首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Jidetun deposit is a large porphyry Mo deposit that is located in central Jilin Province, northeast China. The Mo mineralization occurs mainly at the edge of porphyritic granodiorite, as well as the adjacent monzogranite. Field investigations, cross-cutting relationships, and mineral paragenetic associations indicate four stages of hydrothermal activity. To determine the relationships between mineralization and associated magmatism, and better understand the metallogenic processes in ore district, we have undertaken a series of studies incluiding molybdenite Re–Os and zircon U–Pb geochronology, fluid inclusions microthermometry, and C–H–O–S–Pb isotope compositions. The molybdenite Re–Os dating yielded a well-defined isochron age of 168.9 ± 1.9 Ma (MSWD = 0.34) that is similar to the weighted mean 206Pb/238U age of 173.5 ± 1.5 Ma (MSWD = 1.8) obtained from zircons from the porphyritic granodiorite. The results lead to the conclusion that Mo mineralization, occurred in the Middle Jurassic (168.9 ± 1.9 Ma), was spatially, temporally, and genetically related to the porphyritic granodiorite (173.5 ± 1.5 Ma) rather than the older monzogranite (180.1 ± 0.6 Ma). Fluid inclusion and stable (C–H–O) isotope data indicate that the initial H2O–NaCl fluids of mineralization stage I were of high-temperature and high-salinity affinity and exsolved from the granodiorite magma as a result of cooling and fractional crystallization. The fluids then evolved during mineralization stage II into immiscible H2O–CO2–NaCl fluids that facilitated the transport of metals (Mo, Cu, and Fe) and their separation from the ore-bearing magmas due to the influx of abundant external CO2 and heated meteoric water. Subsequently, during mineralization stage III and IV, increase of pH in residual ore-forming fluids on account of CO2 escape, and continuous decrease of ore-forming temperatures caused by the large accession of the meteoric water into the fluid system, reduced solubility and stability of metal clathrates, thus facilitating the deposition of polymetallic sulfides.  相似文献   

2.
The large-scale Duobaoshan porphyry Cu–Mo–(Au) deposit is located at the north segment of the Da Hinggan Mountains, northeast China. Six molybdenite samples from the Duobaoshan deposit were selected for Re–Os isotope measurement to define the mineralization age of the deposit, yieldings a Re–Os isochron age of 475.9 ± 7.9 Ma (2σ), which is accordant with the Re–Os model ages of 476.6 ± 6.9–480.2 ± 6.9 Ma. This age is consistent with the age of the related granodiorite porphyry, which was dated as 477.2 ± 4 Ma by zircon U–Pb analysis using LA-ICP-MS. These ages disagree with the previous K–Ar age determinations that suggest a correlation of intrusive rocks of the Duobaoshan area with the Hercynian intrusive rocks of Carboniferous–Permian age. These ages demonstrate that the Duobaoshan granodiorite porphyry and related Cu–Mo deposit occurred in the Early Ordovician. The rhenium content of molybdenite varies from 290.9 to 728.2 μg/g, with an average content of 634.8 μg/g. The high rhenium content in molybdenite of the Duobaoshan deposit suggests that the ore-forming materials may be mainly of mantle source.  相似文献   

3.
The Fujiawu porphyry Cu–Mo deposit is one of several porphyry Cu–Mo deposits in the Dexing district, Jiangxi Province, Southeast China. New zircon SHRIMP U–Pb data yield a weighted mean 206Pb/238U age of 172.0 ± 2.1 and 168.5 ± 1.4 Ma from weakly altered granodiorite porphyry and quartz diorite porphyry, respectively. Two hydrothermal biotites from granodiorite porphyry give an Ar–Ar step-heating plateau age of 169.9 ± 1.8 and 168.7 ± 1.8 Ma. Hydrothermal apatite exsolved from altered biotite yields an isotope dilution thermal ionization mass spectrometry isochron age of 164.4 ± 0.9 Ma. The apatite age is similar to the ages obtained from hydrothermal rutile (165.0 ± 1.1 and 164.8 ± 1.6 Ma) and indicates that the magmatism and hydrothermal activity in the Fujiawu deposit occurred in the Middle Jurassic. Hydrothermal fluid circulation related to multiple stages of magma emplacement resulted in Cu–Mo mineralization in the Fujiawu porphyry deposit. The zircon SHRIMP U–Pb ages and the published molybdenite Re–Os age (170.9 ± 1.5 Ma) represent the timing of magma crystallization and Mo mineralization, whereas the rutile and apatite U–Pb ages reflect the timing of Cu mineralization following quartz diorite emplacement. The data suggest slow cooling after emplacement of the quartz diorite porphyry.  相似文献   

