首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A foraminiferal transfer function for mean tide level (MTL) is used in combination with AMS radiocarbon dated material to construct a record of relative sea‐level (RSL) change from Poole Harbour, southern Britain. These new data, based on multiple cores from duplicate sites, indicate four phases of change during the last 5000 cal. (calendar) yr: (i) rising RSL between ca. 4700 cal. yr BP and ca. 2400 cal. yr BP; (ii) stable to falling RSL from ca. 2400 cal. yr BP until ca. 1200 cal. yr BP; (iii) a brief rise in RSL from ca. 1200 cal. yr BP to ca. 900 cal. yr BP, followed by a period of stability; (iv) a recent increase in the rate of RSL rise from ca. 400–200 cal. yr BP until the present day. In addition, they suggest that the region has experienced long‐term crustal subsidence at a rate of 0.5 mm C14 yr?1. Although this can account for the overall rise in MTL observed during the past 2500 yr, it fails to explain the changes in the rate of rise during this period. This implies that the phases of RSL change recorded in the marshes of Poole Harbour reflect tidal range variations or ‘eustatic’ fluctuations in sea‐level. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Combined stable isotope (δ18O and δ13C) and trace element (Mg, Sr) geochemistry from bulk tufa calcite and ostracod shell calcite from an early Holocene British tufa reveal clear records of Holocene palaeoclimatic change. Variation in δ18O is caused principally by change in the isotopic composition of Holocene rainfall (recharge), itself caused mainly by change in air temperature. The δ13C variability through much of the deposit reflects increasing influence of soil‐zone CO2, owing to progressive woodland soil development. Bulk tufa Mg/Ca and Sr/Ca are controlled by their concentrations in the spring water. Importantly, Mg/Ca ratios are not related to δ18O values and thus show no temperature dependence. First‐order sympathetic relationships between δ13C values and Mg/Ca and Sr/Ca are controlled by aquifer processes (residence times, CO2 degassing and calcite dissolution/reprecipitation) and probably record intensity of palaeorainfall (recharge) effects. Stable isotope records from ostracod shells show evidence of vital effects relative to bulk tufa data. The ostracod isotopic records are markedly ‘spiky’ because the ostracods record ‘snapshots’ of relatively short duration (years), whereas the bulk tufa samples record averages of longer time periods, probably decades. The δ18O record appears to show early Holocene warming, a thermal maximum at ca. 8900 cal. yr BP and the global 8200 yr BP cold event. Combined δ13C, Mg/Ca and Sr/Ca data suggest that early Holocene warming was accompanied by decreasing rainfall intensity. The Mg/Ca data suggest that the 8200 yr BP cold event was also dry. Warmer and wetter conditions were re‐established after the 8200 yr BP cold event until the top of the preserved tufa sequence at ca. 7100 cal. yr BP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Erbs‐Hansen, D. R., Knudsen, K. L., Gary, A. C., Jansen, E., Gyllencreutz, R., Scao, V. & Lambeck, K. 2011: Late Younger Dryas and early Holocene palaeoenvironments in the Skagerrak, eastern North Atlantic: a multiproxy study. Boreas, 10.1111/j.1502‐3885.2011.00205.x. ISSN 0300‐9843 A high‐resolution study of palaeoenvironmental changes through the late Younger Dryas and early Holocene in the Skagerrak, the eastern North Atlantic, is based on multiproxy analyses of core MD99‐2286 combined with palaeowater depth modelling for the area. The late Younger Dryas was characterized by a cold ice‐distal benthic foraminiferal fauna. After the transition to the Preboreal (c. 11 650 cal. a BP) this fauna was replaced by a Cassidulina neoteretis‐dominated fauna, indicating the influence of chilled Atlantic Water at the sea floor. Persisting relatively cold bottom‐water conditions until c. 10 300 cal. a BP are presumably a result of an outflow of glacial meltwater from the Baltic area across south‐central Sweden, which led to a strong stratification of the water column at MD99‐2286, as also indicated by C. neoteretis. A short‐term peak in the C/N ratio at c. 10 200 cal. a BP is suggested to indicate input of terrestrial material, which may represent the drainage of an ice‐dammed lake in southern Norway, the Glomma event. After the last drainage route across south‐central Sweden closed, c. 10 300 cal. a BP, the meltwater influence diminished, and the Skagerrak resembled a fjord with a stable inflow of waters from the North Atlantic through the Norwegian Trench and a gradual increase in boreal species. Full interglacial conditions were established at the sea floor from c. 9250 cal. a BP. Subsequent warm stable conditions were interrupted by a short‐term cooling around 8300–8200 cal. a BP, representing the 8.2 ka event.  相似文献   

4.
