首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The composite Zhaheba ophiolite complex, exposed in Eastern Junggar in the Southern Altaids, records an unusually long record of oceanic crust and magmatic arc evolution. The Zhaheba ophiolite complex consists of ultramafic rocks, gabbro, diorite, basalt and chert intruded by diabase dikes and diorite porphyry. These rocks are overlain by a several-km-thick section of tuffaceous rocks, volcaniclastic sedimentary rocks, and intermediate volcanic rocks. The igneous rocks of the ophiolite complex show negative Nb and Ta anomalies and LREE enrichment relative to HREE, suggesting the influence of fluids derived from a subducting oceanic slab. The LA-ICPMS U–Pb age of zircons from gabbro is 495.1 ± 3.5 Ma. Zircon ages from diorite and basalt are 458.3 ± 7.2 Ma and 446.6 ± 6.0 Ma, respectively. The basalt is locally overlain by bedded chert. Diabase dikes and diorite porphyry yield the U–Pb ages of 421.5 ± 4.1 Ma and 423.7 ± 6.5 Ma, respectively. The age of stratigraphically lower part of the overlying volcanic–volcaniclastic section is constrained to be about 410 Ma, the maximum depositional age of the tuffaceous sandstone from U–Pb detrital zircon ages. Late rhyolite at the top of the stratigraphic section yielded a U–Pb zircon age of 280.3 ± 3.7 Ma. The age and stratigraphic relationships for the Zhaheba ophiolite complex and related rocks suggest that the period of ~ 70 Ma of initial supra-subduction magmatism was followed by construction of a mature island arc that spanned an additional 140 Ma. Many other ophiolites in the southern Altaids appear to record similar relationships, and are represented as substrates of oceanic island arcs covered by island arc volcanism in supra-subduction zone. The occurrence of the Zhaheba ophiolite complex with tuffaceous and intermediate to felsic volcanic rocks is different from the rock association of classic Tethyan SSZ ophiolites but similar to some ophiolites in North America. Although the Zhaheba ophiolite belt is flanked by the Dulate arc in the north and Yemaquan arc in the south, it cannot stand a suture between two arcs. It is suggested that Devonian–Carboniferous Dulate arc was built on the late Cambrian–middle Ordovician Zhaheba supra-subduction oceanic crust. The late Carboniferous rocks and early Permian rocks in Dulate arc are interpreted to form in the extensional process within Zhaheba–Dulate arc composite system.  相似文献   

2.
LA-ICP-MS zircon U–Pb ages and geochemical data are presented for the Mesozoic volcanic rocks in northeast China, with the aim of determining the tectonic settings of the volcanism and constraining the timing of the overprinting and transformations between the Paleo-Asian Ocean, Mongol–Okhotsk, and circum-Pacific tectonic regimes. The new ages, together with other available age data from the literature, indicate that Mesozoic volcanism in NE China can be subdivided into six episodes: Late Triassic (228–201 Ma), Early–Middle Jurassic (190–173 Ma), Middle–Late Jurassic (166–155 Ma), early Early Cretaceous (145–138 Ma), late Early Cretaceous (133–106 Ma), and Late Cretaceous (97–88 Ma). The Late Triassic volcanic rocks occur in the Lesser Xing’an–Zhangguangcai Ranges, where the volcanic rocks are bimodal, and in the eastern Heilongjiang–Jilin provinces where the volcanics are A-type rhyolites, implying that they formed in an extensional environment after the final closure of the Paleo-Asian Ocean. The Early–Middle Jurassic (190–173 Ma) volcanic rocks, both in the Erguna Massif and the eastern Heilongjiang–Jilin provinces, belong chemically to the calc-alkaline series, implying an active continental margin setting. The volcanics in the Erguna Massif are related to the subduction of the Mongol–Okhotsk oceanic plate beneath the Massif, and those in the eastern Jilin–Heilongjiang provinces are related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent. The coeval bimodal volcanic rocks in the Lesser Xing’an–Zhangguangcai Ranges were probably formed under an extensional environment similar to a backarc setting of double-direction subduction. Volcanic rocks of Middle–Late Jurassic (155–166 Ma) and early Early Cretaceous (145–138 Ma) age only occur in the Great Xing’an Range and the northern Hebei and western Liaoning provinces (limited to the west of the Songliao Basin), and they belong chemically to high-K calc-alkaline series and A-type rhyolites, respectively. Combined with the regional unconformity and thrust structures in the northern Hebei and western Liaoning provinces, we conclude that these volcanics formed during a collapse or delamination of a thickened continental crust related to the evolution of the Mongol–Okhotsk suture belt. The late Early Cretaceous volcanic rocks, widely distributed in NE China, belong chemically to a low- to medium-K calc-alkaline series in the eastern Heilongjiang–Jilin provinces (i.e., the Eurasian continental margin), and to a bimodal volcanic rock association within both the Songliao Basin and the Great Xing’an Range. The volcanics in the eastern Heilongjiang–Jilin provinces formed in an active continental margin setting related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent, and the bimodal volcanics formed under an extensional environment related either to a backarc setting or to delamination of a thickened crust, or both. Late Cretaceous volcanics, limited to the eastern Heilongjiang–Jilin provinces and the eastern North China Craton (NCC), consist of calc-alkaline rocks in the eastern Heilongjiang–Jilin provinces and alkaline basalts in the eastern NCC, suggesting that the former originated during subduction of the Paleo-Pacific Plate beneath the Eurasian continent, whereas the latter formed in an extensional environment similar to a backarc setting. Taking all this into account, we conclude that (1) the transformation from the Paleo-Asian Ocean regime to the circum-Pacific tectonic regime happened during the Late Triassic to Early Jurassic; (2) the effect of the Mongol–Okhotsk suture belt on NE China was mainly in the Early Jurassic, Middle–Late Jurassic, and early Early Cretaceous; and (3) the late Early Cretaceous and Late Cretaceous volcanics can be attributed to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent.  相似文献   