4.
The east-central part of Jilin Province, located on the eastern continental margin of northeast China along the eastern Xing–Meng orogenic belt, hosts more than 10 large- and medium-scale Mo deposits. The major types of mineralization include porphyry, skarn, and quartz vein. To better understand the formation and distribution of porphyry Mo deposits in this area, we investigated the geological characteristics of the deposits and applied molybdenite Re–Os isotope dating to constrain the age and source of mineralization. The results, combined with existing data, show that: (a) the Daheishan Mo deposit yields an isochron age of 168.7 ± 3.1 Ma; (b) the Shuangshan Mo deposit yields an isochron age of 171.6 ± 1.6 Ma; (c) the Liushengdian Mo deposit yields a weighted mean model age of 168.7 ± 1.4 Ma; (d) the Jiapigou Mo deposit yields a weighted mean model age of 196 ± 4 Ma; and (e) the Sancha Mo deposit yields a weighted mean model age of 183.1 ± 1.8 Ma. Therefore, the Mo mineralization occurred in the Early–Middle Jurassic (196–167 Ma), during the late stages of magmatism or during the late evolution of magma chambers. The geodynamic setting at this time was dominated by subduction of the paleo-Pacific Plate beneath the Eurasian continent. The rhenium content of molybdenite varies from 0.2 to 99.7 ppm, suggesting that the ore-forming materials may come from a crustal source or a mixed crustal and mantle source.  相似文献   

5.
The Donggebi Mo deposit located in NW China is a newly discovered, large, stockwork-type Mo deposit with ore reserves of 441 Mt @ 0.115% Mo. Ore bodies occur along faults and fractures at the external contact zone of a concealed porphyritic granite and volcaniclastic rocks of Gandun Formation, spatially associated with a fine-grained granite. Mo-bearing veins are mainly assemblages of volatile-rich K-feldspar-quartz-oxide, K-feldspar-quartz, polymetallic sulfides and calcite-quartz. Zircon LA-ICP-MS U–Pb dating yielded concordant ages of 234.6 ± 2.7 Ma and 231.8 ± 2.4 Ma for the porphyritic granite and the fine-grained granite, respectively; molybdenite Re–Os dating gave an isochron age of 234.0 ± 2.0 Ma. These ages further confirm an important and extensive magmatic-metallogenic event in Eastern Tianshan during the Triassic Indosinian orogeny. Whole-rock major and trace element analyses indicate that the granitic rocks associated with Mo mineralization are high in Si, K, Rb, Th, Nb, Ta, Ga and LREE, but low in P, Ti, Sr and Ba, belonging to high-K calc-alkaline granites with A-type features. Magma was likely derived from the re-melting of thickened lower crust in a post-collision compression environment in the Late Permian, experienced strong crystal fractionation and formed the large Donggebi Mo deposit under an intra-plate extension setting in the Early to Middle Triassic.  相似文献   

6.
Zijinshan is the largest high-sulfidation epithermal Cu–Au deposit on mainland China. The primary mineralization at the deposit is characterized by pyrite, digenite and covellite. Although some RbSr isochron ages of the fluid inclusions in quartz and the apparent K-Ar age of the Cu-bearing alunite alteration zone have been previously interpreted as the ore-forming age, the Rb-Sr and K-Ar dating systems are usually readily reset due to their closure temperature, and thus document the latest thermal event. In order to precisely determine the age of the Cu mineralization, eight-pyrite separates were Re-Os dated, and seven yielded an isochron age of 103 ± 4 Ma with an initial 187Os/188Os ratio of 0.45 ± 0.14. This date is interpreted as the age of Cu mineralization, which is in agreement with geochronological data from molybdenite and the porphyritic granodiorite that hosts Cu-Mo mineralization at Luoboling (located 2 km NE of Zijinshan), suggesting that these two deposits were formed during the same metallogenic event. The relatively low initial 187Os/188Os ratio indicates that the source of the Cu at Zijinshan is predominantly the crust with input from the mantle.  相似文献   

7.
This is a brief research report about the recently-discovered and currently being explored Dahutang tungsten deposit (or ore field) in northwestern Jiangxi, south-central China. The deposit is located south of the Middle–Lower Yangtze River valley Cu–Au–Mo–Fe porphyry–skarn belt (YRB). The mineralization is genetically associated with Cretaceous porphyritic biotite granite and fine-grained biotite granite and is mainly hosted within a Neoproterozoic biotite granodiorite batholith. The Dahutang ore field comprises veinlets-disseminated (~ 95% of the total reserve), breccia (~ 4%) and wolframite–scheelite quartz vein (~ 1%) ore styles. The mineralization and alteration are close to the pegmatite shell between the Cretaceous porphyritic biotite granite and Neoproterozoic biotite granodiorite and the three styles of ore bodies mentioned above are related to zoned hydrothermal alteration that includes greisenization, K-feldspar alteration, silicification, carbonatization, chloritization and fluoritization arranged in time (early to late) and space (bottom to top).Five samples of molybdenite from the three types of ores have been collected for Re/Os dating. The results show Re/Os model ages ranging from 138.4 Ma to 143.8 Ma, with an isochron age of 139.18 ± 0.97 Ma (MSWD = 2.9). The quite low Re content in molybdenite falls between 0.5 ppm and 7.8 ppm that is indicative of the upper crustal source. This is quite different from molybdenites in the YRB Cu–Au–Mo–Fe porphyry–skarn deposits that contain between 53 ppm and 1169 ppm Re, indicating a mantle source.The Dahutang tungsten system is sub-parallel with the YRB porphyry–skarn Cu–Au–Mo–Fe system. Both are situated in the north margin of the Yangtze Craton and have a close spatial–temporal relationship. This possibly indicates a comparable tectonic setting but different metal sources. Both systems are related to subduction of the Paleo-Pacific plate beneath the Eurasian continent in Early Cretaceous. The Cu–Au–Mo–Fe porphyry–skarn ores are believed genetically related to granitoids derived from the subducting slab, whereas the porphyry W deposits are associated with S-type granitoids produced by remelting of the upper crust by heat from upwelling asthenoshere.  相似文献   

