首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic sedimentologic and paleomagnetic study was carried out in the Vaca Muerta Formation, cropping out in the northern Neuquén Basin, west-central Argentina. The studied section is c. 280 m-thick and represents a carbonate ramp system bearing ammonites that indicate Late Jurassic–Early Cretaceous ages. The Vaca Muerta Formation is one of the most important unconventional hydrocarbon reservoirs in the world and its thorough study has become a relevant target in Argentina. The J-K boundary is comprised within this unit, and although it is well-dated through biostratigraphy (mainly ammonites), the position of particularly the boundary is yet a matter of hot debate. Therefore, the systematic paleomagnetic and cyclostratigraphic study in the Vaca Muerta Formation was considered relevant in order to obtain the first Upper Jurassic–Lower Cretaceous magnetostratigraphy of the southern hemisphere on the first place and to precise the position of the J-K boundary in the Neuquén Basin, on the other. Biostratigraphy is well studied in the area, so that paleomagnetic sampling horizons were reliably tied, particularly through ammonites. Almost 450 standard specimens have been processed for this study distributed along 56 paleomagnetic sampling horizons that were dated using ammonites. Paleomagnetic behaviours showed to be very stable, and their quality and primary origin have been proved through several paleomagnetic field tests The resultant magnetostratigraphic scale is made up of 11 reverse and 10 normal polarity zones, spanning the Andean Virgatosphinctes mendozanus (lower Tithonian) to Spiticeras damesi Zones (upper Berriasian). These polarity zones were correlated with those of the International Geomagnetic Polarity Time Scale 2012 and 2016 through the correlation between Andean and Tethyan ammonite zones. Cyclostratigraphy on the other hand, proved to be quite consistent with the magnetostratigraphy. Through the correlation of the resultant paleomagnetic and cyclostratigraphic data, it was possible to date the section with unprecedented precision, and therefore, to establish the position of the Jurassic-Cretaceous boundary. The paleomagnetic pole calculated from the primary magnetization is located at: Lon = 191.6°E, Lat = 76.2°S, A95 = 3.5°, indicating a c. 24° clockwise rotation for the studied section, which is consistent with structural data of the region.  相似文献   

2.
The studied Carboniferous units comprise metasedimentary (Guaraco Norte Formation), pyroclastic (Arroyo del Torreón Formation), and sedimentary (Huaraco Formation) rocks that crop out in the northwestern Neuquén province, Argentina. They form part of the basement of the Neuquén Basin and are mostly coeval with the Late Paleozoic accretionary prism complex of the Coastal Cordillera, south-central Chile. U–Pb SHRIMP dating of detrital zircon yielded a maximum depositional age of 374?Ma (Upper Devonian) for the Guaraco Norte Formation and 389?Ma for the Arroyo del Torreón Formation. Detrital magmatic zircon from the Guaraco Norte Formation are grouped into two main populations of Devonian and Ordovician (Famatinian) ages. In the Arroyo del Torreón Formation, zircon populations are also of Devonian and Ordovician (Famatinian), as well as of Late Neoproterozoic and Mesoproterozoic ages. In both units, there is a conspicuous population of Devonian magmatic zircon grains (from 406?±?4?Ma to 369?±?5?Ma), indicative of active magmatism at that time range. The εHf values of this population range between ?2.84 and ?0.7, and the TDM-(Hf) are mostly Mesoproterozoic, suggesting that the primary sources of the Devonian magmatism contained small amounts of Mesoproterozoic recycled crustal components. The chemical composition of the Guaraco Norte Formation corresponds to recycled, mature polycyclic sediment of mature continental provenance, pointing to a passive margin with minor inputs from continental margin magmatic rocks. The chemical signature of the Huaraco Formation indicates that a magmatic arc was the main provenance for sediments of this unit, which is consistent with the occurrence of tuff—mostly in the Arroyo del Torreón Formation and very scarcely in the Huaraco Formation—with a volcanic-arc signature, jointly indicating the occurrence of a Carboniferous active arc magmatism during the deposition of the two units. The Guaraco Norte Formation is interpreted to represent passive margin deposits of mostly Lower Carboniferous age (younger than 374?Ma and older than 326?Ma) that precede the onset of the accretionary prism in Chile and extend into the earliest stage of the accretion, in a retrowedge position. The Arroyo del Torreón and Huaraco formations are considered to be retrowedge basin deposits to the early frontal accretionary prism (Eastern Series) of Chile. The presence of volcanism with arc signature in the units provides evidence of a Mississippian magmatic arc that can be correlated with limited exposures of the same age in the Frontal Cordillera (Argentina). The arc would have migrated to the West (Coastal Batholith) during Pennsylvanian–Permian times (coevally with the later basal accretionary prism/Western Series). The source of a conspicuous population of Devonian detrital zircon interpreted to be of magmatic origin in the studied units is discussed in various possible geotectonic scenarios, the preferred model being a magmatic arc developed in the Chilenia block, related to a west-dipping subduction beneath Chilenia before and shortly after its collision against Cuyania/Gondwana, at around 390?Ma and not linked to the independent, Devonian–Mississippian arc, developed to the south, in Patagonia.  相似文献   

