首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The several-hundred-m-thick Miocene Upper Red Formation in northwestern Iran hosts stratiform and fault-controlled copper mineralization. Copper enrichment in the percent range occurs in dm-thick carbonaceous sandstone and shale units within the clastic redbed sequence and consists of fine-grained disseminated copper sulfides (chalcopyrite, bornite, chalcocite) and supergene alteration minerals (covellite, malachite and azurite). The copper mineralization formed after calcite cementation of the primary rock permeability. Copper sulfides occur mainly as replacement of diagenetic pyrite, which, in turn, replaced organic matter. Electron microprobe analysis on bornite, chalcocite and covellite identifies elevated silver contents in these minerals (up to 0.12, 0.72 and 1.21 wt%, respectively), whereas chalcopyrite and pyrite have only trace amounts of silver (<0.26 and 0.06 wt%, respectively). Microthermometric data on fluid inclusions in authigenic quartz and calcite indicate that the Cu mineralization is related to a diagenetic fluid of moderate-to low temperature (Th = 96–160 °C) but high salinity (25–38 wt% CaCl2 equiv.). The range of δ34S in pyrite is −41.9 to −16.4‰ (average −31.4‰), where framboidal pyrite shows the most negative values between −41.9 and −31.8‰, and fine-grained pyrite has relatively heavier δ34S values (−29.2 to −16.4‰), consistent with a bacteriogenic derivation of the sulfur. The Cu-sulfides (chalcopyrite, bornite and chalcocite) show slightly heavier values from −14.6 to −9.0‰, and their sulfur sources may be both the precursor pyrite-S and the bacterial reduction of sulfate-bearing basinal brines. Carbonates related to the ore stage show isotopically light values of δ13CV-PDB from −8.2 to −5.1‰ and δ18OV-PDB from −10.3 to −7.2‰, indicating a mixed source of oxidation of organic carbon (ca. −20‰) and HCO3 from seawater/porewater (ca. 0‰). The copper mineralization is mainly controlled by organic matter content and paleopermeability (intragranular space to large fracture patterns), enhanced by feldspar and calcite dissolution. The Cheshmeh-Konan deposit can be classified as a redbed-type sediment-hosted stratiform copper (SSC) deposit.  相似文献   

2.
Chalcopyrite, CuFeS2, is an important source of copper and is recovered from ore by the flotation process. Chalcopyrite is commonly associated with other metal sulfides, e.g. bornite, Cu5FeS4. In this study the effect of bornite on the oxidation and leaching of chalcopyrite has been investigated by probing the surface evolution of pure chalcopyrite, bornite, and heterogeneous samples containing both chalcopyrite and bornite using Synchrotron X-ray Photoelectron Spectroscopy (SXPS). Samples were freshly fractured in a N2 atmosphere and the resulting surfaces were oxidised in pH 9 KOH for 30 min or leached in pH 1 HCl for 2 h before being transferred into vacuum without leaving the N2 atmosphere. Analysis of the chalcopyrite region of each sample indicates that exposure to pH 9 for 30 min when bornite is present results in a decreased concentration of hydrophobic polysulfide species (from 43% to 36% of the total S 2p spectrum). In addition to this decrease in hydrophobic species, there is an increase in the amount of hydrophilic sulfate on the surface, from trace amounts to 3%. For those samples leached at pH 1 there was a small decrease in the amount of polysulfide species (43% to 39%), but also a slight increase in disulfide species (16% to 19%) indicating an alteration to the oxidation process at low pH in the presence of bornite.  相似文献   