3.
The Hongniu-Hongshan porphyry and skarn copper deposit is located in the Triassic Zhongdian island arc, northwestern Yunnan province, China. Single-zircon laser ablation inductively coupled plasma mass spectrometry U–Pb dating suggests that the diorite porphyry and the quartz monzonite porphyry in the deposit area formed at 200 Ma and 77 Ma, respectively. A Re–Os isotopic date of molybdenite from the ore is 78.9 Ma, which indicates that in addition to the known Triassic Cu–(Au) porphyry systems, a Late Cretaceous porphyry Cu–Mo mineralization event also exists in the Zhongdian arc. The quartz monzonite porphyry shows characteristics of a magnetite series intrusion, with a high concentration of Al, K, Rb, Ba, and Pb, low amount of Ta, Ti, Y, and Yb, and a high ratio of Sr/Y (average 26.42). The Cretaceous porphyry also shows a strong fractionation between light and heavy rare earth elements (average (La/Yb)N 37.9), which is similar to those of the Triassic subduction-related diorite porphyry in the Hongniu-Hongshan deposit and the porphyry hosting the Pulang copper deposit. However, in contrast to the older intrusions, the quartz monzonite porphyry contains higher concentrations of large ion lithophile elements and Co, and lesser Sr and Zr. Therefore, whereas the Triassic porphyry Cu–(Au) mineralization is related to slab subduction slab in an arc setting, the quartz monzonite porphyry in the Hongniu-Hongshan deposit formed by the remelting of the residual oceanic slab combined with contributions from subduction-modified arc lithosphere and continental crust, which provided the metals for the Late Cretaceous mineralization.  相似文献   

4.
The newly discovered Chalukou giant porphyry Mo deposit, located in the northern Great Xing’an Range, is the biggest Mo deposit in northeast China. The Chalukou Mo deposit occurs in an intermediate-acid complex and Jurassic volcano-sedimentary rocks, of which granite porphyry, quartz porphyry, and fine-grained granite are closely associated with Mo mineralization. However, the ages of the igneous rocks and Mo mineralization are poorly constrained. In this paper, we report precise in situ LA-ICP-MS zircon U–Pb dates for the monzogranite, granite porphyry, quartz porphyry, fine grained granite, rhyolite porphyry, diorite porphyry, and andesite porphyry in the Chalukou deposit, corresponding with ages of 162 ± 2 Ma, 149 ± 5 Ma, 148 ± 2 Ma, 148 ± 1 Ma, 137 ± 3 Ma, 133 ± 2 Ma, and 132 ± 2 Ma, respectively. Analyses of six molybdenite samples yielded a Re–Os isochron age of 148 ± 1 Ma. These data indicate that the sequence of the magmatic activity in the Chalukou deposit ranges from Jurassic volcano-sedimentary rocks and monzogranite, through late Jurassic granite porphyry, quartz porphyry, and fine-grained granite, to early Cretaceous rhyolite porphyry, diorite porphyry, and andesite porphyry. The Chalukou porphyry Mo deposit was formed in the late Jurassic, and occurred in a transitional tectonic setting from compression to extension caused by subduction of the Paleo-Pacific oceanic plate.  相似文献   