A high-resolution Younger Dryas–late Holocene record of climate and environment from the Malangen fjord has been established on the basis of two marine sediment cores. Five pollen-spore assemblage zones have been defined covering the period c . 11 500 cal. yr BP (10 200 14C yr BP) to c . 1600 cal. yr BP (1600 14C yr BP) with a hiatus of c . 2000 cal. years between c . 10 200 and 8100 cal. yr BP (9000 and 7300 14C yr BP). The Holocene vegetation development from pioneer vegetation to forest development, identified in the marine pollen record, correlates well with pollen records from terrestrial sections of northern Norway. The marine pollen record was also correlated directly with marine proxy records of the bottom water temperature investigated in the same sediment cores. Correlation between the marine and terrestrial proxies suggests that changes in the influx of warm Atlantic Water to the fjord led to an instant change in the vegetation of the surrounding land area. The results thus support a strong link between marine and atmospheric mean climatic states in the North Atlantic region throughout the Holocene.  相似文献   

5.
Comparatively little research has been undertaken on relative sea‐level (RSL) change in western Iceland. This paper presents the results of diatom, tephrochronological and radiocarbon analyses on six isolation basins and two coastal lowland sediment cores from the Stykkishólmur area, northern Snæfellsnes, western Iceland. The analyses provide a reconstruction of Lateglacial to mid‐Holocene RSL changes in the region. The marine limit is measured to 65–69 m above sea level (asl), with formation being estimated at 13.5 cal ka BP. RSL fall initially occurred rapidly following marine limit formation, until ca. 12.6 cal ka BP, when the rate of RSL fall decreased. RSL fell below present in the Stykkishólmur area during the early Holocene (by ca. 10 cal ka BP). The rates of RSL change noted in the Stykkishólmur area demonstrate lesser ice thicknesses in Snæfellsnes than Vestfirðir during the Younger Dryas, when viewed in the regional context. Consequently, the data provide an insight into patterns of glacio‐isostatic adjustment surrounding Breiðafjörður, a hypothesized major ice stream at the Last Glacial Maximum.  相似文献   

6.
It is widely recognised that the acquisition of high‐resolution palaeoclimate records from southern mid‐latitude sites is essential for establishing a coherent picture of inter‐hemispheric climate change and for better understanding of the role of Antarctic climate dynamics in the global climate system. New Zealand is considered to be a sensitive monitor of climate change because it is one of a few sizeable landmasses in the Southern Hemisphere westerly circulation zone, a critical transition zone between subtropical and Antarctic influences. New Zealand has mountainous axial ranges that amplify the climate signals and, consequently, the environmental gradients are highly sensitive to subtle changes in atmospheric and oceanic conditions. Since 1995, INTIMATE has, through a series of international workshops, sought ways to improve procedures for establishing the precise ages of climate events, and to correlate them with high precision, for the last 30 000 calendar years. The NZ‐INTIMATE project commenced in late 2003, and has involved virtually the entire New Zealand palaeoclimate community. Its aim is to develop an event stratigraphy for the New Zealand region over the past 30 000 years, and to reconcile these events against the established climatostratigraphy of the last glacial cycle which has largely been developed from Northern Hemisphere records (e.g. Last Glacial Maximum (LGM), Termination I, Younger Dryas). An initial outcome of NZ‐INTIMATE has been the identification of a series of well‐dated, high‐resolution onshore and offshore proxy records from a variety of latitudes and elevations on a common calendar timescale from 30 000 cal. yr BP to the present day. High‐resolution records for the last glacial coldest period (LGCP) (including the LGM sensu stricto) and