首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
东太结核主要为半埋藏和埋藏型,发育于以黏土和硅质组分为主的沉积环境。东太结核的锰相矿物主要有水羟锰矿和钡镁锰矿,具有较高的REY、Cu、Ni含量和Mn/Fe比值,显示遭受间隙水的影响,落入水成成因和成岩成因两个区间范围。西太结核主体暴露在海水中,周围沉积物主要由深海黏土组成。西太结核的锰相矿物几乎只有水羟锰矿,具有较高的REY、Co含量和低Mn/Fe比值,属于典型的水成成因型。两个区域的多金属结核的稀土北美页岩标准化模式均显示Ce正异常、Y负异常和无或弱Eu异常,与海水稀土特征构成良好的耦合关系,是多金属结核对海水稀土选择性富集的结果。西太结核相对东太结核具有更高的Ce含量和δCe,Co、Ti与Ce具有良好的正相关关系。研究认为海水中溶解氧并不一定是控制结核Ce正异常程度的关键因素,Co、Ti等元素及其相关组分能够引起Ce与其他稀土元素的强烈分馏,也可能是影响多金属结核Ce正异常程度的控制因素。研究区多金属结核和富钴结壳表层样的εNd范围为-6.6~-2.5,是全球最富放射性成因Nd的海洋铁锰壳层。结合稀土模式以及Eu异常特征,本研究认为多金属结核的稀土主要来自εNd相对较高的周围陆壳,可以通过河流或者大气沉降等方式输送到大洋,而研究区广泛分布的海山玄武岩释放的放射性成因Nd同位素对海水的影响微弱。  相似文献   

2.
This study examines the rare earth elements and yttrium (REY) concentrations of twenty-five samples from the reef outcrop exposed along the Lianglitage Mountain in the Ordovician, Tarim Basin in China. The concentration analysis provides constraints on the paleoenvironment during reef deposition. Based on the detailed sedimentology and petrographic work, we divide the reef facies into four sub-facies: the base facies, reef-core facies, reef-flank facies, and sealing facies. The geochemical data (such as major and trace elements, carbon and oxygen isotopes, and REYs) are further used to study the coeval seawater characteristics as well as potential diagenesis overprints. The result indicated that the diagenesis has little effect on the REY patterns of the reefal limestones. The REY concentrations of the reefal limestones are overall low (ranging from 3.69 to 19.60 ppm, arithmetic mean=10.22 ppm, SD=5.4). The PAAS-normalized REY patterns are consistently flat compared to the typical well-oxidized, shallow marine water patterns. However, the light REE (LREE) depletions, positive La anomalies, negative Ce anomalies and positive Y anomalies, suggest that these reefal limestones are likely an indicative of contemporaneous seawater REY signals. The seawater-like Y/Ho ratios (average at 37.51) further support that REY signals in these limestones are likely a reflection of seawater with little diagenetic modifications. The low Y/Ho ratios presented only in the reef-flank facies and sealing facies are likely a suggestion of detrital contamination. Hence, this study confirms that REY patterns of the limestones at the base facies and reef-core facies can record ancient seawater information, and reefs can be used as a potential geochemical proxy for paleoenvironment studies throughout the Earth’s history.  相似文献   

3.
陈登 《地质与勘探》2023,59(4):691-703
为分析贵州遵义二叠纪锰矿的沉积环境,对谢家坝锰矿床进行常量元素、微量和稀土元素地球化学研究。研究认为:谢家坝锰矿赋存于茅口组顶部含锰岩系中,可分为下矿层豆状、角砾状菱锰矿、似层状菱锰矿,以及上矿层碎屑状、块状菱锰矿的二元结构矿石类型组合,可广泛代表遵义锰矿的矿石特征。谢家坝锰矿上下矿层之间主量元素和稀土元素含量差异较大,常量元素SiO2、TiO2、S、Fe2O3含量上矿层均大于下矿层,MnO、MgO与 Al2O3之间均呈负相关关系;上矿层Fe/Mn值较高,属高Fe低P型锰矿,而下矿层Fe/Mn值较低,属中低Fe低P型锰矿。上矿层稀土元素PAAS标准化配分后呈现较明显的重稀土亏损、弱的轻稀土富集、右倾配分的特征,具有弱的Ce正异常,类似海底铁锰结核稀土元素特征;下矿层呈现弱的中稀土富集,轻、重稀土亏损,弱的帽式分配特征,具明显的Ce负异常,类似典型深部海水沉积稀土元素特征。微量元素Th/U、Ni/Co、V/Cr、V/(V+Ni)、AU等沉积环境古氧相分析指标和稀土元素PAAS标准化配分模式指示,谢家坝锰矿下矿层是在贫氧-厌氧条件下Mn2+与CO32-直接形成菱锰矿,上矿层在常氧-贫氧环境下Mn3+、Mn4+以氧化物或氢氧化物形式沉淀。  相似文献   

