首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 847 毫秒
1.
Analysis of large deformation of geomaterials subjected to time‐varying load poses a very difficult problem for the geotechnical profession. Conventional finite element schemes using the updated Lagrangian formulation may suffer from serious numerical difficulties when the deformation of geomaterials is significantly large such that the discretized elements are severely distorted. In this paper, an operator‐split arbitrary Lagrangian–Eulerian (ALE) finite element model is proposed for large deformation analysis of a soil mass subjected to either static or dynamic loading, where the soil is modelled as a saturated porous material with solid–fluid coupling and strong material non‐linearity. Each time step of the operator‐split ALE algorithm consists of a Lagrangian step and an Eulerian step. In the Lagrangian step, the equilibrium equation and continuity equation of the saturated soil are solved by the updated Lagrangian method. In the Eulerian step, mesh smoothing is performed for the deformed body and the state variables obtained in the updated Lagrangian step are then transferred to the new mesh system. The accuracy and efficiency of the proposed ALE method are verified by comparison of its results with the results produced by an analytical solution for one‐dimensional finite elastic consolidation of a soil column and with the results from the small strain finite element analysis and the updated Lagrangian analysis. Its performance is further illustrated by simulation of a complex problem involving the transient response of an embankment subjected to earthquake loading. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
A new constitutive formulation for simulating the behaviour of nearly saturated sands under seismic loads is presented. The formulation is based on combining the Henry's law for dissolution of gas in water, the ideal or perfect gas law and the law of conservation of mass. The effects of transient air dissolution in water on the compressibility of partially saturated soils are also taken into account. The model was calibrated based on numerical simulations of isotropically consolidated cyclic triaxial tests conducted on partially saturated samples of Toyoura sand. A multi‐yield plasticity soil constitutive model implemented in the finite element code DYNAFLOW was used for these numerical simulations. It is shown that the formulation proposed here is able to reasonably predict the soil cyclic undrained behaviour at various degrees of saturation (95% and higher). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a u‐p (displacement‐pressure) semi‐Lagrangian reproducing kernel (RK) formulation to effectively analyze landslide processes. The semi‐Lagrangian RK approximation is constructed based on Lagrangian discretization points with fixed kernel supports in the current configuration. As a result, it tracks state variables at discretization points while allowing extreme deformation and material separation that is beyond the capability of Lagrangian formulations. The u‐p formulation following Biot theory is incorporated into the formulation to describe poromechanics of saturated geomaterials. In addition, a stabilized nodal integration method to ensure stability of the domain integration and kernel contact algorithms to model contact between bodies are introduced in the u‐p semi‐Lagrangian RK formulation. The proposed method is verified with several numerical examples and validated with an experimental result and the field data of an actual landslide.  相似文献   

4.
In a companion Part I of this paper (Int. J. Numer. Anal. Meth. Geomech. 2008; DOI: 10.1002/nag.735 ), a coupled hydro‐mechanical (HM) formulation for geomaterials with discontinuities based on the finite element method (FEM) with double‐node, zero‐thickness interface elements was developed and presented. This Part II paper includes the numerical solution of basic practical problems using both the staggered and the fully coupled approaches. A first group of simulations, based on the classical consolidation problem with an added vertical discontinuity, is used to compare both the approaches in terms of accuracy and convergence. The monolithic or fully coupled scheme is also used in an application example studying the influence of a horizontal joint in the performance of a reservoir subject to fluid extraction. Results include a comparison with other numerical solutions from the literature and a sensitivity analysis of the mechanical parameters of the discontinuity. Some simulations are also run using both a full non‐symmetric and a simplified symmetric Jacobian matrix. On top of verifying the model developed and its capability to reflect the conductivity changes of the interface with aperture changes, the results presented also lead to interesting observations of the numerical performance of the methods implemented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Fluctuations of temperature and degree of saturation have considerable influence on the mechanical, hydraulic and retention properties of unsaturated soils. Localized failure is a ubiquitous feature of geomaterials. Major research on localized failure of geomaterials has been focused on geomaterials under the isothermal condition. In this article, we study the localized failure of unsaturated soils under non-isothermal conditions. In particular, we derive the isothermal and adiabatic bifurcation conditions from a homogeneous deformation at the constitutive level under a locally drained condition. A recently proposed meso-scale constitutive model for thermal unsaturated soils is used to derive the isothermal and adiabatic acoustic tensors. We present the spectral form of the consistent tangential elasto-plastic operator from a local material integration algorithm. The numerical simulations at the material level are conducted to study the impact of temperature on localized failure of unsaturated soils under the plane strain condition. The numerical results show that the timing and the critical angle of bifurcation are dependent on temperature.  相似文献   