last glacial–interglacial transition (LGIT) from Auckland maars, Kaipo and Otamangakau wetlands on eastern and central North Island, marine core MD97‐2121 east of southern North Island, speleothems on northwest South Island, Okarito wetland on southwestern South Island, are presented. Discontinuous (fragmentary) records comprising compilations of glacial sequences, fluvial sequences, loess accumulation, and aeolian quartz accumulation in an andesitic terrain are described. Comparisons with ice‐core records from Antarctica (EPICA Dome C) and Greenland (GISP2) are discussed. A major advantage immediately evident from these records apart from the speleothem record, is that they are linked precisely by one or more tephra layers. Based on these New Zealand terrestrial and marine records, a reasonably coherent, regionally applicable, sequence of climatically linked stratigraphic events over the past 30 000 cal. yr is emerging. Three major climate events are recognised: (1) LGCP beginning at ca. 28 000 cal. yr BP, ending at Termination I, ca. 18 000 cal. yr BP, and including a warmer and more variable phase between ca. 27 000 and 21 000 cal. yr BP, (2) LGIT between ca. 18 000 and 11 600 cal. yr BP, including a Lateglacial warm period from ca. 14 800 to 13 500 cal. yr BP and a Lateglacial climate reversal between ca. 13 500 and 11 600 cal. yr BP, and (3) Holocene interglacial conditions, with two phases of greatest warmth between ca. 11 600 and 10 800 cal. yr BP and from ca. 6 800 to 6 500 cal. yr BP. Some key boundaries coincide with volcanic tephras. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In order to study the stability and dynamics of mountain rainforest and paramo ecosystems, including the biodiversity of these ecosystems, the Holocene and late Pleistocene climate and fire variability, and human impact in the southeastern Ecuadorian Andes, we present a high‐resolution pollen record from El Tiro Pass (2810 m elevation), Podocarpus National Park. Palaeoenvironmental changes, investigated by pollen, spores and charcoal analysis, inferred from a 127 cm long core spanning the last ca. 21 000 cal. yr BP, indicate that grass‐paramo was the main vegetation type at the El Tiro Pass during the late Pleistocene period. The grass‐paramo was rich in Poaceae, Plantago rigida and Plantago australis, reflecting cold and moist climatic conditions. During the early Holocene, from 11 200 to 8900 cal. yr BP, subparamo and upper mountain rainforest vegetation expanded slightly, indicating a slow warming of climatic conditions during this period. From 8900 to 3300 cal. yr BP an upper mountain rainforest developed at the study site, indicated by an increase in Hedyosmun, Podocarpaceae, Myrsine and Ilex. This suggests a warmer climate than the present day at this elevation. The modern subparamo vegetation became established since 3300 cal. yr BP at El Tiro Pass. Fires, probably anthropogenic origin, were very rare during the late Pleistocene but became frequent after 8000 cal. yr BP. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A multi‐proxy record is presented for approximately the last 4500 cal a BP from Lake Shkodra, Albania/Montenegro. Lithological analyses, C/N ratio and δ13C of the organic and inorganic carbon component suggest that organic matter and bulk carbonate are predominantly authigenic. The δ18O record of bulk carbonate indicates the presence of two prominent wet periods: one at ca. 4300 cal a BP and one at ca. 2500–2000 cal a BP. The latter phase is also found in southern Spain and Central Italy, and represents a prominent event in the western and central Mediterranean. In the last 2000 years, four relatively wet intervals occurred between ca. 1800 and 1500 cal a BP (150–450 AD), 1350–1250 (600–700 AD), 1100–800 (850–1150 AD), and at ca. 90 cal a BP (1860 AD). Between ca. 4100 and 2500 cal a BP δ18O values are relatively high, with three prominent peaks indicating drier conditions at ca. 4100–4000 cal a BP, ca. 3500 and at ca. 3300 cal a BP. Four additional drier events are identified at 1850 (ca. 