4.
The rare earth elements(REE) composition of the polymetallic crusts and nodules obtained from the South China Sea(SCS) were analyzed through inductively coupled plasma mass spectrometry.Results revealed great differences in the REE abundances(∑REE) of the SCS polymetallic crusts and nodules; the crusts show the highest ∑REE, whereas the nodules exhibit the lowest ∑REE. The similarity in their NASC-normalized patterns, the enriched light REE(LREE), the markedly positive Ce anomaly(δCe), and the non-or weakly positive Eu anomaly(δEu), suggest that the polymetallic crusts and nodules are of hydrogenetic origin. Moreover, the REE contents and their relevant parameters are quite different among the various layers of the crusts and nodules, which probably results from the different marginal sea environments and mineral assemblages of the samples. The growth profiles of the SCS polymetallic crusts and nodules reveal the tendency ∑REE and δCe to slightly increase from the outer to the inner layers, suggesting that the growth environments of these samples changed smoothly from an oxidizing to a relatively reducing environment; in addition, the crust ST1 may have experienced a regressive event(sea-level change) during its growth, although the REE composition of the seawater remained relatively stable. On the basis of the regional ∑REE distribution in the SCS crusts and nodules,the samples collected near the northern margin were influenced by terrigenous material more strongly compared with the other samples, and the REE contents are relatively low. Therefore, the special geotectonic environment is a significant factor influencing the abundance of elements, including REE and other trace elements. Compared with the oceanic seamount crusts and deep-sea nodules from other oceans,the SCS polymetallic crusts and nodules exhibit special REE compositions and shale-normalized patterns, implying that the samples are of marginal sea-type Fe-Mn sedimentary deposits, which are strongly affected by the epicontinental environment, and that they grew in a more oxidative seawater environment. This analysis indicates that the oxidized seawater environment and the special nano property of their Fe-Mn minerals enrich the REE adsorption.  相似文献   

5.
通过对西太平洋34件海水样品的稀土元素(REY:REE+Y)测试及其与研究区富钴结壳稀土耦合特征分析,揭示了海水稀土特征及其成因.海水的稀土含量随水深呈现逐渐增加的趋势,∑ REY范围为14.0×10-12~65.5×10-12,平均值为31.9×10-12,其中Y的绝对值(均值为6.0×10-12~24.1×10-12)和相对值((Y/Ho)N均值为1.98)均较高,La含量次之(均值为1.8×10-12~11.6×10-12),Ce含量相对较低(均值为2.4×10-12~8.8×10-12),δCe范围为0.33~1.03(均值为0.66),(La/Yb)N平均值为0.71.海水稀土元素北美页岩标准化后显示左倾模式,具有显著的Ce负异常、Y正异常和无明显的Eu异常特征.研究区普遍发育水成成因的富钴结壳,即其稀土元素和其他组分均源自海水.富钴结壳的稀土含量相对海水富集6~7个数量级,其Ce正异常和Y负异常的稀土模式与海水构成良好的耦合关系,指示富钴结壳类组分对海水稀土清扫具有选择性,是造成海水稀土模式的重要因素.海山上发育的磷块岩以及周围盆地深海泥中的磷酸盐组分,它们具有较高的稀土含量和类似于海水的稀土模式,指示海洋磷酸盐消耗稀土时并未分馏而是继承海水模式.海水独特的稀土模式特征是补给与消耗平衡作用的结果,铁锰氧化物和海洋磷酸盐是两种典型的海洋自生组分,它们对海水稀土特征的形成至关重要.   相似文献   