8.
The super-large Shuangjianzishan Pb–Zn–Ag deposit is a newly discovered deposit located in the Huanggang–Ganzhuermiao polymetallic metallogenic belt of Inner Mongolia, NE China. The deposit's resource includes 0.026 Mt Ag, 1.1 Mt Pb, and 3.3 Mt Zn. The deposit is controlled by a NW-trending ductile shear zone and NE- and NW-trending faults in black pelite assigned to the lower Permian Dashizhai Formation. LREE enrichment, HREE depletion, Nb, Ta, P, and Ti depletion, and Zr and Hf enrichment characterize felsic magmatic rocks in the Shuangjianzishan Pb–Zn–Ag district. The ages of porphyritic monzogranite, rhyolitic crystal–vitric ignimbrite, and porphyritic granodiorite are 254–252, 169, and 130 Ma, respectively. Pyrite sampled from the mineralization has Re–Os isochron ages of 165 ± 7 Ma, which suggest the mineralization is associated with the ca. 169 Ma magmatism in the Shuangjianzishan district.Zircons extracted from the porphyritic granodiorite yield εHf(t) values of − 11.34 to − 1.41, with tDM2 dates of 1275–1901 Ma. The εHf(t) values of zircons in the rhyolitic crystal–vitric ignimbrite and the ore-bearing monzogranite porphyry are 7.57–16.23 and 10.18–15.96, respectively, and their tDM2 ages are 177–733 and 257–632 Ma, respectively. Partial melting of depleted mantle resulted in the formation of the ca. 254–252 Ma ore-bearing porphyritic monzogranite and the ca. 169 Ma rhyolitic crystal–vitric ignimbrite; dehydration partial melting of subducted oceanic crust resulted in the formation of the ca. 130 Ma porphyritic granodiorite. The porphyritic monzogranite was emplaced during the late stages of closure of the Paleo-Asian Ocean during the transformation from a collisional to extensional tectonic setting. The ca. 170 and ca. 130 Ma magmatism and mineralization in the Shuangjianzishan district are related to subduction of the Mongolia–Okhotsk Ocean and subduction of the Paleo-Pacific Ocean Plate, respectively.  相似文献   

9.
《Ore Geology Reviews》2007,30(3-4):307-324
The area of the Middle–Lower Yangtze River valley, Eastern China, extending from Wuhan (Hubei province) to western Zhenjiang (Jiangsu province), hosts an important belt of Cu–Au–Mo and Fe deposits. There are two styles of mineralization, i.e., skarn/porphyry/stratabound Cu–Au–Mo–(Fe) deposits and magnetite porphyry deposits in several NNE-trending Cretaceous fault-bound volcanic basins. The origin of both deposit systems is much debated. We dated 11 molybdenite samples from five skarn/porphyry Cu–Au–Mo deposits and 5 molybdenite samples from the Datuanshan stratabound Cu–Au–Mo deposit by ICP-MS Re–Os isotope analysis. Nine samples from the same set were additionally analyzed by NTIMS on Re–Os. Results from the two methods are almost identical. The Re–Os model ages of 16 molybdenite samples range from 134.7 ± 2.3 to 143.7 ± 1.6 Ma (2σ). The model ages of the five samples from the Datuanshan stratabound deposit vary from 138.0 ± 3.2 to 140.8 ± 2.0 Ma, with a mean of 139.3 ± 2.6 Ma; their isochron age is 139.1 ± 2.7 Ma with an initial Os ratio of 0.7 ± 8.1 (MSWD = 0.29). These data indicate that the porphyry/skarn systems and the stratabound deposits have the same age and suggest an origin within the same metallogenic system. Albite 40Ar/39Ar dating of the magnetite porphyry deposits indicates that they formed at 123 to 125 Ma, i.e., 10–20 Ma later. Both mineralization styles characterize transitional geodynamic regimes, i.e., the period around 140 Ma when the main NS-trending compressional regime changed to an EW-trending lithospheric extensional regime, and the period of 125–115 Ma of dramatic EW-trending lithospheric extension.  相似文献   