3.
Four magnetotelluric soundings were carried out in 1993 in the region of the Copahue active volcano located at the border between Chile and Argentina (37°45′S, 71°18′W). Three soundings were located inside the caldera of the ancient stratovolcano (east of Copahue) and the fourth outside it. The soundings inside the caldera were situated at about 6, 11, and 14 km from the volcano. Digital data were obtained covering the range of periods from 1 sec to 10,000 sec using induction coils and a flux-gate magnetometer to obtain the magnetic data and Cu-SO4Cu electrodes for electric field measurements. The apparent resistivity curves corresponding to principal directions were analyzed in conjunction with the geological background in order to eliminate distortion — which is very important in this hot volcanic region. Then, 1D modellings were performed using the “normal” curves — i.e., curves without distortions. Using the apparent resistivity curves with distortions, 2D modelling was also performed along a profile perpendicular to the regional tectonic trend suggested by MT soundings into the caldera. Results show low resistivity values of about 3-15 Ωm between 9 km to 20 km depth in the crust, suggesting high temperatures, with minimum values of about 700°C with partially melted zones in the upper crust between 9 km to 20 km depth under the caldera. The presence of a possible sulphide-carbonaceous layer (SC layer) in the upper basement could play an important role in lowering the electrical resistivities because of its high electronic conductivity.  相似文献   

4.
《Cretaceous Research》2008,29(1):87-99
The first carbon and oxygen isotope curves for the Valanginian to Early Barremian (Early Cretaceous) interval obtained from outcrops in the Southern Hemisphere are presented. They were obtained from well-dated (by ammonites) sediments from the Neuquén Basin, Argentina. Measurements were acquired by the innovative method of analysing fossil oyster laminae. The occurrence of the well-established mid-Valanginian positive carbon isotope excursion is documented, while less well-marked positive events may also correlate with peaks identified in the well-known successions of SE France. The mid-Valanginian positive carbon isotope event in the Neuquén Basin is possibly associated with organic-rich sediments. A similar relationship is seen in the European Alps and in oceanic cores in some areas of the world.  相似文献   

5.
The infill of the Neuquén Basin recorded the Meso-Cenozoic geological and tectonic evolution of the southern Central Andes being an excellent site to investigate how the pattern of detrital zircon ages varies trough time. In this work we analyze the U–Pb (LA–MC–ICP–MS) zircon ages from sedimentary and volcanic rocks related to synrift and retroarc stages of the northern part of the Neuquén Basin. These data define the crystallization age of the synrift volcanism at 223 ± 2 Ma (Cerro Negro Andesite) and the maximum depositional age of the original synrift sediments at ca. 204 Ma (El Freno Formation). Two different pulses of rifting could be recognized according to the absolute ages, the oldest developed during the Norian and the younger during the Rhaetian–Sinemurian. The source regions of the El Freno Formation show that the Choiyoi magmatic province was the main source rock of sediment supply. An important amount of detrital zircons with Triassic ages was identified and interpreted as a source area related to the synrift magmatism. The maximum depositional age calculated for the Tordillo Formation in the Atuel-La Valenciana depocenter is at ca. 149 Ma; as well as in other places of the Neuquén Basin, the U–Pb ages calculated in the Late Jurassic Tordillo Formation do not agree with the absolute age of the Kimmeridgian–Tithonian boundary (ca. 152 Ma). The main source region of sediment in the Tordillo Formation was the Andean magmatic arc. Basement regions were also present with age peaks at the Carboniferous, Neoproterozoic, and Mesoproterozoic; these regions were probably located to the east in the San Rafael Block. The pattern of zircon ages summarized for the Late Jurassic Tordillo and Lagunillas formations were interpreted as a record of the magmatic activity during the Triassic and Jurassic in the southern Central Andes. A waning of the magmatism is inferred to have happened during the Triassic. The evident lack of ages observed around ca. 200 Ma suggests cessation of the synrift magmatism. The later increase in magmatic activity during the Early Jurassic is attributed to the onset of Andean subduction, with maximum peaks at ca. 191 and 179 Ma. The trough at ca. 165 Ma and the later increase in the Late Jurassic could be explained by changes in the relative convergence rate in the Andean subduction regime, or by the shift to a more mafic composition of the magmatism with minor zircon fertility.  相似文献   