6.
The Datangpo‐type manganese ore deposits, which formed during the Nanhuan (Cryogenian) period and are located in northeastern Guizhou and adjacent areas, are one of the most important manganese resources in China, showing good prospecting potential. Many middle‐to‐large deposits, and even super‐large mineral deposits, have been discovered. However, the genesis of manganese ore deposits is still controversial and remains a long‐standing source of debate; there are several viewpoints including biogenesis, hydrothermal sedimentation, gravity flows, cold‐spring carbonates, etc. Geochemical data from several manganese ore deposits show that there are positive correlations between Al2O3 and TiO2, SiO2, K2O, and Na2O, and strong negative correlations between Al2O3 and CaO, MgO, and MnO in black shales and manganese ores. U, Mo, and V show distinct enrichment in black shales and inconspicuous enrichment in Mn ores. Ba and Rb show strong positive correlations with K2O in manganese ores. Cu, Ni, and Zn show clear correlations with total iron in both manganese ores and black shales. ∑REE of manganese ores has a large range with evident positive Ce anomalies and positive Eu anomalies. The Post Archean Australian Shale (PAAS) normalized rare earth element (REE) distribution patterns of manganese ores present pronounced middle rare earth element (MREE) enrichment, producing “hat‐shaped” REE plots. ∑REE of black shales is more variable compared with PAAS, and the PAAS‐normalized REE distribution patterns appear as “flat‐shaped” REE plots, lacking evident anomaly characteristics. δ13C values of carbonate in both manganese ores and the black shales show observable negative excursions. The comprehensive analysis suggests that the black shales formed in a reducing and quiet water column, while the manganese ores formed in oxic muddy seawater, which resulted from periodic transgressions. There was an oxidation–reduction cycle of manganese between the top water body and the bottom water body caused by the transgressions during the early Datangpo, which resulted in the dissolution of manganese. Through the exchange of the euphotic zone water and the bottom water, and episodic inflow of oxygenated water, the manganese in the bottom water was oxidized to Mn‐oxyhydroxides and rapidly buried along with algae. In the early diagenetic stage, Mn‐oxyhydroxides were reduced and dissolved in the anoxic pore water and then transformed into Mn‐carbonates by reacting with HCO3? from the degradation of organic matter or from seawater. In the intervals between transgressions, continuous supplies of terrigenous clastics and the high productive rates of organic matter in the euphotic zone resulted in the deposition of the black shales enriched in organic matter.  相似文献   

7.
The Nanhuan manganese deposits in the southeastern Yangtze Platform occur in the black shale series in the lower part of the Datangpo Formation. In order to constrain the genesis of the deposits, a detailed study was undertaken that involved field observations, major and trace element analyses, organic carbon analyses, and isotope analyses (C, O, S). The major findings are as follows. (1) The ore-bearing rock series, morphology of the ore bodies, and characteristics of ores in several deposits are similar. The ore minerals are rhodochrosite and manganocalcite. The gangue minerals are mainly quartz, feldspar, dolomite, and illite. Minor apatite and bastnaesite occur in the manganese ores. (2) The ores are enriched in Ca and Mg, whereas they are depleted in Si, Al, K, and Ti compared to wall rocks. The ores normalized to average Post-Archean Australian shale (PAAS) are enriched in Co, Mo, and Sr. The chondrite-normalized rare earth element (REE) patterns for ores and wall rocks are between those of typical hydrogenous and hydrothermal type manganese deposits. Additionally, the ores have positive Ce anomalies with an average Ce/Ce* of 1.23 and positive Eu anomalies with an average Eu/Eu* of 1.18 (normalized to PAAS). (3) The average content of organic carbon is 2.21% in the samples, and the average organic carbon isotopic value (δ13CV-PDB) is − 33.44‰. The average inorganic carbon isotopic value (δ13CV-PDB) of carbonates in Gucheng is − 3.07‰, while the values are similar in the other deposits with an average of − 8.36‰. The oxygen isotopic compositions (δ18OV-PDB) are similar in different deposits with an average of − 7.72‰. (4) The sulfur isotopic values (δ34SV-CDT) of pyrite are very high and range from + 37.9‰ to + 62.6‰ (average of 52.7‰), which suggests that the pyrite was formed in restricted basins where sulfate replenishment was limited. The sulfate concentrations in the restricted basins were extremely low and enriched in δ34S, which resulted in the very high δ34S values for the pyrite that formed in the manganese deposits. Therefore, a terrigenous weathering origin for manganese can be excluded; otherwise, the sulfate would have been introduced into the basins together with terrigenous manganese, which would have decreased the δ34S values of pyrites. The manganese, which originated from hydrothermal processes, was enriched in the restricted and anoxic basins, and then, it was oxidized to manganese oxyhydroxide in the overlying oxic waters whereby the products precipitated into the sediments. The manganese oxyhydroxide in the sediment was then reduced to Mn2 + and released to the pore waters during the process of diagenesis. Some organic carbon was oxidized to CO32 , which made the depletion of 13C in manganese carbonates. Therefore, we suggest that the Nanhuan manganese deposits are hydrothermal–sedimentary/diagenetic type deposits.  相似文献   