3.
The mineralogy of the Istala deposit, Gümüşhane, northeastern Turkey, was studied in detail, and a geochemical investigation was carried out using electron probe micro-analysis (EPMA). Sphalerite, galena, chalcopyrite and pyrite are the major sulfide minerals found in the Istala deposit, with minor amounts of bornite, idaite, tetrahedrite–tennantite, anilite, yarrowite, mckinstryite, covellite and chalcocite. In addition to these, barite and a small quantity of quartz occur as gangue minerals. Based on the textural relations and mineral assemblages, five different stages of crystallization have been recognized. Mineral paragenesis of the first four stages has been found to be similar, whereas clear enrichment has been observed in the modal abundance of the copper sulfide mineral assemblage at the fifth-stage ore formation. Whole-rock geochemical analyses of the Istala ore show an enrichment of Ag content up to 3328 ppm. Optical observations and EPMA study indicated that abundant silver mineralization was found in the Istala ore, especially during the later-stage ore deposition. Repetition to the presence of native silver in the samples, a significant amount of silver was incorporated in bornite, idaite, tetrahedrite–tennantite, anilite, yarrowite, mckinstryite, covellite and chalcocite, whereas a trace amount of silver has been detected in sphalerite, galena, chalcopyrite and pyrite. The homogenization temperatures (Th) of the primary fluid inclusions were measured between 98 and 284 °C, with frequency peaks around 140 °C, 190 °C and 240 °C. All data obtained support the theory that later stage copper-rich sulfides, formed under the low temperature conditions, are responsible for the large amounts of silver content in the Istala mine.  相似文献   

4.
(Ni-Sb)-bearing Cu-arsenides are rare minerals within the Mlakva and Kram mining sectors (Boranja ore field) one of the less-known Serbian Cu deposits. (Ni-Sb)-bearing Cu-arsenides were collected from the Mlakva skarn-replacement Cu(Ag,Bi)-FeS polymetallic deposit. The identified phases include β-domeykite, Ni-bearing koutekite and (Ni-Sb)-bearing α-domeykite. (Ni-Sb)-bearing Cu-arsenides are associated with nickeline, arsenical breithauptite, chalcocite, native Ag, native Pb and litharge. Pyrrhotite, pyrite, chalcopyrite, cubanite, bismuthinite, molybdenite, sphalerite, galena, Pb(Cu)-Bi sulfosalts and native Bi, as well as minor magnetite, scheelite and powellite are associated with the sulfide paragenesis. The electron microprobe analyses of the (Ni-Sb)-bearing Cu-arsenides yielded the following average formulae: (Cu2.73,Ni0.17,Fe0.03,Ag0.01) 2.94(As0.98,Sb0.05,S0.02) 1.06–β-domeykite (simplified formula (Cu2.7,Ni0.2) 2.9As1.1); (Cu3.40,Ni1.40,Fe0.11) 4.91(As1.94,Sb0.13,S0.02) 2.08–Ni-bearing koutekite (simplified formula (Cu3.4Ni1.5) 4.9As2.1); and Cu1.97(Ni0.98,Fe0.03) 1.01(As0.81,Sb0.22) 1.03–(Ni–Sb)-bearing α-domeykite (simplified formula Cu2NiAs). The Rietveld refinement yielded the following unit-cell parameters for β-domeykite and Ni–bearing koutekite: a = 7.1331(4); c = 7.3042(5) Å; V = 321.86(2) Å3, and a = 5.922(4); b = 11.447(9); c = 5.480(4) Å; V = 371.48(5) Å3, respectively. Ore geology, paragenetic assemblages and genesis of the Mlakva deposit are discussed in detail and the Cu-As-Ni-Sb-Pb mineralization has been compared with similar well-known global deposits.  相似文献   

5.
Three models were examined to predict C aromaticity (fa) of biochars based on either their elemental composition (C, H, N and O) or fixed C (FC) content. Values of fa from solid state 13C nuclear magnetic resonance (NMR) analysis with Bloch-decay (BD) or direct polarisation (DP) techniques, concentrations of total C, H, N, and organic O, and contents of FC of 60 biochars were either compiled from the literature (dataset 1, n = 52) or generated in this study (dataset 2, n = 8). Models were first calibrated with dataset 1 and then validated with dataset 2. All models were able to fit dataset 1 when atomic H to C ratio (H/C) < 1 (except two ash rich biochars) and to estimate fa of HF treated biochars (H/C < 1). Model 1, which was based on values of H/C only and calibrated with a root mean square of error (RMSE) of 0.04 fa-unit (n = 41), could predict the experimental data with a RMSE = 0.02 fa-unit (n = 6). Model 2, which was based on biochar elemental composition data, showed the most accurate prediction, with a RMSE of 0.03 fa-unit (n = 41) for the calibration data, and of 0.02 fa-unit (n = 6, H/C < 1) for the validation data. Model 3, which was based on contents of FC and C, and modified with a correction factor of 0.96, displayed the highest RMSE (0.06 fa-unit, n = 19) among the three models. Models 1 and 2 did not work properly for samples having either an H/C ratio > 1, high concentrations of carbonate or high inorganic H. These models need to be further tested with a wider range of biochars before they can be recommended for classification of biochar stability.  相似文献   