100 AD), 1400 (ca. 550 AD), 1150 (800 AD) and ca.750 cal a BP (1200 AD). The pollen record does not show changes in accordance with these episodes owing to the poor sensitivity of vegetation in this area, which is dominated by an orographic rainfall effect and where changes in altitudinal vegetation belts do not affect the pollen rain in the lake catchment. However, since ca. 900 cal a BP a significant decrease in the percentage arboreal pollen and in pollen concentrations suggest major deforestation produced by human activities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A high‐resolution record, covering 9.3–0.2 ka BP, from the sub‐arctic Stjernsund (70°N) was studied for benthic foraminiferal faunas and stable isotopes, revealing three informally named main phases during the Holocene. The Early‐ to Mid‐Holocene (9.3–5.0 ka BP) was characterized by the strong influence of the North Atlantic Current (NAC), which prevented the reflection of the Holocene Climatic Optimum (HCO) in the bottom‐water temperature. During the Mid‐Holocene Transition (5.0–2.5 ka BP), a turnover of benthic foraminiferal faunas occurred, Atlantic Water species decreased while Arctic‐Polar species increased, and the oxygen isotope record showed larger fluctuations. Those variations correspond to a period of global climate change, to spatially more heterogeneous benthic foraminiferal faunas in the Nordic Seas region, and to regionally diverging terrestrial temperatures. The Cool Late Holocene (2.5–0.2 ka BP) was characterized by increased abundances of Arctic‐Polar species and a steady cooling trend reflected in the oxygen isotopes. In this period, our record differs considerably from those on the SW Barents Sea shelf and locations farther south. Therefore, we argue that regional atmospheric cooling triggered the late Holocene cooling trend. Several cold episodes centred at 8.3, 7.8, 6.5, 4.9, 3.9 and 3.3 ka BP were identified from the benthic foraminiferal faunas and the δ18O record, which correlated with marine and atmospherically driven proxy records. This suggests that short‐term cold events may result from reduced heat advection via the NAC or from colder air temperatures.  相似文献   

10.
This study presents the results of TOC/TN (C/N) ratio, δ13C and δ15N analyses of lake sedimentary organic matter (OM) from the Hedong section, western Guangdong Province in south China, with the objective to reveal the history of hydrological and ecological variations in the region influenced by both the Indian summer monsoon (ISM) and East Asian summer monsoon (EASM). Variations in δ13C and δ15N of sedimentary OM may be closely related to past climatic conditions, which results in variations in surface runoff, lake level, allochthonous and autochthonous sources of OM, and lake productivity. Based on the interpretation of these proxies, four periods, i.e. 4370–4100, 3700–2900, 2400–2100 and 1900–900 cal. a BP, are characterized by low lake level, weakened surface runoff and deteriorated status of terrestrial and aquatic ecosystems, whereas the periods 4100–3700, 2900–2400, 2100–1900 and 900–600 cal. a BP are dominated by high lake level, strengthened surface runoff, and flourishing terrestrial and aquatic plants. A remarkable positive correlation between the δ13C values of the section and the ENSO number record obtained from the tropical Pacific implies that the impact of the ISM is greater than that of the EASM in the study area. The abnormal correspondence between the δ13C and solar activity reconstructed from 10Be and 14C records in GRIP ice‐core occurred from 1500–800 and particularly from 4200–4000 cal. a BP, suggesting that these two cool and dry intervals may be caused by stronger volcanic activities that are recorded in the GISP2 and Dome C ice‐cores. This study reveals that changes in solar insolation and solar activity, as well as changes in oceanic–atmospheric circulation (e.g. the ENSO intensity) and intensive volcano eruptions may have exerted influence on late Holocene climate variability in the study area.  相似文献   

11.