8.
Fifty buried manganese nodules at different depth intervals were recovered in 12 sediment cores from the Central Indian Ocean Basin (CIOB). A maximum of 15 buried nodules were encountered in one sediment core (AAS-22/GC-07) and the deepest nodule was recovered at 5.50 m below seafloor in core AAS-04/GC-5A. Approximately 80% of the buried nodules are small in size (2 cm diameter) in contrast to the Atlantic Ocean and Peru Basin (Pacific Ocean) where the majority of the buried nodules are large, 8 cm and >6 cm, respectively. Buried nodule size decreases with core depth and this distribution appears to be similar to the phenomenon of “Brazil Nut Effect”. Buried nodules exhibit both smooth and rough surface textures and are ellipsoidal, elongated, rounded, sub rounded, irregular and polynucleated. Buried nodules from siliceous ooze are enriched in Mn, Cu, Ni, Zn, Mo, Ga, V and Rb whereas those from red clay are enriched in Fe, Co, Ti, U, Th, Y, Cr, Nb and Rare Earth Elements (REE). Buried nodules from siliceous ooze suggest their formation under hydrogenetic, early digenetic and diagenetic processes whereas those from red clay are of hydrogenetic origin.REE are enriched more than 1.5 times in buried nodules from red clay compared to siliceous ooze. However, the mode of incorporation of REE into buried nodules from both sedimentary environments is by a single authigenic phase consisting of Fe–Ti–P. Shale-normalized REE patterns and Ce anomalies suggest that nodules from siliceous ooze formed under more oxidizing conditions than those from red clay. Nodules buried at depths between 1.5 and 2.5 m are diagenetic (Mn/Fe ratio 10–15), formed in highly oxic environments (large positive Ce anomalies) and record aeolian dust (high Eu anomalies). Chemical composition, surface texture and morphology of buried nodules are similar to those of surface nodules from the same basin. Furthermore, buried nodule compositions do not exhibit any distinct patterns within the core depth, suggesting that buried nodules neither grow nor dissolve after their burial in the sediment column.  相似文献   

9.
The major, trace and rare earth element (REE) composition of Late Archean manganese, ferromanganese and iron ores from the Iron Ore Group (IOG) in Orissa, east India, was examined. Manganese deposits, occurring above the iron formations of the IOG, display massive, rhythmically laminated or botryoidal textures. The ores are composed primarily of iron and manganese, and are low in other major and trace elements such as SiO2, Al2O3, P2O5 and Zr. The total REE concentration is as high as 975 ppm in manganese ores, whereas concentrations as high as 345 ppm and 211 ppm are found in ferromanganese and iron ores, respectively. Heavy REE (HREE) enrichments, negative Ce anomalies and positive Eu anomalies were observed in post‐Archean average shale (PAAS)‐normalized REE patterns of the IOG manganese and ferromanganese ores. The stratiform or stratabound shapes of ore bodies within the shale horizon, and REE geochemistry, suggest that the manganese and ferromanganese ores of the IOG were formed by iron and/or manganese precipitation from a submarine, hydrothermal solution under oxic conditions that occurred as a result of mixing with oxic seawater. While HREE concentrations in the Late Archean manganese and ferromanganese ores in the IOG are slightly less than those of the Phanerozoic ferromanganese ores in Japan, HREE resources in the IOG manganese deposits appear to be two orders of magnitude higher because of the large size of the deposits. Although a reliable, economic concentration technique for HREE from manganese and ferromanganese ores has not yet been developed, those ores could be an important future source of HREE.  相似文献   