6.
The Salvador–Curaçá Belt, located in São Francisco Craton, Brazil, was subjected to granulite facies metamorphism during the Paleoproterozoic orogeny (c. 2.0 Ga). Well preserved in enclaves of silica-undersaturated sapphirine-bearing granulite occur in a charnockite outcrop located along a kilometric-scale shear zone. The sapphirine-bearing granulite preserves domains with distinct mineral assemblages that record interactions between melt and peritectic phases (orthopyroxene1 + spinel1 + biotite1). Sapphirine was crystallized in the Si-poor cores of the enclaves, sillimanite and spinel–cordierite symplectites in the intermediate Si-rich domains between cores and margins, and garnet and quartz-bearing cordierite/biotite symplectites in Si-rich margins of the enclaves. Melt-rock interactions and metamorphism occurred at ultrahigh temperatures of 900–950 °C at 7.0–8.0 kbar pressures. The mineralogical evolution of the domains reflects not only the influence of changes in bulk composition in the equilibrium volume of the reactions but also PT changes during orogeny evolution. Electron microprobe dating of monazite both in the sapphirine-bearing granulite and charnockite indicates UHT metamorphism timing at c. 2.08–2.05 Ga that is related to global Paleoproterozoic UHT metamorphic events that occurred during the Columbia supercontinent assembly.  相似文献   

7.
The kinetics of forward extraction [AuCl4]? from aqua regia medium by diethylene glycol dibutyl ether (DBC) have been investigated by the Lewis cell (LC) technique. At first gold extraction has been carried out under different experimental conditions for achieving the stoichiometry coefficients and the value of the extraction equilibrium constant (K = 0.1). For kinetic data treatment, flux ‘F’ method has been applied. Reaction order with respect to DBC, pH and [AuCl4]? was determined and then the rate constant was calculated. The rate of gold extraction from 2 M chloride medium can be expressed as F = 100.88[AuCl4?]1.25 [DBC]0.4 [H+]?0.22. Kinetics data were treated by EVIEWS software and coefficients were obtained. The comparison of manual and software results indicated that the results had good conformity. Influence of temperature was studied and then activation energy, Ea, (11.17 kJ/mol), activation enthalpy (11.66 kJ/mol) and entropy (?187 J/mol K) were calculated by using Arrhenius and activation complex theory respectively. Ea value (< 20.9 kJ/mol) indicates that, the extraction of gold (III) in the investigated system is controlled by diffusion process.  相似文献   

8.
《Precambrian Research》2006,144(3-4):213-238
We report new palaeomagnetic results from a ca. 1300 to 800 Ma continental shelf succession on the southern margin of the North China Block. A total of 386 oriented core samples were subjected to stepwise demagnetisation. Two overprint components (‘A’ and ‘B’) were identified, with ‘A’ being a Recent geomagnetic field component and ‘B’ a likely Mesozoic remagnetisation related to collision of the North and South China Blocks. An interpreted primary remanence was isolated from six rock units. The most reliable results are as follow, in the order of stratigraphic ascendance. (1) Purple mudstone, muddy sandstone and andesite of the lower Yunmenshan Formation (Rb–Sr age ca. 1270 Ma) yields a high-temperature component that passes both reversal and fold tests and gives a palaeopole at (60.6°S, 87.0°E, A95 = 3.7°). (2) Mudstone in the overlying Baicaoping Formation yields a high-temperature component with a palaeopole at (43.0°S, 143.8°E, A95 = 11.1°). (3) Purple sandstone of the earliest Neoproterozoic Cuizhuang and Sanjiaotang Formations exhibits a high-temperature component that provides a palaeopole at (41.0°S, 44.8°E, A95 = 11.3°). Based on both our new results and a critical selection of available palaeomagnetic data, we construct a preliminary apparent polar wander path (APWP) for the North China Block between 1300 and 510 Ma. Regardless of alternative polarity options applicable to these poles, North China was located within equatorial latitudes for much of this interval. Comparing the North China poles with coeval poles from Laurentia suggests that the two continents were situated on the same plate between 1200 and 700 Ma. North China was thus likely part of the supercontinent Rodinia. Separation of North China and Laurentia occurred between 650 and 615 Ma.  相似文献   