6.
The La Voluntad porphyry Cu–Mo deposit in Neuquén, Argentina, is one of several poorly known porphyry-type deposits of Paleozoic to Early Jurassic age in the central and southern Andes. Mineralization at La Voluntad is related to a tonalite porphyry from the Chachil Plutonic Complex that intruded metasedimentary units of the Piedra Santa Complex. Five new Re–Os molybdenite ages from four samples representing three different vein types (i.e., quartz–molybdenite, quartz–sericite–molybdenite and quartz–sericite–molybdenite ± chalcopyrite–pyrite) are identical within error and were formed between ~312 to ~316 Ma. Rhenium and Os concentrations range between 34 to 183 ppm and 112 to 599 ppb, respectively. The new Re–Os ages indicate that the main mineralization event at La Voluntad, associated to sericitic alteration, was emplaced during a time span of 1.7 ± 3.2 Ma and that the deposit is Carboniferous in age, not Permian as previously thought. La Voluntad is the oldest porphyry copper deposit so far recognized in the Andes and indicates the presence of an active magmatic arc, with associated porphyry style mineralization, at the proto-Pacific margin of Gondwana during the Early Pennsylvanian.  相似文献   

7.
Apatite fission-track analysis performed on eighteen Mesozoic sediment samples of the Neuquén Basin from the Southern Central Andes orogenic front between 35°30′ and 37°S has revealed Campanian-Paleocene (75-55 Ma), late Eocene-early Oligocene (35-30 Ma) and middle Miocene (15-10 Ma) cooling episodes. Each cooling episode corresponds closely with major unconformities observed in the preserved sedimentary sequences, and is associated with kilometer-scale additional burial and subsequent exhumation. A similar degree of cooling is inferred from associated vitrinite reflectance data. Late Eocene-early Oligocene exhumation is recognized only near the eastern orogenic front adjacent to the foreland in the southernmost part of the study area and may be related partly to within-plate magmatism and associated extension in the Palaoco Basin. The Campanian-Paleocene and middle Miocene cooling episodes are recognized more widely in the fold and thrust belt and appear to coincide with periods of eastward arc expansion and mountain building processes.  相似文献   

8.
The first Podocarpaceae wood record is described from the Mulichinco Formation (Valanginian, Lower Cretaceous), Neuquén Basin, Argentina. The specimen was directly associated with a middle caudal vertebra of a diplodocid sauropod dinosaur. A new species – Podocarpoxylon prumnopityoides – is proposed based on features that include the presence of abietinean wood type (tracheid radial pitting), plus podocarpoid (cupressoid type) and some dacrydioid (taxodioid type) cross-field pits, diffuse axial parenchyma and low rays. This combination of anatomical characters is comparable to both Prumnopitys and Podocarpus, whereas the type of pits in the cross-fields resembles some members of the extant Prumnopitys. This is the first unequivocal record of the Family Podocarpaceae in the Valanginian of South America and confirms the hypothesis that the divergence between the “Podocarpoid-Dacrydioid” and “Prumnopityoid” clades occurred earlier than the Early Cretaceous.  相似文献   