10.
多金属结核和富钴结壳是大洋两类典型的铁锰产物。为探讨不同海区多金属结核和富钴结壳之间稀土元素特点及其揭示的地质意义,利用近年中国在太平洋获取的样品进行对比,采用ICP-AES对稀土元素测试。结果表明,结壳具有正Ce异常明显、LREE富集、∑REE高的特点,而结核表现为HREE相对富集、∑REE相对较低,因成因类型不同,Ce异常或表现为正异常、负异常或异常不明显。结核形成后受到成岩作用的影响,而结壳则为水成作用形成;结核和结壳中REE的存在形式比较复杂,不同海区各不相同,中太平洋东部产出的结壳和位于东太平洋的结核中REE可能主要赋存于铁矿物相,而西太平洋结壳REE可能主要赋存于锰矿物相;结核和结壳REE可能分别来自海水和海山蚀变玄武岩,热液作用影响有限。  相似文献   

11.
鄂尔多斯盆地西缘北部的内蒙古桌子山地区奥陶纪地层出露完整,沉积类型丰富,是研究鄂尔多斯盆地西缘奥陶纪沉积的关键地区。该区在中奥陶世时位于从浅海向深海的转换部位,达瑞威尔期沉积的克里摩里组由深灰色薄层状石灰岩和灰黑色泥岩组成,是研究鄂尔多斯盆地西缘奥陶纪深水氧化-还原条件的一个较为理想的层位。本文在详细的野外观察基础上,测试克里摩里组薄层细粉晶-泥晶石灰岩和灰黑色泥岩的稀土元素(REY)和其他与氧化-还原条件相关的微量元素,主要包括V、Cr、Ni、Co等,着重分析探讨其形成时的氧化-还原条件。结果表明:1)石灰岩和泥岩稀土总量(REE)分别为28.18×10-6和100.37×10-6,轻、重稀土比值分别为9.60和9.69;2)石灰岩和泥岩稀土元素Y/Ho、(La/Yb)N、(La/Sm)N、(La/Nd)N值分别为29.01、1.35、0.92、0.95和25.72、1.21、0.96、1.02;3)石灰岩无Ce负异常或具有微弱的正异常,同时具有明显的Eu正异常,泥岩具有明显的Ce负异常和较弱的Eu正异常;4)石灰岩和泥岩的其他微量元素比值V/Cr、V/(V+Ni)、Ni/Co分别为1.10、0.62、7.75和3.54、0.89、5.15。依据本文研究结果,结合沉积特征和前人研究成果可以推测,克里摩里组沉积于风暴浪基面之下,远离海岸,但同时又受淡水影响,其中石灰岩形成于氧化环境,泥岩形成于还原环境,同一沉积背景下这种氧化与还原环境的交替是由等深暖流造成的,可称为水动力氧化环境。  相似文献   

12.
刘虎 《地质与勘探》2019,55(S1):383-393
湘中湘潭盆地大塘坡组锰矿是湖南重要的锰矿基地。盆地内发育一组NNE向同沉积断裂,形成了一系列凹陷带(断陷槽),控制了沉积岩相的分布,锰矿主要产于盆地凹陷带的黑色页岩夹碳酸锰矿微相内。矿石中Co、Zn、Pb、Mo和Ba等元素丰度较高,Co/Ni、SiO2/Al2O3、(Fe+Mn)/Ti、Al/(Fe+Mn+Al)比值以及Co/Zn-(Cu+Ni+Co)和Fe-Mn-(Cu+Ni+Co)图解都揭示锰矿成矿过程中有海底热水的参与;稀土元素分布模式、Ce、Eu异常表示锰矿形成于被动大陆边缘环境,并具有热水沉积特征;碳同位素结果显示出富集碳的轻同位素的特征,反映了湘中地区锰矿中碳同位素热水沉积的特征;氧同位素计算古温度为湘中地区锰矿的低温热水沉积成因提供了有利的佐证。  相似文献   