9.
A series of 30-day biochemical oxygen demand (BOD) experiments were conducted on water column samples from a reach of the upper Klamath River that experiences hypoxia and anoxia in summer. Samples were incubated with added nitrification inhibitor to measure carbonaceous BOD (CBOD), untreated to measure total BOD, which included demand from nitrogenous BOD (NBOD), and coarse-filtered to examine the effect of removing large particulate matter. All BOD data were fit well with a two-group model, so named because it considered contributions from both labile and refractory pools of carbon: BODt = a1(1 ? e? a0t) + a2t. Site-average labile first-order decay rates a0 ranged from 0.15 to 0.22/day for CBOD and 0.11 to 0.29/day for BOD. Site-average values of refractory zero-order decay rates a2 ranged from 0.13 to 0.25 mg/L/day for CBOD and 0.01 to 0.45 mg/L/day for BOD; the zero-order CBOD decay rate increased from early- to mid-summer. Values of ultimate CBOD for the labile component a1 ranged from 5.5 to 28.8 mg/L for CBOD, and 7.6 to 30.8 mg/L for BOD. Two upstream sites had higher CBOD compared to those downstream. Maximum measured total BOD5 and BOD30 during the study were 26.5 and 55.4 mg/L; minimums were 4.2 and 13.6 mg/L. For most samples, the oxygen demand from the three components considered here were: labile CBOD > NBOD > refractory CBOD, though the relative importance of refractory CBOD to oxygen demand increased over time. Coarse-filtering reduced CBOD for samples with high particulate carbon and high biovolumes of Aphanizomenon flos-aquae. There was a strong positive correlation between BOD, CBOD, and the labile component of CBOD to particulate C and N, with weaker positive correlation to field pH, field dissolved oxygen, and total N. The refractory component of CBOD was not correlated to particulate matter, instead showing weak but statistically significant correlation to dissolved organic carbon, UV absorbance at 254 nm, and total N. Particulate organic matter, especially the alga A.flos-aquae, is an important component of oxygen demand in this reach of the Klamath River, though refractory dissolved organic matter would continue to exert an oxygen demand over longer time periods and as water travels downstream.  相似文献   

10.
Retrograde eclogite from the central part of the Qinling Complex, Zhaigen area of the North Qinling Belt, was studied using integrated petrology, mineral chemistry, pseudosection modeling, and geochronology. Microstructures and mineral relationships reveal five metamorphic stages and associated mineral assemblages as follows: (1) pre-peak stage M1, which is recorded by the inner cores of garnets together with mineral inclusions of clinopyroxene (Cpx1) + amphibole (Am1) + plagioclase (Pl1) ± quartz ± rutile, occurred under conditions of 760–770 °C and 11.4–14.0 kbar; (2) eclogite-facies stage M2, recorded by garnet cores + relic omphacite (with a high jadeite content up to 31%) + rutile + quartz under conditions of > 16.7 kbar and 679–765 °C; (3) high-pressure granulite-facies stage M3, characterized by clinopyroxene (Cpx2) + plagioclase (Pl2) symplectites under conditions of 14.5–15.6 kbar and 800–850 °C; (4) medium-pressure granulite-facies stage M4, characterized by the growth of plagioclase + orthopyroxene coronas around garnet under conditions of 8.3–10 kbar and 795–855 °C; and (5) retrogressive amphibolite-facies stage M5, which is represented by amphibole (Am3) + plagioclase (Pl3) kelyphitic rims around garnet at conditions of < 4 kbar and < 620 °C. Based on Laser Raman analysis of mineral inclusions, cathodoluminescence images, in situ trace element concentrations from different domains within zircon grains, and LA-ICP-MS and SHRIMP U–Pb dating, the protolith age of the Zhaigen retrograde eclogite is suggested at 786 ± 10 Ma and the eclogite-facies metamorphic age recorded by metamorphic zircon cores is limited within 501–497 Ma. The retrograde zircon rims display ages of 476–447 Ma and 425 Ma that probably reflect the timing of two stages of retrograde metamorphism, respectively. The mineral assemblages, PT conditions, and zircon U–Pb data define a clockwise PTt path for the retrograde eclogite, suggesting that the Neoproterozoic protolith of the retrograde eclogite might evolved into continental subduction and eclogite-facies metamorphism during 501–497 Ma before undergoing retrograde metamorphism during an initial stage of exhumation to middle–upper crust level at 474–447 Ma and subsequent exhumation to shallow upper crust at ~ 420 Ma.  相似文献   