10.
The newly discovered Chalukou giant porphyry Mo deposit, located in the northern Great Xing’an Range, is the biggest Mo deposit in northeast China. The Chalukou Mo deposit occurs in an intermediate-acid complex and Jurassic volcano-sedimentary rocks, of which granite porphyry, quartz porphyry, and fine-grained granite are closely associated with Mo mineralization. However, the ages of the igneous rocks and Mo mineralization are poorly constrained. In this paper, we report precise in situ LA-ICP-MS zircon U–Pb dates for the monzogranite, granite porphyry, quartz porphyry, fine grained granite, rhyolite porphyry, diorite porphyry, and andesite porphyry in the Chalukou deposit, corresponding with ages of 162 ± 2 Ma, 149 ± 5 Ma, 148 ± 2 Ma, 148 ± 1 Ma, 137 ± 3 Ma, 133 ± 2 Ma, and 132 ± 2 Ma, respectively. Analyses of six molybdenite samples yielded a Re–Os isochron age of 148 ± 1 Ma. These data indicate that the sequence of the magmatic activity in the Chalukou deposit ranges from Jurassic volcano-sedimentary rocks and monzogranite, through late Jurassic granite porphyry, quartz porphyry, and fine-grained granite, to early Cretaceous rhyolite porphyry, diorite porphyry, and andesite porphyry. The Chalukou porphyry Mo deposit was formed in the late Jurassic, and occurred in a transitional tectonic setting from compression to extension caused by subduction of the Paleo-Pacific oceanic plate.  相似文献   

11.
East Qinling is the largest porphyry molybdenum province in the world; these Mo deposits have been well documented. In West Qinling, however, few Mo deposits have been discovered although granitic rocks are widespread. Recently, the Wenquan porphyry Mo deposit has been discovered in Gansu province, which provides an insight into Mo mineralization in West Qinling. In this paper we report Pb isotope compositions for K-feldspar and sulfides, S isotope ratios for sulfides, the results obtained from petrochemical study and from in situ LA-ICP-MS zircon U-Pb dating and Hf isotopes. The granitoids are enriched in LILE and LREE, with REE and trace element patterns similar to continental crust, suggesting a crustal origin. The Mg# (40.05 to 56.34) and Cr and Ni contents are high, indicating a source of refractory mafic lower crust. The εHf(t) values of zircon grains from porphyritic monzogranite range from ? 2.9 to 0.6, and from granitic porphyry vary from ? 3.3 to 1.9. The zircons have TDM2 of 1014 to 1196 Ma for the porphyritic monzogranite and 954 to 1224 Ma for the granitic porphyry, implying that these granitoids were likely derived from partial melting of a Late Mesoproterozoic juvenile lower crust. The Pb isotope compositions of the granitoids are similar to granites in South China, showing that the magma was sourced from the middle–lower crust in the southern Qinling tectonic unit. The Pb isotopic contrast between the Mo-bearing granitoids and ores shows that the Pb in the ore-forming solution was derived from fractionation of a Triassic magmatic system. δ34S values of sulfides are between 5.02 and 5.66‰, similar to those associated with magmatic-hydrothermal systems. LA-ICP-MS zircon U-Pb dating yields crystallization ages of 216.2 ± 1.7 and 217.2 ± 2.0 Ma for the granitoids, consistent with a previously reported molybdenite Re-Os isochron age of 214.4 ± 7.1 Ma. This suggests that the Mo mineralization is related to the late Triassic magmatism in the West Qinling orogenic belt. In view of these geochemical results and known regional geology, we propose that both granitoid emplacement and Mo mineralization in the Wenquan deposit resulted from the Triassic collision between the South Qinling and the South China Block, along the Mianlue suture. Since Triassic granitoid plutons commonly occur along the Qinling orogenic belt, the Triassic Wenquan Mo-bearing granitoids highlight the importance of the Triassic tectono-magmatic belt for Mo exploration. In order to apply this metallogenic model to the whole Qinling orogen, further study is needed to compare the Wenquan deposit with other deposits.  相似文献   

12.
The recently-discovered Wenquan porphyry Mo deposit hosted in the Wenquan granite of the West Qinling Orogen has been recognized as a product of the Indosinian metallogenesis. Three generations of mineral assemblage for the deposit are identified as follows: (1) quartz–biotite–K-feldspar; (2) quartz–sulfide and (3) sulfide–calcite. Geochemical study shows that the mafic microgranular enclaves (MMEs) in the ore-bearing Wenquan granite have lower SiO2, and higher Mg# and Nb/Ta ratios than the host granite itself. Different from the granite which have zircon εHf(t) values of − 3.6–3.0 and TDM2 of 1234–890 Ma, the MMEs are characterized by the εHf(t) values of − 10.1–10.8 and TDM1 of 865–441 Ma. This can be interpreted to indicate a mixture origin of the Meso- and Neoproterozoic crust-derived component and Neoproterozoic SCLM-derived materials for the formation of the Wenquan granite, which played an essential role in the Mo mineralization. Comparative Pb isotopic data between ores and K-feldspar suggest that the Wenquan granitic magma originated from the middle-lower crust of the South China Block and the ore-forming materials were incorporated by hydrothermal fluid differentiated from the Triassic magmatic system, with minor contribution of sedimentary rocks. The δ34S values of 5.0–11.7‰ with a pronounced mode at 5.0 to 6.1‰ for the ores probably represent the sulfur incorporation of a typical magmatic hydrothermal fluid contaminated by heavy sulfur of Devonian sediments. The granite yielded the zircon U–Pb ages of 218 ± 2.4 Ma and 221 ± 1.3 Ma, as the same as the ages of 217 ± 2.0 Ma and 218 ± 2.5 Ma obtained for the MMEs. These ages are indistinguishable with the molybdenite Re–Os isochron age of 219 ± 5.2 Ma which is the timing for the Mo mineralization. Tectonically, the magmatic mixture processes of the Wenquan granite and the Mo mineralization to form the Wenquan Mo deposit contemporaneously occurred during the transition of tectonic regime from syn- to post-collision orogeny in the Qinling Orogen in the Late Triassic.  相似文献   