13.
Processes governing the formation of rare earth elements (REE) composition are considered for ferromanganese deposits (nodules, separate parts of nodules, and micronodules of different fractions) within the Clarion–Clipperton ore province in the Pacific Ocean. It is shown that ferromanganese oxyhydroxide deposits with different chemical compositions can be produced in sediments under similar sedimentation conditions. In areas with high bioproductivity, the size of micronodules has a positive correlation with the Mn content and Mn/Fe and P/Fe ratios and a negative correlation with Fe, P, REE, and Ce anomaly. The behavior of REE in micronodules from sediments within bioproductive zones is related to increase of the influence of diagenetic processes in sediments as a response to the growth of the size of micronodules. Distinctions in the chemical composition of micronodules and nodules are related to their interrelations with associated sediments. Micronodules grow in sediments using hydrogenous ferromanganese oxyhydroxides. As they grow, micronodules are enriched in the labile fraction of sediments reworked during diagenesis. Sources of the material of ferromanganese nodules are governed by their formation at the water bottom interface. Their upper part is formed by direct settling of iron oxyhydroxides from the bottom water, whereas the lower part is accumulated due to diagenetic processes in sediments. Differences of REE compositions in ferromanganese deposits are caused by the reduction of manganese during diagenesis and its separation from iron. Iron oxyhydroxides form a sorption complex due to the sorption of phosphate-ion from bottom and pore waters. The sorption of phosphate-ion results in an additional sorption of REE.  相似文献   

14.
The Zunyi manganese deposits, which formed during the Middle to Late Permian period and are located in northern Guizhou and adjacent areas, are the core area of a series of large-medium scale manganese enrichment minerogenesis in the southern margin and interior of the Yangtze platform, Southern China. This study reports the universal enrichment of rare earth elements(REEs) in Zunyi manganese deposits and examines the enrichment characteristics, metallogenic environment and genesis of REEs. The manganese ore bodies present stratiform or stratoid in shape, hosted in the silicon–mud–limestones of the Late Permian Maokou Formation. The manganese ores generally present lamellar, massive, banded and brecciated structures, and mainly consist of rhodochrosite, ropperite, tetalite, capillitite, as well as contains paragenetic gangue minerals including pyrite, chalcopyrite, rutile, barite, tuffaceous clay rock, etc. The manganese ores have higher ΣREE contents range from 158 to 1138.9 ppm(average 509.54 ppm). In addition, the ΣREE contents of tuffaceous clay rock in ore beds vary from 1032.2 to 1824.5 ppm(average 1396.42 ppm). The REEs from manganese deposits are characterized by La, Ce, Nd and Y enriched, and existing in the form of independent minerals(e.g., monazite and xenotime), indicating Zunyi manganese deposits enriched in light rare earth elements(LREE). The Ce_(anom) ratios(average-0.13) and lithofacies and paleogeography characteristics indicate that Zunyi manganese deposits were formed in a weak oxidation-reduction environment. The(La/Yb)_(ch), Y/Ho,(La/Nd)_N,(Dy/Yb)_N, Ce/Ce* and Eu/Eu* values of samples from the Zunyi manganese deposits are 5.53–56.92, 18–39, 1.42–3.15, 0.55–2.20, 0.21–1.76 and 0.48–0.86, respectively, indicating a hydrothermal origin for the manganese mineralization and REEs enrichment. The δ~(13) C_(V-PDB)(-0.54 to-18.1‰) and δ~(18) O_(SMOW)(21.6 to 26.0‰) characteristics of manganese ores reveal a mixed source of magmatic and organic matter. Moreover, the manganese ore, tuffaceous clay rock and Emeishan basalt have extremely similar REE fractionation characteristic, suggesting REEs enrichment and manganese mineralization have been mainly origin from hydrothermal fluids.  相似文献   