11.
The İnkaya Cu–Pb–Zn–(Ag) prospect is a typical example of the hydrothermal mineralization occurring in the Menderes Massif, which crop out in Western Anatolia. The prospect located approximately 20 km west of Simav (Kütahya-Turkey) in northern part of the Menderes Massif have been characterized through the detailed examinations involving geological, mineralogical, whole-rock geochemistry, fluid inclusion, stable isotope and lead isotope.The İnkaya Cu–Pb–Zn–(Ag) prospect is located along an E–W-trending fault in the Cambrian Simav Metamorphics, which consist of quartz–muscovite schist, quartz–biotite schist, muscovite schist, biotite schist and the Arıkayası Formation, which is composed of marbles. Galena, sphalerite, chalcopyrite, pyrite and fahlore are the main minerals, and they are accompanied by small amounts of cerussite, anglesite, digenite, enargite, chalcocite, covellite, bornite, and Fe-oxides with gangue quartz. In addition to Pb, Zn, Cu, Ag, the ore samples contain substantial quantities of As, Cd and Bi and small amount of Au. Average contents of Cu, Pb, Zn and Ag are 77,400 ppm, 102,600 ppm, 6843 ppm and 203 ppm, respectively.The δ34S values for galena, chalcopyrite and pyrite formed in the same stage vary in the range from − 1.7 to − 2.1‰ (average − 2.0), 0.1 to 0.3‰ (average 0.2) and − 1.5 to 2.6‰ (average + 1.5), respectively.δ34S values for H2S, representing the composition of the fluids responsible for the sulfide mineral formations and calculated from the δ34S value are between − 2.77 and 1.33‰; it is consistent with the sulfur in sulfide minerals. δ18Oquartz values range from 11.3 to 16.4‰ and estimated δ18Ofluid values range from 5.4 to 10.6‰.Pyrite–galena and pyrite–chalcopyrite pairs calculated to determine equilibrium isotope temperatures based on δ34S values are between 254.6 and 277.4 °C for pyrite–galena and 274.7 °C for pyrite–chalcopyrite. Sulfur and oxygen isotope values similar to the values for fluid equilibrated with an felsic magmatic source.Fluid inclusion studies on quartz of the same silicification stage coexisting with galena, sphalerite and chalcopyrite collected from the mineralized vein indicate that the temperature range of the fluids is 235 °C to 340 °C and that the salinities are 0.7 to 4.49 wt.% NaCl equivalent. The wide range of homogenization temperatures and relatively lower salinities of the fluid inclusions indicate that at least two different fluid generations were trapped in the quartz from only one fluid type. Also, lower salinities of fluid inclusion probably indicate mixing of meteoric water and magmatic fluid.The galena has 206Pb/204Pb values of 18.862–18.865, 207Pb/204Pb values of 15.707–15.711, and 208Pb/204Pb values of 39.033–39.042. The lead isotope values show a similarity with upper crustal values.  相似文献   

12.
Mafic and semi-pelitic granulites from the Qinling-Tongbai orogen in central China preserve petrological evidence and mineral paragenesis suggesting four distinct stages of metamorphic evolution. The prograde history (M1) is recorded by the occurrence of cordierite, orthopyroxene and biotite inclusions in garnet porphyroblasts of the peak-metamorphic (M2) assemblage. Peak-metamorphism was followed by cooling with minor decompression (M3), which formed symplectites and coronitic textures. The greenschist facies retrograde metamorphic assemblage (M4) is represented by hydrous minerals replacing minerals of the M2 and M3 assemblages. We present LA-ICPMS zircon U-Pb data which show ages of 432 ± 4 Ma for the peak metamorphism and 403 to 426 Ma for the retrograde stage. Microstructural analysis, P–T pseudosections, and mineral isopleths in conjunction with the zircon U-Pb ages define an anticlockwise PTt path. The P–T estimates for peak metamorphic conditions of 880–920 °C and 8.0–10 kbar suggest that these rocks witnessed extreme crustal metamorphism under ultrahigh-temperature conditions. The anticlockwise trajectory reported in this study is comparable with similar PT paths recorded from subduction–collision settings, and correlate the Tongbai granulites to hot orogens developed within a Paleozoic collisional suture. We propose a ridge subduction and slab window setting to explain the formation of the Tongbai orogen, in a convergent plate setting associated with the northward subduction of the Paleo-Tethyan Qinling Ocean.  相似文献   