6.
Geomaterials such as sand and clay are highly heterogeneous multiphase materials. Nonlocality (or a characteristic length scale) in modeling geomaterials based on the continuum theory can be associated with several factors, for instance, the physical interactions of material points within finite distance, the homogenization or smoothing process of material heterogeneity, and the particle or problem size-dependent mechanical behavior (eg, the thickness of shear bands) of geomaterials. In this article, we formulate a nonlocal elastoplastic constitutive model for geomaterials by adapting a local elastoplastic model for geomaterials at a constant suction through the constitutive correspondence principle of the state-based peridynamics theory. We numerically implement this nonlocal constitutive model via the classical return-mapping algorithm of computational plasticity. We first conduct a one-dimensional compression test of a soil sample at a constant suction through the numerical model with three different values of the nonlocal variable (horizon) δ. We then present a strain localization analysis of a soil sample under the constant suction and plane strain conditions with different nonlocal variables. The numerical results show that the proposed nonlocal model can be used to simulate the inception and propagation of shear banding as well as to capture the thickness of shear bands in geomaterials at a constant suction.  相似文献   

7.
Modelling failure in geomaterials, concrete or other quasi‐brittle materials and proper accounting for size effect, geometry and boundary effects are still pending issues. Regularised failure models are capable of describing size effect on specimens with a specific geometry, but extrapolations to other geometries are rare, mostly because experimental data presenting size effect for different geometries and for the same material are lacking. Three‐point bending fracture tests of geometrically similar notched and unnotched specimens are presented. The experimental results are compared with numerical simulations performed with an integral‐type non‐local model. Comparisons illustrate the shortcomings of this classical formulation, which fails to describe size effect over the investigated range of geometries and sizes. Finally, experimental results are also compared with the universal size effect law. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
土、岩及混凝土是一种内部结构极其复杂的材料,内部细观组成和结构决定了它们在外力作用下内部应力和应变等物理场的分布状态,在很大程度上控制了它们的宏观力学响应和破坏机理和过程。自1995年以来,数字图像处理技术作为一种材料细观空间结构及几何形态的精确量测和数字表述手段快速地被应用于沥青混凝土、水泥混凝土、土和岩体材料细观结构定量分析中来。本文在研究相关文献的基础上,分析和研究了数字图像技术在土、岩及混凝土内部结构定量分析和力学数值计算中的发展过程和研究成果,内容包括:单个骨料颗粒形态特征定量分析;土、岩和混凝土内部结构定量分析;岩体结构定量分析中的应用;基于数字图像处理的土、岩和混凝土细观结构力学计算。在此基础上,本文进一步对数字图像技术在岩土领域中的应用进展及未来的发展趋势进行了探讨,认为数字图像作为一种空间分布测量手段和数字表述方法使得它具有巨大的潜力,特别是在岩土领域的纵深发展过程中,它可能实现考虑细微观结构性的岩土力学和工程分析和预测的、新的方法和理论。  相似文献   

9.
When considering saturated poroelastic geomaterials, their consolidation response can be influenced by the evolution of damage in the porous skeleton. This paper introduces the concept of effective stress and the modified Mohr–Coulomb criterion as a means for examining the problem of consolidation response of a damage-susceptible poroelastic geomaterial, which is considered to be a novel development in the application of damage mechanics to the study of poroelastic phenomena. Then, a damage mechanics model for porous media is established and applied to analyze the Biot’s consolidation problem of damaged soils. The comparison between the numerical predictions and the classical solutions shows that the computational damage model developed in this paper is effective and feasible in analyzing the consolidation problem of damaged porous media.  相似文献   