9.
This study is the first detailed account of freshwater to restricted marine molluscs from the Upper Cretaceous sedimentary rocks in the northern sector of the Neuquén Basin. The fossils are from the Campanian–Maastrichtian Loncoche Formation in southern Mendoza, west-central Argentina, which records the initial connection of the Neuquén Basin to the Atlantic Ocean. Six species of bivalves (Diplodon bodenbenderi, Pleiodon? sp., Isognomon? mechanquilensis, Mactridae? indet., Panopea? sp., and Laternula sp.) and three of gastropods (Paleoanculosa macrochilinoides, Paleoanculosa ameghiniana, and a possible cerithioidean) are described. Specimens were collected from fine to coarse sandstones, which may be massive or with planar stratification, planar-cross stratification or trough-cross stratification, and a few from bioclastic limestones and mudstones. Although the sections are from 50 to 300 m thick, the specimens are found only in the lower 120 m. Molluscs represent autochthonous/parautochthonous assemblages composed of mostly non-broken gastropods and articulated bivalve specimens, some of which show signs of postmortem transport; however, they were not removed far from their original habitat. Review of the habitats of living genera supports the inference of dominantly freshwater palaeoenvironments in the lower and middle part of the Loncoche Formation, with restricted marine influence in the southernmost localities studied where there are a few samples that contain specimens belonging to predominantly marine groups (e.g., Laternula, Panopea).  相似文献   

10.
The Atuel depocenter of the Neuquén basin originated as an Upper Triassic to Lower Jurassic rift system, later inverted during the Andean contractional deformation. In order to study the extensional architecture and the kinematic evolution of this depocenter, we collected a large amount of field and sub-surface data, consisting of slip data from outcrop-scale normal faults, thickness and facies distribution within the synrift deposits, and structural data from angular and progressive unconformities. The Atuel depocenter has a NNW trend, showing a bimodal distribution of NNW and WNW major faults (first and second order faults). On the other hand, from kinematic indicators measured on outcrop-scale faults (third and fourth order faults), we found a mean NE internal extension direction, which is oblique to the general trend of the sub-basin. Taking these particular characteristics into account, we interpreted the Atuel depocenter as an oblique rift system. We evaluated two mechanisms in order to explain the development of this transtensional system: 1) reactivation of upper-crustal NNW-oriented Paleozoic shear zones, and 2) oblique stretching of a previous NNW-oriented lithospheric weakness zone.  相似文献   

11.
A new CA-ID TIMS U–Pb age of 130.39 ± 0.16 Ma is presented here from the Pilmatué Member of the Agrio Formation, lower Hauterivian of the Neuquén Basin in west-central Argentina. This high precision radioisotopic new age, together with the two former ones from the upper Hauterivian Agua de la Mula Member of the Agrio Formation and modern cyclostratigraphic studies in the classical sections of the Mediterranean Province of the Tethys indicate that the Hauterivian Stage spans some 6 Ma, starting ca. 132 Ma and ending ca. 126 Ma. These radioisotopic ages are tied to ammonite biostratigraphy and calcareous nannofossil bioevents and biozones recognized in the Neuquén Basin which in turn are correlated with the Mediterranean standard zones. A new geological time scale for the Valanginian–Hauterivian stages in the Mediterranean region integrating astrochronological and radiochronological data differs with the current official geological time scale which still maintains poorly constraint absolute ages for the Berriasian-Aptian interval.  相似文献   

12.
The Chos Malal fold and thrust belt (FTB) is a thick-skinned mountain belt formed by Mesozoic deposits of the Neuquén Basin during the Andean orogeny. Four structural cross-sections in the entire deformed area, supported by field and subsurface data, suggest a strong link between thick and thin-skinned structures. Major Andean thrusts branching from a detachment placed 12 km into the crust created large basement wedges, which were inserted in the cover producing minor order structures. The westernmost of these wedges is exposed forming the Cordillera del Viento, while others basement slices at depth were interpreted from seismic lines. These thick-skinned structures transferred deformation to the cover along the Auquilco Formation and contributed to create all thin-skinned structures surveyed in the Chos Malal FTB. We recognized half-graben geometries in the seismic lines, preserving their extensional configuration, which suggests that the main normal faults were not inverted. Shortenings calculated from the restoration of the four cross-sections are 16.9 km (29.7%), 16.9 km (29.7%), 14.7 km (26.9%) and 14.15 km (26.3%), which evidence a slight diminution of the contraction toward the south probably associated with the plunge of the Cordillera del Viento structure in this segment of the Chos Malal FTB.  相似文献   

