from available data, this analysis should help in determining future data needs for monitoring water quality and human and climate influence on the health of the Bay.  相似文献   

19.
Surveys were conducted in April and June 1995 to quantify the uptake of dissolved nutrients in a highly turbid estuary (the Humber, United Kingdom) and to determine the factors controlling nutrient uptake rates. A combination of isotope labelling methods were used in conjunction with on-deck incubation techniques to estimate the uptake of dissolved nutrients (PO4 3?, NH4 +, NO3 ?, and urea) in surface samples collected from coastal waters. Similarly, isotope labelling and laboratory incubgation techniques were employed to estimate dissolved nitrogen uptake (NH4 +, NO3 ?, and urea) in surface samples collected from the estuary mouth. Nutrient uptake rates were at the low end of ranges for coastal and estuarine environments reported in the literature. Concentrations of chlorophyll and the availability of photosynthetically active radiation were identified as potentially important factors controlling the uptake rates of nutrients. Uptake rates of dissolved nitrogen in the Humber mouth appeared to be related to the location of smapling sites. Depletion rates of dissolved nutrients in situ were estimated on the basis of integrated water column nutrient uptake rates and indicated assimilation of up to 16% of nutrients in the entire water column. Estimated depletion rates did not indicate preferential loss of any of the nutrient species investigated.  相似文献   

20.
A 2,500-year history of anoxia and eutrophication in Chesapeake Bay   总被引:2,自引:0,他引:2  
Ongoing monitoring programs and historical data are not sufficient to establish anthropogenic effects on the ecology of Chesapeake Bay. However, stratigraphic records preserved in the sediments can be used to reconstruct both prehistoric and historic sedimentation and water conditions of the bay, including anoxia and eutrophication. Pollen, diatoms, total organic carbon (TOC), nitrogen, total sulfur, and an estimate of the degree of pyritization of iron (DOP) are being used as paleoecological indicators in dated sediment cores for the purpose of reconstructing a long-term environmental history of the bay. Analysis of the data indicates that sedimentation rates, anoxic conditions, and eutrophication have increased in the Chesapeake Bay since the time of European settlement. For example, since initial land clearance around 1760, sedimentation rates have increased from as low as 0.02 cm yr?1 to an average 0.22 cm yr?1, and TOC from 0.14 mg cm?2 yr?1 to a high 4.96 mg cm?2 yr?1. Diatom community structure shows a steady decrease in overall diversity since 1760 and the centric:pennate ratio has increased significantly since 1940.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号