10.
The size of intergranular bonds significantly affects the macroscopic mechanical properties of geomaterials. A size-dependent bond contact model is desired in the distinct element method (DEM) for geomaterials formed by aggregates of bonded particles. This paper proposes an analytical solution of highly-precise stress fields of a biconcave bond between two identical disc-shaped particles under different loading paths based on Dvorkin’s solution. The Unified Strength theory is then introduced to obtain the initial failure domain in the bond. The proposed solution is consistent with results predicted by finite element simulations and experimental observations. The functions of bond stiffness with respect to all influencing parameters, i.e. bond width/thickness, particle radius and elastic parameters of bond material, are provided by the solution and empirically formulated by fitting a large number of analytical results. Additionally, the failure criterion or envelope under different combined loads is formulated for typical brittle bonds. The resulting failure criterion, approximated as an ellipsoid, depends on the size and material properties of the bonds. The proposed solution and equation can be implemented into a bond contact model used in DEM simulations of a geomaterial, where variation of bond sizes is significant and size-dependent contact model is important.  相似文献   

11.
The mathematical structure and numerical analysis of classical small deformation elasto–plasticity is generally well established. However, development of large deformation elastic–plastic numerical formulation for dilatant, pressure sensitive material models is still a research area. In this paper we present development of the finite element formulation and implementation for large deformation, elastic–plastic analysis of geomaterials. Our developments are based on the multiplicative decomposition of the deformation gradient into elastic and plastic parts. A consistent linearization of the right deformation tensor together with the Newton method at the constitutive and global levels leads toward an efficient and robust numerical algorithm. The presented numerical formulation is capable of accurately modelling dilatant, pressure sensitive isotropic and anisotropic geomaterials subjected to large deformations. In particular, the formulation is capable of simulating the behaviour of geomaterials in which eigentriads of stress and strain do not coincide during the loading process. The algorithm is tested in conjunction with the novel hyperelasto–plastic model termed the B material model, which is a single surface (single yield surface, affine single ultimate surface and affine single potential surface) model for dilatant, pressure sensitive, hardening and softening geomaterials. It is specifically developed to model large deformation hyperelasto–plastic problems in geomechanics. We present an application of this formulation to numerical analysis of low confinement tests on cohesionless granular soil specimens recently performed in a SPACEHAB module aboard the Space Shuttle during the STS‐89 mission. We compare numerical modelling with test results and show the significance of added confinement by the thin hyperelastic latex membrane undergoing large stretching. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
The method of smoothed particle hydrodynamics (SPH) has recently been applied to computational geomechanics and has been shown to be a powerful alternative to the standard numerical method, that is, the finite element method, for handling large deformation and post‐failure of geomaterials. However, very few studies apply the SPH method to model saturated or submerged soil problems. Our recent studies of this matter revealed that significant errors may be made if the gradient of the pore‐water pressure is handled using the standard SPH formulation. To overcome this problem and to enhance the SPH applications to computational geomechanics, this article proposes a general SPH formulation, which can be applied straightforwardly to dry and saturated soils. For simplicity, the current work assumes hydrostatic pore‐water pressure. It is shown that the proposed formulation can remove the numerical error mentioned earlier. Moreover, this formulation automatically satisfies the dynamic boundary conditions at a submerged ground surface, thereby saving computational cost. Discussions on the applications of the standard and new SPH formulations are also given through some numerical tests. Furthermore, techniques to obtain the correct SPH solution are also proposed and discussed throughout. As an application of the proposed method, the effect of the dilatancy angle on the failure mechanism of a two‐sided embankment subjected to a high groundwater table is presented and compared with that of other solutions. Finally, the proposed formulation can be considered a basic formulation for further developments of SPH for saturated soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents the formulation and verification of a 3D embedded beam element, which is intended for numerical modelling of three dimensional problems concerned by reinforced geomaterials. This element permits analysis of reinforced geomaterial structures with simplified meshes, that do not need to account for reinforcement orientation. The paper is composed of four sections. Section 1 discusses the need for the development of a particular beam element for soil reinforcement, which can be easily used in practical applications. Section 2 describes the mathematical formulation of this element, while Section 3 deals with its verification on various examples. Section 4 illustrates an application of this element by analysing the behaviour of a group of micropiles containing inclined elements and subjected to lateral loading. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
含液各向异性多孔介质应变局部化分析   总被引:4,自引:0,他引:4  
张洪武  周雷  黄辉 《岩土力学》2004,25(5):675-680
工程中的含液多孔介质如饱和或非饱和岩土材料往往具有各向异性特性。采用Rudnicki建立的针对岩土材料的各向异性本构模型,对轴对称压缩试验中的含液多孔介质骨架的各向异性力学行为进行了分析;基于不连续分叉理论,导出了静态非渗流条件下处于轴对称应力状态的含液多孔介质应变局部化发生的临界模量、剪切带方向以及不连续速度矢量的显式表达式,在此基础上计算并讨论了材料参数变化和孔隙液体存在对各向异性多孔介质应变局部化的影响。  相似文献   