13.
The latest hydraulic fracturing and stress relief measurement data in the Chinese mainland were collected. The total of 3856 data entries are measured at 1474 locations. The measured area covers 75–130°E and 18–47°N, and the depth range varies from surface to 4000 meters depth, which generally includes each active tectonic block of China and each segment of North–South seismic belt. We investigated the tectonic stress field by removing the effect of gravity. For this, we assume lateral constraints and Heim’s rule. The gravity contribution is removed by using the assumption of lateral constraint and Heim’s rule. Our results show: (1) the maximum and the minimum horizontal principal stress σH, σh and the vertical stress σV in the shallow crust of China all increase linearly with depth: σH = 0.0229D + 4.738, σh = 0.0171D + 1.829, σV = 0.0272D. Maximum and minimum horizontal tectonic stress varies as a function of depth D linearly 4.738 < σT < 0.0139D + 4.738 and 1.829 < σt < 0.0162D + 1.829. The horizontal tectonic differential stress is σT  σt = 0.0058D + 2.912. (2) The intermediate value of σT1 (regression value of tectonic stress inferred from the assumption of lateral constraint at 2000 m depth) changes in different areas, the maximum value of which is 45.6 MPa, while the minimum value of which is 26.8 MPa. Horizontal tectonic differential stress σT  σt increases linearly with depth and the maximum and minimum of σT  σt is 25.3 MPa and 13.0 MPa, respectively. In general, the stress magnitude is much higher in western than in eastern China. This indicates that the strong Indo-Eurasian collision dominates the present tectonic stress field in Chinese mainland. (3) Compared with other study regions, the northward crustal compression to the Qinghai-Tibet block is relatively lower in magnitude in the shallow subsurface and higher at deeper depth. (4) The orientations of σT in China mainland generally form a radial scattering pattern centered in Tibetan Plateau. From western to eastern China, they rotate gradually clockwise from NS to NNE, NE, NEE, and SE, which is consistent with the result of focal mechanism solutions.  相似文献   

14.
《Comptes Rendus Geoscience》2007,339(14-15):872-884
Now extinct, short-lived radioactive nuclides, such as 7Be (T1/2 = 53 days), 10Be (T1/2 = 1.5 Ma), 26Al (T1/2 = 0.74 Ma), 36Cl (T1/2 = 0.3 Ma), 41Ca (T1/2 = 0.1 Ma), 53Mn (T1/2 = 3.7 Ma) and 60Fe (T1/2 = 1.5 Ma), were present in the protosolar nebula when the various components of meteorites formed. The presence of these radioactive isotopes requires a ‘last-minute’ origin, either nucleosynthesis in a massive star dying close in space and time to the nascent solar system or production by local irradiation of part of the protosolar disk by high-energy solar cosmic rays. In this review, we list: (i) the different observations indicating the existence of multiple origins for short-lived radioactive nuclides, namely 7Be, 10Be and 36Cl for irradiation scenario and 60Fe for injection scenario; (ii) the constraints that exist on their distribution (homogeneous or heterogeneous) in the accretion disk; (iii) the constraints they brought on the timescales of nebular processes (from Ca–Al-rich inclusions to chondrules) and of the accretion and differentiation of planetesimals.  相似文献   