Previous studies have demonstrated long‐term changes in effective moisture in sub‐Saharan Africa. Here, we reconstruct Holocene environments using a ~7 m lake‐sediment sequence recovered from the northeastern Nigerian Sahel and attempt to distinguish basin‐specific changes from regional climatic variations. The sequence was analysed for sedimentological properties, mineral magnetism and pollen, and dated by 137Cs, 210Pb excess and 14C. Extremely arid conditions of the terminal Pleistocene ended ca. 11 500 cal. BP (calendar years) when climate ameliorated and a lake developed until the occurrence of an arid event leading to lake desiccation at ~11 200 cal. BP. Following this, climate ameliorated and a water body re‐emerged. Very wet conditions predominated 11 200–5600 cal. BP, followed by drought between 5600 and 5500 cal. BP and a return to moderate humidity from 5500 to 4000 cal. BP. After 4000 cal. BP, a marked deterioration occurred, culminating in lake desiccation at ca. 800 cal. BP. After this time the climate remained generally dry and the re‐emerging lake was shallow. Comparison of these results with other well‐dated sequences in the region demonstrates the importance of basin‐specific influences on the palaeolimnological records in addition to regional climatic controls. Disentangling these different controls, as well as the reconstruction of Holocene climate, therefore requires a multiple‐basin approach. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The region of north Iceland is highly sensitive climatically owing to its location with respect to atmospheric and oceanographic fronts. In this study we present total carbonate and δ18O records of benthic and planktic Foraminifera from nine sediment cores from the North Iceland Shelf. The results of this work indicate that the deglaciation of the Vestfirdir Peninsula was completed by 10 200 cal. yr BP. The 8200 cal. yr BP cold event is present only as a minor isotopic event, and seems not to have had much of a cooling effect on the bottom waters of the northwest Iceland shelf. The Holocene maximum warmth, attributed to a stronger North Icelandic Irminger Current, occurred between ca. 7800 and 6200 cal. yr BP. Over the past 4500 cal. yr BP a general cooling trend has occurred on the North Iceland Shelf, and superimposed on this overall cooling trend are a number of oscillations between periods when relatively warmer and cooler waters occupied the shelf. Relatively cooler waters were present at 4200–4000 cal. yr BP, 3200–2900 cal. yr BP, 2500–2350 cal. yr BP and 600–200 cal. yr BP, whereas relatively warmer waters were present on the shelf at 3750–3450 cal. yr BP, 2800–2600 cal. yr BP and 1700–1000 cal. yr BP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
We reconstruct one of the longest relative sea‐level (RSL) records in north‐west Europe from the north coast of mainland Scotland, using data collected from three sites in Loch Eriboll (Sutherland) that we combine with other studies from the region. Following deglaciation, RSL fell from a Lateglacial highstand of +6?8 m OD (Ordnance Datum = ca. mean sea level) at ca. 15 k cal a BP to below present, then rose to an early Holocene highstand and remained at ca. +1 m OD between ca. 7 and 3 k cal a BP, before falling to present. We find no evidence for significant differential Holocene glacio‐isostatic adjustment between sites on the north‐west (Lochinver, Loch Laxford), north (Loch Eriboll) and north‐east (Wick) coast of mainland Scotland. This suggests that the region was rapidly deglaciated and there was little difference in ice loads across the region. From one site at the head of Loch Eriboll we report the most westerly sedimentary evidence for the early Holocene Storegga tsunami on the Scottish mainland. The presence of the Storegga tsunami in Loch Eriboll is predicted by a tsunami wave model, which suggests that the tsunami impacted the entire north coast of Scotland and probably also the Atlantic coastline of north‐west Scotland.
  相似文献   

14.