13.
Four gastropod species are described from dysaerobic biofacies of the lower part of the Agua de la Mula Member of the Agrio Formation, Neuquén Basin: Metacerithium turriculatum (Forbes, 1845), Nerineopsis acutecarinatum (Behrendsen, 1891) and the new species Ampullina pichinka and Mesalia? kushea. They were active epifaunals and possibly deposit-feeders and/or browsers, and epifaunal to semi-infaunal possibly suspension- or deposit-feeder in the case of M.? kushea, thriving in soft to firm substrates. These gastropods, together with two aporrhaid species, are the dominant components of a typically small-sized, low-diversity macrobenthic fauna that occurs in dark, organic-rich shales. The facies in which this fauna is recorded are thought to represent a transition from lower to upper outer ramp marine settings, in the context of a second-order TST and early stages of a HST. They record a transition from lower dysoxic conditions in the lowest part of the Agua de la Mula Member to upper dysoxic conditions upwards. Two distinct gastropod biofacies were recognized corresponding to the two identified stages: biofacies A, dominated by Protohemichenopus neuquensis and N. acutecarinatum, more tolerant to dysoxic conditions, and biofacies B, dominated by M. turriculatum and Mesalia? kushea, less tolerant to oxygen deficiency.  相似文献   

14.
Stratabound barite and celestite deposits, related mainly to three evaporitic sequences, occur in the Mesozoic Neuquen Retroarc Basin, developed to the east of the Andean Cordillera of western Argentina. This basin is filled with Jurassic and Cretaceous marine to continental sediments that unconformably overlie basement rocks of Paleozoic to Triassic age.

Celestite deposits formed by initial precipitation from seawater, with later crystallization during diagenesis and recrystallization related to Eocene intrusive activity. This is supported by evidence of evaporitic associations, textures, and Sr and S-isotope data. The barite deposits were deposited in a near-shore environment and could have formed as a result of interaction between barium absorbed in clay minerals (derived from weathering of basement rocks) and hypersaline seawater. This genetic model is supported by evidence such as the stratabound setting, textures, and Sr and S-isotope data.

Carbon and oxygen-isotopic compositions of carbonates, which are interbedded with celestites, are in the range expected for marine carbonates. Lead-isotopic compositions of galenas from bedded and vein barite deposits of Upper Jurassic and Lower Cretaceous ages are consistent with Pb remobilization from a source located at high levels of the upper crust, possibly the basement rocks.  相似文献   

15.
Ammonite-based biostratigraphic schemes for the Lower Cretaceous are fairly well refined across the world, from the standard zonation in the West Mediterranean province to the Boreal and Austral provinces in the northern and southern hemispheres, respectively. However, the lack of radioisotopic ages associated to the fossil-rich, Lower Cretaceous marine successions has hindered the accurate establishment of the numerical ages for the lower boundaries of its several stages (from Berriasian to Albian). Geochronological dating by U–Pb SHRIMP of a tuff layer that occurs within beds belonging to the Holcoptychites neuquensis Zone in the Pilmatué Member of the Agrio Formation in the Austral province (Neuquén Basin, Argentina) has resulted in an absolute age of 130.0 ± 0.6 Ma (2 sigma internal errors only) or 130.0 ± 0.8 Ma (including calibration and decay constant uncertainties). This age is interpreted to represent the time of eruption and thus the timing of the pyroclastic deposit. The H. neuquensis Zone is the equivalent of the A. radiatus Zone in the West Mediterranean province. Therefore, the obtained age is the first numerical data that could help constrain the Hauterivian lower boundary. Indeed, there is reasonable agreement with the latest proposed lower boundary of the Hauterivian at ∼132.9 Ma. On the other hand, the duration recently established for this stage would be hard to reconcile with the stratigraphic record of the entire Hauterivian in the study region (northeastern Neuquén Basin). Therefore, the results of this contribution could also help to assess the extent of the Hauterivian and associated stages.  相似文献   