15.
《Lithos》2007,93(1-2):126-148
Fenite aureoles around carbonatite dykes, and alteration associated with Fe–REE–Nb ore bodies at Bayan Obo, Inner Mongolia, China, show alkali silicate assemblages containing aegirine–augite, (magnesio-)riebeckite, (magnesio-)arfvedsonite, and phlogopite, accompanied by varying amounts of apatite, albite and quartz. In both fenites and orebodies simple thermodynamic constraints indicate mineral parageneses are consistent with rock buffered cooling accompanied by the infiltration of a range of externally buffered hydrothermal fluids. Statistical analysis of amphibole chemistry indicates that even in apparently texturally well constrained paragenetic stages wide variations in chemistry occur in both the ore bodies and fenites. Much of this variation is attributable to the Mg and F content of amphibole, and is therefore interpreted as a result of variation in externally controlled variables (P, T, initial fluid composition) rather than internally controlled variables such as protolith composition. Similarities in chemistry exist between fenite and some ore body amphiboles. Thermodynamic analysis of the composition of biotite and apatite allows constraints to be placed on the F-content of hydrothermal fluids, and indicates relatively consistent compositions in fenites and orebodies (log aHF/aH2O =  3.8 to − 3.6 at 300 °C and 1 kbar). Amphibole and biotite associated with niobate mineralization are both enriched in fluorine relative to the rest of the paragenesis, and biotite compositions indicate significantly higher HF activities in the hydrothermal fluid (log aHF/aH2O =  2.6 at 300 °C and 1 kbar). The data presented here reinforce previous interpretations of the complex, multistage nature of mineralisation at Bayan Obo, but are still consistent with a direct involvement of carbonatite derived fluids during ore genesis.  相似文献   

16.
《Applied Geochemistry》1998,13(6):779-785
The base mediated and neutral abiotic reactions of 4 chlorinated aliphatic compounds have been studied as a function of temperature and pH. Arrhenius parameters obtained for base mediated reactions were as follows: 1,1,2-trichloroethane, log10A=14.36±0.55, Ea=95.6±3.6 kJ/mol; 1,1,1,2-tetrachloroethane, log10A=14.56±0.33, Ea=101.4±2.1 kJ/mol; 1,2,3-trichloropropane, log10A=13.31±0.53, Ea=95.9±3.5 kJ/mol. For the neutral reaction of 2,3-dichloro-1-propene the Arrhenius parameters were log10A=10.2±1.3, Ea=98±9 kJ/mol. For 1,1,2-trichloroethane the product of the base mediated reaction was identified as 1,1-dichloroethene, in contrast to previous studies. 2,3-dichloro-1-propene was found as an intermediate in the base mediated reaction of 1,2,3-trichloropropane, with 2-chloro-2-propen-1-ol as the major final product. Results from the present study are compared to those found in previous work.  相似文献   

17.
A recently developed illite-age-analysis (IAA) approach was applied to determine the multiple events for the Chugaryeong fault belt, Korea. Each event was determined by a combined approach of the optimized illite-polytype quantification and the K–Ar age-dating of clay fractions separated from the fault clays. The Late Cretaceous to Paleogene events (76.5 ± 0.8, 69.1 ± 0.6, 59.3 ± 0.7, and 48.2 ± 0.7 Ma) were recognized by calculating the authigenic 1M/1Md illite ages on the IAA plots of the fault clays. The Early Cretaceous ages (121.7–124.7 and 112.4 ± 1.5 Ma) were also obtained from the convergent intercepts of 100% 2M1 illite on the IAA plots. The absence of the 2M1 illites in the host-rock indicates that the Early Cretaceous ages represent the timings of high-T hydrothermal events of >280 °C. The 2M1 illites in the fault clays should be pre-formed by a fluid-rock interaction under a relatively high-T subsurface condition, and be mechanically reworked into the near surface along the fault by post-tectonic events. This is the first report determining the absolute age constraints of multi-activated tectonic events from a fault. These geochronological determinations of the multiple events recorded in the Chugaryeong fault belt are crucial to establish the tectonic evolution of the Korean Peninsula since the Late Cretaceous.  相似文献   