We present a high‐resolution record of lacustrine sedimentation spanning ca. 30 000 to 9000 cal. a BP from Onepoto maar, northern North Island, New Zealand. The multi‐proxy record of environmental change is constrained by tephrochronology and accelerator mass spectrometric 14C ages and provides evidence for episodes of rapid environmental change during the Last Glacial Coldest Period (LGCP) and Last Glacial–Interglacial Transition (LGIT) from northern New Zealand. The multi‐proxy palaeoenvironmental record from Onepoto indicates that the LGCP was cold, dry and windy in the Auckland region, with vegetation dominated by herb and grass in a beech forest mosaic between ca. 28 500 and 18 000 cal. a BP. The LGCP was accompanied by more frequent fires and influx of clastic sediment indicating increased erosion during the LGCP, with a mid‐LGCP interstadial identified between ca. 25 000 and 23 000 cal. a BP. Rapid climate amelioration at ca. 18 000 cal. a BP was accompanied by increased terrestrial biomass exemplified by the expansion of lowland podocarp forest, especially Dacrydium cupressinum. Increasing biomass production is reversed briefly by LGIT perturbations which are apparent in many of the proxies that span ca. 14 000–10 500 cal. a BP, suggesting generally increased wetness and higher in situ aquatic plant productivity with reduced terrestrial organic matter and terrigenous detrital influx. Furthermore, conditions at that time were probably warmer and frosts rare based on the increasing importance of Ascarina. The subsequent early Holocene is characterised by podocarp conifer forest and moist mild conditions. Postglacial sea‐level rise breached the crater rim and deposited 36 m of estuarine mud after ca. 9000 cal. a BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper provides a paleoenvironmental reconstruction of a Late Quaternary lagoon system in the Jaguaruna region of Santa Catarina state, southern Brazil. Integrated results of bulk sedimentary organic matter characterization (δ13C, δ15N and C/N), microfossil (pollen and diatom) and grain‐size analysis from three shallow cores (~2.5 m depth) allowed us to propose an evolving paleogeographic scenario in this coastal region for the last ca. 5500 cal a BP. The lagoonal system in this area was more extensive during the mid‐Holocene than today, with a gradual and continuous lagoon–sea disconnection until the present. We add to the debate regarding relative sea‐level (RSL) variations for the Brazilian coast during the Holocene and discuss the importance of sedimentary dynamics for interpreting changes in coastal ecosystems. The multi‐proxy analysis suggests that changes in coastal ecosystems could be directly related to local sedimentary processes, which are not necessarily linked to RSL fluctuations and/or to climatic variations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Detailed litho‐ and biostratigraphical analyses from three coastal sites in contrasting coastal settings on the Isle of Skye, Scotland, UK, reveal evidence for several changes in relative sea level during the Late Devensian and Holocene. At the start of the record, relative sea level in the area was high at ca. 12 500 14C (ca. 14 800 cal.) yr BP but then fell, reaching a low point during the Younger Dryas, at ca. 11 000–10 000 14C (ca. 13 000–11 600 cal.) yr BP, when a rock platform, correlated with the Main Rock Platform, was formed. In the early–middle Holocene, relative sea level was rising by ca. 8000 14C (ca. 8800 cal.) yr BP and in northeast Skye a lagoonal surface, correlated with the Main Postglacial Shoreline, was formed at ca. 6600 14C (ca. 7500 cal.) yr BP. By the late Holocene, relative sea level was again falling, but a rise, registered at at least two sites, began probably before ca. 4000 14C (ca. 4500 cal.) yr BP, and a second lagoonal surface in northeast Skye, correlated with the Blairdrummond Shoreline, was formed, although by ca. 3000 14C (ca. 3200 cal.) yr BP relative sea level in the area had resumed its downward trend. The pattern of relative sea‐level changes disclosed is compared with evidence elsewhere in Scotland. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Holocene pollen and diatom analyses and complementary data from δ18O and δ13C, malacology and sedimentology have provided a detailed record of vegetation history and palaeoenvironmental change at arroyo Las Brusquitas, on the southeastern coast of the pampas of Argentina especially in relation to past sea levels. Holocene palaeosalinity trends were estimated by Detrended Correspondence Analysis and by salinity indexes based on pollen and diatom data. As a consequence of sea‐level rise from the postglacial an extensive wave‐cut platform formed over which Holocene infilling sequences were deposited unconformably. In these sequences, variation in pollen and diatom assemblages occurred in agreement with changes in mollusc diversity and abundance, isotope values, and sediment deposits. Between ca. 6700 and 6190 14C yr BP (6279–6998 cal. yr BP) saline conditions predominated in an environment highly influenced by tides