15.
Hydrothermal manganese and ferromanganese deposits associated with Neyriz ophiolite colored mélange occurred as small ore deposits in the Abadeh-Tashk area, SE of Fars Province, SW Iran. The deposits are found in three types: a) banded syngenetic ores, b) massive boudin and lens shaped diagenetic ores and c) vein and veinlet epigenetic ores. Microtextural, geochemical and mineralogical data associated with petrographic Raman, FTIR and SEM studies indicated that the primary Fe compounds formed series of microbially mediated biomats and Mn compounds were precipitated as an amorphous oxide on an active oxide surface accompanying silica gels. Field relationships between ore and host rock, high Mn/Fe ratio (17.43 to 40.79), ΣLREE, positive Eu and negative Ce anomalies in syngenetic ore types reveal that the ores were formed by hydrothermal fluid in an oceanic floor environment. Manganese was fractionated from iron due to physicochemical changes as well as microbial activities in the sedimentary environment. Microbial remains as filamentous beads with regular circular shapes, vermiform structures, series of Fe-rich biomats, traces of embedded organic material besides trace metals and REE concentrations in Mn ores emphasize the role of microorganisms in Fe and Mn precipitation. Syngenetic mineralization took place under suboxic neutrophilic conditions, while diagenetic processes resulted in variably reduced Fe- and Mn-oxides via organic matter decomposition, forming rhodochrosite as the end product. Braunite formation occurred most probably as a biogeochemically mediated early diagenetic product. Diagenetic and epigenetic Mn ores were formed when primary Mn deposits underwent subsequent diagenetic and remobilization–redeposition events respectively.  相似文献   

16.
The fluorite-bearing hydrothermal mineralization in Sardinia mainly occurs within Paleozoic volcanic and metasedimentary rocks. Only 3 occurrences are located in volcanic and siliciclastic Cenozoic rocks. Most Sardinian fluorites exhibit relatively high rare earth and Y (REY) contents, strong positive Y anomalies, slightly negative Ce and generally positive Eu anomalies. These features indicate that the REY were mobilized mainly from non-carbonate rocks. Neither Sr nor Nd isotopes can be used to date radiometrically the Sardinian fluorites. However, the measured Sr-isotope ratios of the fluorites hosted by Paleozoic rocks fit mixing lines in the 1000/Sr versus 87Sr/86Sr plot once recalculated at 280 Ma, suggesting that the age inferred for the correction probably represents that of the formation of the fluorite mineralization. Mixing likely occurred between diluted surficial waters and brines circulating mainly through the Lower Paleozoic metasedimentary basement. The Cenozoic fluorites exhibit chemical and isotopic features similar to those of the Paleozoic fluorites, except the Nuraghe Onigu fluorite displaying a possible contribution of Sr from Cenozoic magmatic rocks. The initial εNd values of the Paleozoic fluorites fit the age proposed for the formation of the deposits. Moreover, the values suggest that radiogenic Nd was provided to the fluids from the Ordovician siliciclastic basement, except for 3 deposits where the potential source rocks of Nd were mainly Ordovician acidic magmatic rocks. The initial εNd values of the Cenozoic fluorites suggest a provenance of Nd essentially from the leaching of Variscan granitoids.  相似文献   

17.
准格尔煤田含煤岩系高岭岩资源丰富,高铝矿物来源备受关注。采用高分辨率电感耦合等离子质谱等技术对石炭-二叠系太原组6号和山西组4号煤夹矸及顶底板中的稀土元素进行分析,并探讨了其物质来源。结果表明,6号煤夹矸及顶底板中稀土元素总量(ΣREY)均值为167.69μg/g,接近上地壳ΣREY值(168.4μg/g);4号煤夹矸及顶底板中ΣREY均值为210.22μg/g,高于上地壳的ΣREY值。4号煤夹矸及顶底板中轻稀土含量均值与6号煤相当,中稀土和重稀土含量均值为6号煤两倍以上。6号煤夹矸及顶底板分层样中δCe为0.82~0.94,δEu为0.53~0.87;4号煤中δCe为0.88~0.98,δEu为0.74~0.97;均为Ce、Eu负异常。6号煤层夹矸及顶底板稀土元素主要来源于盆地北西侧阴山地区元古界花岗岩和北东侧下古生界沉积岩。4号煤层夹矸及顶底板稀土元素物源主要为盆地北侧阴山地区下古生界和元古界的沉积岩和火成岩系。  相似文献   