18.
《Chemical Geology》2006,225(3-4):278-290
The thermodynamic mixing properties of As into pyrite and marcasite have been investigated using first-principles and Monte Carlo calculations in order to understand the incorporation of this important metalloid into solid solution. Using quantum-mechanical methods to account for spin and electron transfer processes typical of sulfide minerals, the total energies of different As–S configurations were calculated at the atomic scale, and the resulting As–S interactions were incorporated into Monte Carlo simulations. Enthalpies, configurational entropies and Gibbs free energies of mixing show that two-phase mixtures of FeS2 (pyrite or marcasite) and FeAsS (arsenopyrite) are energetically more favorable than the solid solution Fe(S,As)2 (arsenian pyrite or marcasite) for a wide range of geologically relevant temperatures. Although miscibility gaps dominate both solid solution series, the solubility of As is favored for XAs < 0.05 in iron disulfides. Consequently, pyrite and marcasite can host up to ∼6 wt.% of As in solid solution before unmixing into (pyrite or marcasite) + arsenopyrite. This finding is in agreement with previously published HRTEM observations of As-rich pyrites (> 6 wt.% As) that document the presence of randomly distributed domains of pyrite + arsenopyrite at the nanoscale. According to the calculations, stable and metastable varieties of arsenian pyrite and marcasite are predicted to occur at low (XAs < 0.05) and high (XAs > 0.05) As bulk compositions, respectively.  相似文献   

19.
The Longquan–Shan fault and the Huya fault are two major neighboring faults of the Longmen–Shan fault zone where the 12 May 2008 Wenchuan earthquake (Mw 7.9) occurred. To study the influence of the Wenchuan event on these two active faults, we calculate changes of Coulomb stress on the Longquan–Shan fault and the Huya fault caused by the Wenchuan mainshock. Our results indicate that the Coulomb stress in the northern section (Zone A) of the Longquan–Shan fault is increased by 0.07–0.10 bars, that in the middle section (Zone B) by 0.04–0.11 bars, and that in the southern section (Zone C) shows almost no change. For the Huya fault, the Coulomb stress is decreased by 0.01–0.03 bars in the northern section (Zone A), 0.10–0.35 bars in the middle section (Zone B), and nearly 0.5 bars in the southern section (Zone C). The epicenter distribution of small earthquakes (ML  1.5) on the Longquan–Shan fault and the Huya fault after the Wenchuan earthquake is consistent with the distribution of the Coulomb stress change. This implies that the Wenchuan earthquake may have triggered small events on the Longquan–Shan fault, but inhibited those on the Huya fault. We then use the rate/state friction law to calculate the occurrence probability of future earthquakes in the study region for the next decade. They include the distribution of b-values, magnitude of completeness (Mc), the background seismicity rate, a value of n and the duration for the transient effect (ta) in the study region. We also estimate the earthquake occurrence probabilities on the neighboring faults after the Wenchuan earthquake. Our results show that, the occurrence probability of future earthquakes in the Longquan–Shan has a slight increase, being 7% for M  5.0 shocks during the next decade, but the earthquake probability in the Huya region is reduced obviously, being 5–20%, 7–26% and 3–9% for M  5.0 shocks during the next decade in sections A, B and C of the Huya fault, respectively.  相似文献   

20.
The cirques of Snowdonia, North Wales were last occupied by glacier ice during the Younger Dryas Chronozone (YDC), c. 12.9–11.7 ka. New mapping presented here indicates 38 small YDC cirque glaciers formed in Snowdonia, covering a total area of 20.74 km2. Equilibrium line altitudes (ELAs) for these glaciers, calculated using an area–altitude balance ratio (AABR) approach, ranged from 380 to 837 m asl. A northeastwards rise in YDC ELAs across Snowdonia is consistent with southwesterly snow-bearing winds. Regional palaeoclimate reconstructions indicate that the YDC in North Wales was colder and drier than at present. Palaeotemperature and annual temperature range estimates, derived from published palaeoecological datasets, were used to reconstruct values of annual accumulation and ‘winter balance plus summer precipitation’ using a degree-day model (DDM) and non-linear regression function, respectively. The DDM acted as the best-estimate for stadial precipitation and yielded values between 2073 and 2687 mm a?1 (lapse rate: 0.006 °C m?1) and 1782–2470 mm a?1 (lapse rate: 0.007 °C m?1). Accounting for the potential input of windblown and avalanched snow onto former glacier surfaces, accumulation values dropped to between 1791 and 2616 mm a?1 (lapse rate: 0.006 °C m?1) and 1473–2390 mm a?1 (lapse rate: 0.007 °C m?1). The spatial pattern of stadial accumulation suggests a steep precipitation gradient and provides verification of the northeastwards rise in ELAs. Glaciers nearer the coast of North Wales were most responsive to fluctuations in climate during the YDC, responding to sea-ice enforced continentality during the coldest phases of the stadial and to abrupt warming at the end of the stadial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号