16.
The Anacleto Formation is the uppermost unit of the Neuquén Group, which makes up the foreland stage infill of the Neuquén Basin, during Late Cretaceous. The detailed sedimentological study performed in the excellent outcrops of this formation on the eastern border of the basin allowed the identification of eight fluvial lithofacies, grouped into six facies associations. A meandering fluvial system with palaeo flows from the SW can be interpreted from distribution of facies associations, architectural framework, channel/floodplain ratio, etc. The compositional analysis of the sandstones was performed by mean of petrographic characterization and modal analysis. Sandstones of the Anacleto Fm are mainly subarkosic, arkosic, lithic arenites and, to a lesser extent, sublitoarenites (Q54-F25-R21; Q52-F24-L25). The composition suggests underlying igneous, metamorphic and sedimentary rocks in the main source area. Sedimentological and petrographic analyses, jointly with palaeocurrents orientations suggest that high areas of the North Patagonian Massif were the main source of the fluvial system. The diagenetic stages interpreted from the petrographic characters, SEM observations and X-ray diffraction determine eodiagenesis and telodiagenesis, which are consistent with the burial history of the Neuquén Group. Furthermore, palaeoclimatic considerations based on compositional analysis suggest semiarid to semihumid conditions for the deposition of the Anacleto Fm. These conditions are also supported by clay mineralogy that confirmed smectite as dominant species. A strong climatic seasonality is also deduced by the presence of calcrete levels and frequent discharge channels.  相似文献   

17.
In terminal fluvial-fan systems, characteristic proximal to distal variations in sedimentary architectures are recognized to arise from progressive downstream loss of water discharge related to both infiltration and evaporation. This work aims to elucidate downstream trends in facies and architecture across the medial and distal zones of terminal-fan systems, which record transitions from deposits of channel elements to lobe-like and sheet-like elements. This is achieved via a detailed characterization of ancient ephemeral fluvial deposits of the well-exposed Kimmeridgian Tordillo Formation (Neuquén Basin, Argentina). The fine sand-prone and silt-prone succession associated with the medial to distal sectors of the system has been studied to understand relationships between depositional processes and resulting architectures. Facies and architectural-element analyses, and quantification of resulting sedimentological data at multiple scales, have been undertaken to characterize sedimentary facies, facies transitions, bed types, architectural elements and larger-scale architectural styles. Eight bed types with distinct internal facies transitions are defined and interpreted in terms of different types of flood events. Channelized and non-channelized architectural elements are defined based on their constituent bed types and their external geometry. The most common elements are terminal lobes, which are composite bodies within which largely unconfined sandy deposits are stacked in a compensational manner; a hierarchical arrangement of internal components is recognized. Proximal feeder-channel avulsion events likely controlled the evolution of terminal-lobe elements and their spatiotemporal shifts. Stratigraphic relations between architectural elements record system-wide trends, whereby a proximal sector dominated by channel elements passes downstream via a gradational transition to a medial sector dominated by sandy terminal-lobe elements, which in turn passes further downstream to a distal sector dominated by silty terminal lobe-margin and fringing deposits. This work enhances current understanding of the stratigraphic record of terminal fluvial systems at multiple scales, and provides insight that can be applied to predict the facies and architectural complexity of terminal fluvial successions.  相似文献   