13.
The Zijinshan ore district occurs as one of the largest porphyry-epithermal Cu–Au–Mo ore systems in South China, including the giant Zijinshan epithermal Cu–Au deposit and the large Luoboling porphyry Cu–Mo deposit. The mineralization is intimately related to Late Mesozoic large-scale tectono-magmatic and hydrothermal events. The Cu–Au–Mo mineralization occurs around intermediate-felsic volcanic rocks and hypabyssal porphyry intrusions. In this study, we summarize previously available Re–Os isotopes, zircon U–Pb age and trace elements, and Sr–Nd–Pb isotope data, and present new Pb–S and Re–Os isotope data and zircon trace elements data for ore-related granitoids from the Zijinshan high-sulfidation epithermal Cu–Au deposit and the Luoboling porphyry Cu–Mo deposit, in an attempt to explore the relationship between the two ore systems for a better understanding of their geneses. The ore-bearing porphyritic dacite from the Zijinshan deposit shows a zircon U-Pb age of 108–106 Ma and has higher zircon Ce4+/Ce3+ ratios (92–1568, average 609) but lower Ti-in-zircon temperatures (588–753 °C, average 666 °C) when compared with the barren intrusions in the Zijinshan ore district. Relative to the Zijinshan porphyritic dacite, the ore-bearing granodiorite porphyry from the Luoboling deposit show a slightly younger zircon U–Pb age of 103 Ma, but has similar or even higher zircon Ce4+/Ce3+ ratios (213–2621, average 786) and similar Ti-in-zircon temperatures (595–752 °C, average 675 °C). These data suggest that the ore-bearing magmatic rocks crystallized from relatively oxidized and hydrous magmas. Combined with the high rhenium contents (78.6–451 ppm) of molybdenites, the Pb and S isotopic compositions of magmatic feldspars and sulfides suggest that the porphyry and ore-forming materials in the Luoboling Cu–Mo deposit mainly originated from an enriched mantle source. In contrast, the ore-bearing porphyritic dacite in the Zijinshan Cu–Au deposit might be derived from crustal materials mixing with the Cathaysia enriched mantle. The fact that the Zijinshan Cu–Au deposit and the Luoboling Cu–Mo deposit show different origin of ore-forming materials and slightly different metallogenic timing indicates that these two deposits may have been formed from two separate magmatic-hydrothermal systems. Crustal materials might provide the dominant Cu and Au in the Zijinshan epithermal deposit. Cu and Au show vertical zoning and different fertility because the gold transports at low oxygen fugacity and precipitates during the decreasing of temperature, pressure and changing of pH conditions. It is suggested that there is a large Cu–Mo potential for the deeper part of the Zijinshan epithermal Cu–Au deposit, where further deep drilling and exploration are encouraged.  相似文献   

14.
The Shangjiazhuang Mo deposit is located on the Jiaodong Peninsula in eastern China, which is famous for the ca. 120 Ma “Jiaodong-type” Au deposits with total Au endowment of over 3000 t. In this paper, we discuss the deposit geology, mineralization age, and geochemical features of the host granodiorite of the Shangjiazhuang Mo orebody. Using this information, we aim to clarify the time and geodynamic mechanism for the Mo deposit, which is another constraint to understand the genesis of Au deposits. The Mo mineralization generally occurs as quartz–sulfide veins within the medium-grained Yashan granodiorite. The alteration consists of potassic alteration, silicification, sericitization, chloritization, and carbonatization with a weak unclear zonation. The ore minerals mainly include molybdenite, chalcopyrite, and pyrite. We measured Re–Os isotopes of molybdenite grains, which yielded a weighted mean model age of 116.9 ± 0.81 (MSWD = 1.03) and a well-constrained 187Re–187Os isochron age of 117.1 ± 1.4 Ma (MSWD = 1.6). These ages are slightly younger than the age of Au mineralization on the Jiaodong Peninsula. Rhenium contents of 5.84–29.99 ppm with an average of 16.4 ppm in molybdenites indicate a crustal source. Whole-rock geochemical compositions show that the granodiorite is high-K calc-alkaline and metaluminous to peraluminous. The samples show low Y contents from 8.2 to 10.5 ppm and Sr/Y ratios from 48.2 to 58.8, displaying an adakitic affinity. The Yashan granodiorite has high initial 87Sr/86Sr ratios of 0.7101 to 0.7104, low εNd(t) values of − 17.6 to − 16.7, and zircon εHf(t) values from − 24.8 to − 17.1, with corresponding Hf model ages of 2.7 to 2.2 Ga. These isotopic data, together with the adakitic affinity of the granodiorite, indicate that the parental magma was derived from ancient crust. Mafic microgranular enclaves (MME) that are contemporaneous with the host granodiorite show SiO2 contents of 57.98–58.41 wt% and depletion in Nb–Ta. The MMEs show enriched initial 87Sr/86Sr ratios of 0.7102 to 0.7106 and low εNd(t) values of − 17.3 to − 16.3. The MMEs are the products of mixing between the metasomatized lithospheric mantle-derived mafic magma and the ancient crust-derived felsic magma. The Early Cretaceous Mo mineralization (120–110 Ma) is slightly younger than the peak time of Au mineralization (126–120 Ma) on the Jiaodong Peninsula, but have a different spatial distribution which suggests different sources of Au and Mo. The “Jiaodong-type” Au deposits were probably related to the upwelling of metasomatized lithospheric mantle, while the Mo mineralization on the Jiaodong Peninsula may delineate a 120–110 Ma Mo metallogenic belt along the southern margin of the North China Craton with the East Qinling, which is related to the melting of ancient crustal sources. The subduction of the Paleo-Pacific slab and accompanying asthenospheric upwelling triggered upwelling of metasomatized lithospheric mantle, forming “Jiaodong-type” Au deposits. Subsequently, the ponding of mantle-derived magmas resulted in partial melting of ancient crust and associated Mo deposits.  相似文献   