15.
Failure in geotechnical engineering is often related to tension‐induced cracking in geomaterials. In this paper, a coupled meshless method and FEM is developed to analyze the problem of three‐dimensional cracking. The radial point interpolation method (RPIM) is used to model cracks in the smeared crack framework with an isotropic damage model. The identification of the meshless region is based on the stress state computed by FEM, and the adaptive coupling of RPIM and FEM is achieved by a direct algorithm. Mesh‐bias dependency, which poses difficulties in FEM‐based cracking simulations, is circumvented by a crack tracking algorithm. The performance of our scheme is demonstrated by two numerical examples, that is, the four‐point bending test on concrete beam and the surface cracks caused by tunnel excavation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A simple unified critical state constitutive model for bonded geomaterials is presented in this paper. The model, which is called CASM-n, is an enhancement of an existing unified critical state model for reconstituted geomaterials (CASM). Characteristic behaviours of a bonded geomaterial such as the pre-yield higher strength and stiffness and the cohesive–frictional shearing mode in the post-yield region are taken into account and included in the reference model. The salient feature of the proposed model is the incorporation of cohesive component into the stress–dilatancy relationship. Consideration of the contribution of cohesion to plastic flow allows the modelling of delayed dilatancy and softening–contraction behaviour, which are two interesting phenomena observed in bonded geomaterials.  相似文献   

17.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   

18.
19.
In this paper, we consider numerical algorithms for modeling of the time‐dependent coupling between the fluid flow and deformation in elastic porous media. Here, we employ a four‐field formulation which uses the total stress, displacement, flux, and pressure as its primary variables and satisfies Darcy's law and linear elasticity in mixed weak form. We present four different iteratively coupled methods, known as drained, undrained, fixed‐strain, and fixed‐stress splits, in which the diffusion operator is separated from the elasticity operator and the two subproblems are solved in a staggered way while ensuring convergence of the solution at each time step. A‐priori convergence results for each iterative coupling which differs from those found when using a traditional two‐field or three‐field formulation are presented. We also present some numerical results to support the convergence estimates and to show the accuracy and efficiency of the algorithms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
陈新  杨强  周维垣 《岩土力学》2007,28(5):865-870
常规的弹塑性模型难以模拟材料破坏时由于内部损伤累积引起的变形局部化带形成过程。将岩土材料抽象为含有孔洞的球形体胞单元的集合体,采用一个标量--孔洞体积百分比来刻划单元的损伤程度,基于细观损伤力学提出了一个适用于岩土材料的塑性损伤模型。将该模型通过用户子程序嵌入到大型有限元商业软件MRAC中,研究岩土材料的局部化剪切带形成过程。采用该模型,成功地对平面应力条件下岩土材料单轴受压和单轴受拉试件的局部化破坏分别进行了数值模拟。采用该模型,对拱坝在超水载作用下的变形局部化进行了研究,数值计算结果表明,上游坝踵处最先发生变形局部化现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号