18.
The Neuquén Basin, developed in a retroarc setting in the central-west of Argentina, contains more than 6000 m of Mesozoic marine and continental sedimentary rocks. These rocks were deformed during the Andean orogeny leading to several thick and thin-skinned fold-and-thrust belts. The Early Cretaceous Agrio Formation is composed by a thick marine succession predominantly of black shales in which highlights a thin fluvial-aeolian sandy interval named Avilé Member. The Avilé Member, one of the most important hydrocarbon reservoirs of the Neuquén Basin, constitutes an excellent structural marker. At the Chos Malal fold-and-thrust belt, the strong mechanical anisotropy given by the contrasting lithology of the Avilé Member within the Agrio Formation favored the location of detachments along the shales and ramps affecting the sandstones during the Andean compression. Detailed field mapping at the Chacay Melehue area allowed us to recognize tectonic repetitions of the Avilé Member, which form imbrications in the simplest case whereas in other places constitute a more complex combination of imbrications, including fault-bend folding that duplicates stratigraphic sequences and fault-propagation folding that deforms more intensely the duplicated units. Along three structural cross-sections we illustrate the geometry of these tectonic repetitions of the Agrio Formation, which in the northern area have an eastward-vergence and in the central and southern regions show a clear westward-vergence. A tear fault along the arroyo Chacay Melehue could explain this vergence change. Forward modeling of the structures at the central cross-section, where a backthrust system produced imbrication, duplication and folding of the Agrio Formation, allows us to propose a balanced kinematic reconstruction of this complex structure and to compare the features produced at different stages of the deformation sequence with field observations. Our kinematic interpretation shows that the tectonic repetitions of the Agrio Formation involve 3 km of shortening above a basal detachment within the lowermost black shales. Based on a regional balanced cross-section constructed from the basement-cored Cordillera del Viento anticlinorium toward the east, across the thin-skinned sector of the Chos Malal FTB, it is possible to connect the backthrust system with east-vergent fault-bend folds that involve the stratigraphic units below the Agrio Formation. Finally, we propose a regional structural model considering the Cordillera del Viento as a basement wedge related to a low angle Andean thrust that is inserted into the sedimentary cover producing structures of different order, which evidence a strong relationship between thick and thin-skinned structures during the Andean orogeny.  相似文献   

19.
The discovery of marine to brackish and fresh-water carbonates in the inner Agrio fold-and-thrust belt at Pichaihue, Neuquén, Argentina, located to the west of the Andean orogenic front, imposes important constraints on the paleogeography of the first Atlantic transgression in the Neuquén Basin related to the break-up of Western Gondwana. The constraints on the timing and areal extent of these deposits shed light on the early uplift history of the southern Andes. These limestones are part of the Maastrichtian–Danian Malargüe Group, which was previously only known from its exposures in the extra-Andean area, representing foreland basin deposits. The presence of stromatolites, oncoids, serpulids, bivalves and gastropods as well as silicified stems of macrophytes indicates a shallow marine, partially brackish environment associated with non-marine deposits. These strata are interfingered with and overlie distal tuffs and proximal pyroclastic flows, whose geochemical characteristics point to a magmatic arc source. SHRIMP U–Pb dating of volcanic zircons of these tuffs yielded an age of 64.3 ± 0.9 Ma that confirms the correlation to the Maastrichtian–Paleocene marine transgression from the Atlantic Ocean. The change in the paleoslope of the basin from Pacific Ocean transgressions to this Atlantic transgression is related to the uplift and deformation of the Agrio fold-and-thrust belt. The Pichaihue Limestone is unconformably deposited on volcanic agglomerates which in turn unconformably overlie Early Cretaceous deposits. Based on these data, it is confirmed that the Cretaceous uplift of the Andes was episodic at these latitudes, with a first pulse in the Cenomanian and a second one in pre-Maastrichtian times. The episodic uplift is also related to an eastward migration of the thrust front and the volcanic arc, related to a previously proposed shallowing of the subduction zone. These episodes were controlled by the Western Gondwana break-up and the beginning of absolute motion of South America toward the west.  相似文献   

20.
A detailed sedimentological analysis of the so called “Chachil Limestones” at its type locality around the Mirador del Chachil area, southwestern Neuquén province, Argentina, is presented in this paper for the first time. It is based on a macro/microfacial analysis and their environmental interpretation by means on texture, fabric, bioclasts, intrabasinal and extrabasinal grain amounts, sedimentary structures, bioturbations and hydro-dynamism. Because of the recognition of different facies associations, but no pure limestones, it is more suitable to refer these sediments as the Chachil Formation. The depositional environment of this unit is interpreted to correspond to an internal platform dominated by tides, with carbonate sedimentation disturbed by repeated explosive volcanic episodes, which reduced the sedimentation space, causing retrogradation of the sedimentary system and coastal onlap. In addition, a new recalibration of the U-Pb zircon dating used for the geochronological analysis reveals a small change with regard to previous information that has been used to recalculate the data, is presented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号