18.
Abstract. Rare earth, major and trace element geochemistry is reported for the Kunimiyama stratiform ferromanganese deposit in the Northern Chichibu Belt, central Shikoku, Japan. The deposit immediately overlies greenstones of mid-ocean ridge basalt (MORB) origin and underlies red chert. The ferromanganese ores exhibit remarkable enrichments in Fe, Mn, P, V, Co, Ni, Zn, Y and rare earth elements (excepting Ce) relative to continental crustal abundance. These enriched elements/ Fe ratios and Post-Archean Average Australian Shale-normalized REE patterns of the ferromanganese ores are generally analogous to those of modern hydrothermal ferromanganese plume fall-out precipitates deposited on MOR flanks. However in more detail, Mn and Ti enrichments in the ferromanganese ores are more striking than the modern counterpart, suggesting a significant contribution of hydrogenetic component in the Kunimiyama ores. Our results are consistent with the interpretation that the Kunimiyama ores were umber deposits that primarily formed by hydrothermal plume fall-out precipitation in the Panthalassa Ocean during the Early Permian and then accreted onto the proto-Japanese island arc during the Middle Jurassic. The presence of strong negative Ce anomaly in the Kunimiyama ores may indicate that the Early Permian Panthalassa seawater had a more striking negative Ce anomaly due to a more oxidizing oceanic condition than today.  相似文献   

19.
Abstract: The black shales of the Lower Cambrian Niutitang Formation in Weng’an, on the Yangtze platform of south China, contain voluminous polymetallic sulfide deposits. A comprehensive geochemical investigation of trace, rare earth, and platinum group elements (PGE) has been undertaken in order to discuss its ore genesis and correlation with the tectono-depositional setting. The ore-bearing layers enrich molybdenum (Mo), nickel (Ni), vanadium (V), lead (Pb), strontium (Sr), barium (Ba) , uranium (U) , arsenic (As), and rare earth elements (REE) in abundance. High uranium/thorium (U/Th) ratios (U/Th>1) indicated that mineralization was mainly influenced by the hydrothermal process. The dU value was above 1.9, showing a reducing sedimentary condition. The REE patterns showed high enrichment in light rare earth elements (LREE) (heavy rare earth elements (HREE) (LREE/HREE=5–17), slightly negative europium (Eu) and cerium (Ce) anomalies (dEu=0.81–0.93), and positive Ce anomalies (dCe=0.76–1.12). PGE abundance was characterized by the PGE-type distribution patterns, enriching platinum (Pt), palladium (Pd), ruthenium (Ru) and osmium (Os). The Pt/Pd ratio was 0.8, which is close to the ratios of seawater and ultramafic rocks. All of these geochemical features suggest that the mineralization was triggered by hydrothermal activity in an extensional setting in the context of break-up of the Rodinian supercontinent.  相似文献   

20.
Fluorite from Mississippi Valley Type (MVT) deposits in the South Pennine Orefield, England, displays significantly different distributions of rare earths and yttrium (REY) compared to fluorite from similar MVT deposits in the North Pennine Orefield. Samples from the South Pennine Orefield display negative Ce and positive Gd and Y anomalies but lack any Eu anomaly, indicating that the REY were mobilized from relatively pure marine sedimentary carbonates. In marked contrast, fluorite from the North Pennine Orefield lacks any Ce and Gd anomalies but shows a pronounced positive Eu anomaly, suggesting that the REY were provided by different source rock(s), that the mineralizing hydrothermal fluid had experienced higher temperatures prior to fluorite precipitation, and that it was derived from deeper crustal levels in the north compared to the south. The isotopic composition of Sr in Blue John fluorite from the South Pennine Orefield suggests that Sr was mobilized from Lower Carboniferous (Tournaisian) limestones, whereas Pb isotopes suggest that in contrast to REY and Sr, Pb was derived from aluminosilicate rocks. Neither Nd nor Sr or Pb isotopes can be used to radiometrically date the formation of Blue John fluorite. All isotope systems studied indicate that the limestone host rock of this fluorite mineralization did not contribute to the trace element budget of the hydrothermal fluid. Our results show that different solutes in a natural water (hydrothermal fluid, groundwater, etc.) may be derived from different sources, and that the study of a small set of elements or isotope ratios may not provide full insight into the genesis or history of a mineralization or a hydrothermal fluid. Our data provide evidence for the uncoupling of Sr, Nd and Pb during fluid-rock interaction and fluid migration, and show that the use of plots such as 87Sr/86Sr vs. Nd. to learn about mixing relationships (as is commonly done in igneous geochemistry) is unreliable when applied to natural waters and their precipitates.Editorial handling: B. Lehmann  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号