15.
The Siah-Kamar porphyry Mo deposit, located in the western Alborz-Azarbayjan magmatic belt, is the first and largest Mo deposit in the Iran. This deposit is mainly hosted by an I-type, shoshonitic quartz monzonite to monzonite intrusion and also extends in the surrounding lower to middle Eocene volcanic rocks. The geochemical features of the Siah-Kamar intrusion show enrichment in large-ion lithophile elements (LILE) and light rare earth elements (LREE), and significant negative anomalies of Nb, Ta and Ti analogues to the magmas derived from metasomatized sub-continental mantle. Porphyry molybdenum mineralization is associated with potassic, sericitic, argillic, and propylitic alteration zones. Mineralization occurs in disseminated form, in veins/veinlets and in hydrothermal breccias. The main ore minerals comprise molybdenite, chalcopyrite and bornite. The Microthermometric analyses at Siah-Kamar deposit showed that the halite-bearing inclusions contain high salinity (30.9–60.7 wt% NaCl eq.) with homogenization temperature ranging from 226 °C to 397 °C. The homogenization temperature of two phase liquid-rich inclusions range between 224 °C and 375 °C. The salinity of this type inclusions range from 0.6 to 7.5 wt% NaCl equivalent. The two-phase vapor-rich fluid inclusions homogenized at 270 °C to 397 °C. The salinity of this type fluid inclusions lie within the range of 0.6 to 4.24 wt% NaCl equivalent. Coexisting two phase V-rich and L-rich fluid inclusions in quartz associated with molybdenite provide evidence for boiling at 270 °C to 400 °C. The δ18Owater values of quartz in the molybdenite-bearing veins vary from +2.16 to +4.05‰, suggesting a magmatic origin for the ore-forming fluids. Re-Os isotopic dating of molybdenite indicated a mineralization age of 41.9 ± 3.6 Ma. The Re concentration in molybdenite suggests incorporation of mantle derived melt with crustal materials. The late Eocene magmatism along the western Alborz-Azarbayjan magmatic zone resulted from the Neo-Tethys subduction beneath the Iranian plateau. The Siah-Kamar monzonitic intrusion hosting the Mo deposit, could be considered as an example among the late Eocene intrusions within the western Alborz-Azarbayjan magmatic zone for any further exploration in this zone.  相似文献   

16.
The Balkhash Metallogenic Belt (BMB) in Kazakhstan, Central Asia, with the occurrence of the super-large Kounrad and Aktogai, the large Borly porphyry Cu–Mo deposits, and the large Sayak skarn polymetallic ore-field, is one of the central regions of the Paleozoic Central Asian metallogenic domain and orogenic belt. In this study, newly obtained SHRIMP zircon U–Pb ages of nine samples and 40Ar/39Ar ages of six mineral samples (inclding hornblende, biotite and K-feldspar) give more detailed constraints on the timing of the granitic intrusions and their metallogeny. Porphyritic monzonite granite and tonalite porphyry from the Kounrad deposit yield U–Pb zircon SHRIMP ages of 327.3 ± 2.1 Ma and 308.7 ± 2.2 Ma, respectively. Quartz diorite and porphyritic granodiorite from the Aktogai deposit yield U–Pb SHRIMP ages of 335.7 ± 1.3 Ma and 327.5 ± 1.9 Ma, respectively. Porphyritic granodiorite and granodiorite from the Borly deposit yield U–Pb SHRIMP ages of 316.3 ± 0.8 Ma and 305 ± 3 Ma, respectively. Diorite, granodiorite, and monzonite from the Sayak ore-field yield U–Pb SHRIMP ages of 335 ± 2 Ma, 308 ± 10 Ma, and 297 ± 3 Ma, respectively. Hornblende, biotite, and K-feldspar from the Aktogai deposit yield 40Ar/39Ar cooling ages of 310.6 Ma, 271.5 Ma, and 274.9 Ma, respectively. Hornblende, biotite, and K-feldspar from the Sayak ore-field yield 40Ar/39Ar cooling ages of 287.3 ± 2.8 Ma, 307.9 ± 1.8 Ma, and 249.8 ± 1.6 Ma, respectively. The new ages constrain the timing of Late Paleozoic felsic magmatism to ∼336 to ∼297 Ma. Skarn mineralization in the Sayak ore-field formed at ∼335 and ∼308 Ma. Porphyry Cu–Mo mineralization in the Kounrad deposit and the Aktogai deposit formed at ∼327 Ma, and in the Borly deposit at ∼316 Ma. The Late Paleozoic regional cooling in the temperature range of ∼600 °C to ∼150 °C occurred from ∼307 to ∼257 Ma.  相似文献   