and salt water during the Holocene sea‐level highstand. Between ca. 6200 and 3900 14C yr BP (4235–4608 cal. yr BP) shallow brackish water bodies formed surrounded by saltmarsh vegetation that became more widespread from 5180 14C yr BP (5830–6173 cal. yr BP) to 3900 14C yr BP in relation to a sea‐level stabilisation period within the regression phase. Less saline conditions marked by frequent variations in salinity predominated between ca. 3900 and 2040 yr 14C BP (1830–2160 cal. yr BP). The intertidal saltmarsh environment changed into a brackish marsh dominated by freshwater conditions and sporadic tidal influence. Halophytic vegetation increased towards ca. 200014C yr BP indicating that saline conditions may be due to either desiccation or an unusually high tide range with rare frequency. After ca. 2000 14C yr BP the sedimentary sequences were buried by aeolian sand dunes. Changes in Holocene vegetation and environments in Las Brusquitas area are in agreement with data obtained from various southeastern coastal sites of the Pampa grasslands. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A high-resolution Holocene diatom record on the North Icelandic shelf   总被引:1,自引:0,他引:1  
A high-resolution diatom record from core MD99-2275 reveals a series of palaeoceanographic changes on the North Icelandic shelf since about 9000 cal. yr BP. The influence of relatively warm high-salinity Atlantic water-masses of the IC was strong in the study area during the Holocene Climate Optimum (8760 (base of record) to c . 5300 cal. yr BP) and peaked between c . 8000 and 7000 cal. yr BP. There is a general cooling trend from c . 7000 cal. yr BP to the present, which is indicated by an increase in the influence of cold Polar water-masses from the EGC and the EIC and a decrease in the influence of the IC. A major change in diatom assemblages at around 5300 cal. yr BP indicates a palaeoceanographic shift on the North Icelandic shelf in the mid-Holocene. In addition, several abrupt palaeoceanographic changes are distinguished. Enhanced influence of Polar waters is reflected during the intervals 8120–8000, 6650–6100, 4300–4100, 3000–2700, 1300–1100 and 600–200 cal. yr BP. The palaeoceanographic indication of the diatom record of core MD99-2275 is consistent with the indication of other environmental parameters from the same core, such as benthic and planktonic foraminifera as well as magnetic properties, and the results are also consistent with palaeoclimatic records from adjacent areas around Iceland and in the North Atlantic region.  相似文献   

19.
We present a high‐resolution reconstruction of tropical palaeoenvironmental changes for the last deglacial transition (18 to 9 cal. kyr BP) based on integrated oceanic and terrestrial proxies from a Congo fan core. Pollen, grass cuticle, Pediastrum and dinoflagellate cyst fluxes, sedimentation rates and planktonic foraminiferal δ18O ratios, u37K′ sea‐surface temperature and alkane/alkenone ratio data highlight a series of abrupt changes in Congo River palaeodischarge. A major discharge pulse is registered at around 13.0 cal. kyr BP which we attribute to latitudinal migration of the Intertropical Convergence Zone (ITCZ) during deglaciation. The data indicate abrupt and short‐lived changes in the equatorial precipitation regime within a system of monsoonal dynamics forced by precessional cycles. The phases of enhanced Congo discharge stimulated river‐induced upwelling and enhanced productivity in the adjacent ocean. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Owing to proximity of the North Atlantic Stream and the shelf, the Andøya biota are assumed to have responded rapidly to climatic changes taking place after the Weichselian glaciation. Palynological, macrofossil, loss‐on‐ignition, tephra and 14C data from three sites at the northern part of the island of Andøya were studied. The period 12 300–11 950 cal. yr BP was characterized by polar desert vegetation, and 11 950–11 050 cal. yr BP by a moisture‐demanding predominantly low‐arctic Oxyria vegetation. During the period 11 050–10 650 cal. yr BP, there was a climatic amelioration towards a sub‐arctic climate and heaths dominated by Empetrum. After 10 650 cal. yr BP the Oxyria vegetation disappeared. As early as about 10 800 cal. yr BP the bryozoan Cristatella mucedo indicated a climate sufficient for Betula woodland. However, tree birch did not establish until 10 420–10 250 cal. yr BP, indicating a time‐lag for the formation of Betula ecotypes adapted to the oceanic climate of Andøya. From about 10 150 to 9400 cal. yr BP the summers were dry and warm. There was a change towards moister, though comparatively warm, climatic conditions about 9400 cal. yr BP. The present data are compared with evidence from marine sediments and the deglaciation history in the region. It is suggested that during most of the period 11 500–10 250 cal. yr BP a similar situation as in present southern Greenland existed, with birch woodland in the inner fjords near the ice sheet and low‐arctic heath vegetation along the outer coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号