17.
The Duolong district in central Tibet hosts a number of porphyry as well as high sulfidation epithermal copper–gold deposits and prospects, associated with voluminous calc-alkaline volcanism and plutonism. In this study, we present new geochronological, geochemical, isotopic and mineralogical data for both economically mineralized and barren porphyritic intrusions from the Duobuza and Naruo porphyry Cu–Au deposits. Zircon U–Pb analyses suggest the emplacement of economically mineralized granodiorite porphyry and barren granodiorite porphyry at Naruo deposit took place at 119.8 ± 1.4 Ma and 117.2 ± 0.5 Ma, respectively. Four molybdenite samples from the Naruo deposit yield an isochron Re–Os age of 119.5 ± 3.2 Ma, indicating mineralization occurred synchronously with the emplacement of the early granodiorite porphyry. At Duobuza deposit, the barren quartz diorite porphyry intruded at 119.5 ± 0.7 Ma, and two economically mineralized intrusions intruded at 118.5 ± 1.2 Ma (granodiorite porphyry) and 117.5 ± 1.2 Ma (quartz diorite porphyry), respectively. Petrographic investigations and geochemical data indicate that all of the porphyritic intrusions were oxidized, water rich, and subduction-related calc-alkaline magmas. Zircons from the porphyritic intrusions have a wide range in the εHf (0–11.1) indicating that they were sourced from mixing of mantle-derived mafic, and crust-derived felsic melts. Moreover, the variation of trace element content of plagioclase phenocrysts indicates that the magma chambers were recharged by mafic magmas.Comparison of the composition of amphibole phenocrysts indicates the porphyry copper–gold mineralization at Duolong was generated in magma chambers at low crystallization temperatures and pressures (754° to 791 °C, 59 M to 73 MPa, n = 8), and under highly oxidizing conditions (ΔNNO 2.2 to 2.7, n = 8). In contrast, barren intrusions were sourced from the magma chambers with higher crystallization temperatures and pressures (816° to 892 °C, 111 to 232 MPa, n = 22) that were less oxidizing (ΔNNO 0.6 to 1.6, n = 22). The requirement for a thermal contrast is supported by the declining of Ti content in magnetite crystals in barren intrusions (12,550 to 34,200 ppm) versus those from economically mineralized intrusions (600 to 3400 ppm). Moreover, the V content in magnetite crystals from economically mineralized intrusions (990 to 2510 ppm) is lower than those recorded from barren intrusions (2610 to 3510 ppm), which might reflect the variation in oxidation state of the magma. The calculated water solubility of the magma forming the economically mineralized intrusions (3.2–3.7 wt%) is lower than that of magma forming the barren intrusions (4.6–6.4 wt%). Based on the chemical–physical characteristics of economically mineralized magma, our study suggests that the development of porphyry Cu–Au mineralization at Duolong was initiated by shallow-level emplacement of a magma that crystallized at lower temperatures and pressures. Experimental studies show that copper and water solubilities in silicate melts decrease with falling temperatures and pressures, indicating metals and ore-forming fluids are more likely to be released from a magma reservoir emplaced at shallow crustal levels. We propose the magnetite might be a convenient exploration tool in the search for porphyry copper mineralization because the variations in Ti and V content of mineral concentrates and rock samples are indicative of barren versus mineralized intrusions.  相似文献   

18.
The Xiongcun district, located in the western segment of the Gangdese porphyry copper belt (GPCB), hosts the only known Jurassic mineralization in the GPCB, Tibet, PRC. The No. I deposit in the Xiongcun district is related to the Middle Jurassic quartz diorite porphyry (167–161 Ma) and the mineralization was formed at ca. 161.5 ± 2.7 Ma. Ore-bearing Middle Jurassic quartz diorite porphyry emplaced into the Early Jurassic volcano-sedimentary rock sequences of the Xiongcun Formation. Veinlets and disseminated mineralization developed within the Middle Jurassic quartz diorite porphyry and the surrounding metamorphosed tuff, hosting a measured and indicated resource of 1.04 Mt copper, 143.31 t gold and 900.43 t silver with an average grade of 0.48% copper, 0.66 g/t gold, and 4.19 g/t silver. The mineralization can be assigned to four stages, including three main stages of hypogene mineralization and one epigenetic stage. The main alteration associated with mineralization is potassic. Seven mineralization-related hydrothermal veins have been recognized, including quartz–sulfide, biotite–sulfide, magnetite–sulfide, quartz–molybdenite–sulfide, chalcopyrite–pyrite–pyrrhotite, pyrite and polymetallic veins. The S and Pb isotopic compositions of the ore sulfides and the Re contents of the molybdenite suggest a mantle source for the ore-forming materials with minor contamination from the subducted sediments. Hydrogen and oxygen isotope compositions of quartz in the ores suggest that both magmatic and meteoric waters were involved in the ore-forming process. The ore-bearing porphyry (167–161 Ma) and ore-forming (161.5 ± 2.7 Ma) ages of the No. I deposit correspond to the time of northward subduction of Neo-Tethys oceanic slab. The geochemical data of the ore-bearing porphyry indicate that the No. I deposit formed in an intra-oceanic island arc setting and the ore-bearing porphyry originated from the partial melting of mantle with limited contribution of subducted sediments. The genesis of the ore-bearing porphyry and No. I deposit is interpreted as being related to northward intra-oceanic subduction of Neo-Tethys oceanic slab in the Middle Jurassic time (167–161 Ma).  相似文献   

19.
The newly-discovered Shiyaogou molybdenum deposit is located in the eastern Qinling metallogenic belt in central China. The deposit contains at least 152,000 t of Mo metal and bears typical porphyry-type features in terms of its concentric alteration zonation, quartz vein-hosted Mo mineralization, veining sequence and the spatial association with concealed granite porphyries. Re–Os isotope analyses of molybdenite from the deposit yield an ore-forming age of 132.3 ± 2.8 Ma. LA-ICP-MS U–Pb zircon dating of ore-related porphyries yields crystallization ages from 135 Ma to 132 Ma, indicating a temporal link between granitic magmatism and Mo mineralization. A population of captured magmatic zircons indicates another pulse of magmatism at ~ 143 Ma. A barren granite intrusion near the deposit gives a zircon U–Pb age of 148.1 ± 1.1 Ma. These magmatic activities were concurrent with the emplacement of the nearby Heyu granitic batholith, a largely ore-barren intrusive complex formed from ~ 148 Ma to ~ 127 Ma. Zircon Ce4 +/Ce3 + ratios of ore-related porphyries are obviously higher than those of contemporaneous barren granitoids, implying an affinity between Mo mineralization and highly oxidized magmas. Moreover, zircons from these granitoids overall have decreasing Ce4 +/Ce3 + ratios from 148 Ma to 132 Ma, reflecting decreasing oxygen fugacities during magma evolution. Available geological, radiometric and stable isotopic evidence suggests that the decrease of magma oxygen fugacity was probably associated with an increase of mantle contribution to granitic magmatism and metallogenesis, which probably gave rise to successive mineralization of Mo and Au in the eastern Qinling. The intense magmatic–metallogenic events in the eastern Qinling during Late Jurassic to Early Cretaceous times are interpreted as a response to the large-scale lithosphere thinning and subsequent asthenosphere upwelling beneath the eastern part of the North China Craton.  相似文献   

20.
The Zhongdian area in Yunnan, southwestern China, located at the southern end of the Yidun volcano-magmatic arc that was formed during the Triassic westward subduction of the Gaze-Litang Ocean, hosts numerous Triassic large porphyry and skarn deposits. The arc suffered Jurassic to Cretaceous arc-continental orogenic collision and Cenozoic intracontinental strike-slip shearing. The Hongshan Cu (–Mo–Pb–Zn) deposit is potentially a large deposit and contains two ore types: 1) predominant layered skarn Cu–(Pb–Zn) ores along marble-hornfels contacts; and 2) minor crosscutting vein-type Cu–Mo mineralization. Previous research forwards a two-stage genetic model without sufficient dating evidence, supposing the skarn mineralization is related to the Triassic calc-alkalic intrusions and the vein-type mineralization related to Cretaceous quartz monzonite porphyries. Re–Os dating of molybdenite from vein-type ores and quartz monzonite porphyries and that of pyrrhotite from skarn ores are presented here to constrain the mineralization age and rebuild the genetic model. Analyses of eight molybdenite samples yield an isochron age of 79.7 ± 3.1 Ma (MSWD = 9.2) for the vein-type mineralization and a model age of 81.9 ± 1.1 Ma for the quartz monzonite porphyries. Isotope data on seven pyrrhotite samples from the skarn ores yield an isochron age of 79 ± 16 Ma z(MSWD = 8.4). The Re–Os ages for the two ore types are concordant within analytical errors, indicating that the Hongshan deposit was formed in the Late Cretaceous. Elevated Re contents in molybdenite (13.65 to 63.91 μg/g) and extremely radiogenic initial 187Os/188Os ratios in pyrrhotite (0.7673 to 0.8184; weighted average 0.796 ± 0.038), together with elevated γOs values in pyrrhotite (507 to 547; average 528) imply a significant crustal component in the ore-forming materials that was likely derived from a lower crustal reservoir. Combined with the tectonic evolution of the Zhongdian area and geochemical characteristics of corresponding intrusions, the ages of mineralization obtained in this study indicate that the Hongshan deposit was formed in a post-collision setting with a genetic relationship to the emplacement of the quartz monzonite porphyry. These results provide significant new information for the study and exploration of the Late Cretaceous metallogeny in the Zhongdian area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号