5.
In this paper we present new zircon U–Pb ages, Hf isotope data, and whole-rock major and trace element data for Early Mesozoic intrusive rocks in the Erguna Massif of NE China, and we use these data to constrain the history of southward subduction of the Mongol–Okhotsk oceanic plate, and its influence on NE China as a whole. The zircon U–Pb dating indicates that Early Mesozoic magmatic activity in the Erguna Massif can be subdivided into four stages at ~ 246 Ma, ~ 225 Ma, ~ 205 Ma, and ~ 185 Ma. The ~ 246 Ma intrusive rocks comprise a suite of high-K calc-alkaline diorites, quartz diorites, granodiorites, monzogranites, and syenogranites, with I-type affinities. The ~ 225 Ma intrusive rocks consist of gabbro–diorites and granitoids, and they constitute a bimodal igneous association. The ~ 205 Ma intrusive rocks are dominated by calc-alkaline I-type granitoids that are accompanied by subordinate intermediate–mafic rocks. The ~ 185 Ma intrusive rocks are dominated by I-type granitoids, accompanied by minor amounts of A-types. These Early Mesozoic granitoids mainly originated by partial melting of a depleted and heterogeneous lower crust, whereas the coeval mafic rocks were probably derived from partial melting of a depleted mantle modified by subduction-related fluids. The rock associations and their geochemical features indicate that the ~ 246 Ma, ~ 205 Ma, and ~ 185 Ma intrusive rocks formed in an active continental margin setting related to the southward subduction of the Mongol–Okhotsk oceanic plate. The ~ 225 Ma bimodal igneous rock association formed within an extensional environment in a pause during the subduction process of the Mongol–Okhotsk oceanic plate. Every magmatic stage has its own corresponding set of porphyry deposits in the southeast of the Mongol–Okhotsk suture belt. Taking all this into account, we conclude the following: (1) during the Early Mesozoic, the Mongol–Okhotsk oceanic plate was subducted towards the south beneath the Erguna Massif, but with a pause in subduction at ~ 225 Ma; and (2) the southward subduction of the Mongol–Okhotsk oceanic plate not only caused the intense magmatic activity, but was also favorable to the formation of porphyry deposits.  相似文献   

6.
The Lamandau region of Kalimantan Island, Indonesia is located in Sandaland, in the southern part of the Kuching tectonic belt. A series of Cenozoic epithermal gold deposits and Fe–Cu–Au deposits are located in the Kuching belt. The Lamandau Fe–Cu–Au deposit is hosted by diorite porphyry. In-situ zircon U–Pb dating of the diorite porphyry shows that it formed between 82.1 ± 1.7 Ma and 78.7 ± 2.3 Ma. Geochemical data indicate a depletion of high field strength elements (HFSE) in the diorite porphyry and related basalt is similar to that of arc-related igneous rocks. The diorite porphyry and basalt were probably derived from typical arc magmas related to continental margin subduction and thus are characterized by light rare earth element (REE) enrichment and HFSE depletion. The sub-chondritic Nb/Ta ratios for the basalt in the Lamandau region indicate that the subducted Pacific slab began partial melting at depths where amphibole was the major residual phase, with some residual rutile. The basalt was derived from a depleted mantle source. The composition of apatite and zircon in the diorite porphyry indicates that the dioritic magma was produced from the subcontinental mantle after it was metasomatized by slab-derived fluids. The magma had a high oxygen fugacity, thus and therefore it was particularly conducive to the precipitation of Cu, Au and other ore-forming elements. The composition of magnetite indicates that it was of volcanic origin. The magnetite has a low REE content, and a high Cu–Au content. The deposit may be classified as an IOCG mineral system. In summary, the ore-related diorite porphyry in the Lamandau region might have formed in an extensional environment during rollback of the subducting western Pacific plate. The convergent velocity between the Philippine Sea and Eurasian plates was at a minimum during the rollback, so that the margin of East Asian began to undergo rifting with associated magmatism.  相似文献   

7.
The Yandong porphyry copper deposit, located in the Eastern Tianshan Mountains, Xinjiang, China, is part of the Central Asian Orogenic Belt. The Yandong deposit is hosted by a volcanic complex in the Early Carboniferous Qi’eshan Group and a felsic intrusion. The complex consists of andesite, basalt, diorite porphyry, and porphyritic quartz diorite. The felsic intrusion is a plagiogranite porphyry emplaced within the complex. The diorite porphyry and plagiogranite porphyry yield SIMS zircon U–Pb ages of 340.0 ± 3 and 332.2 ± 2.3 Ma, respectively. Element geochemistry shows that both the complex and plagiogranite porphyry formed in the Dananhu–Tousuquan island arc, a Carboniferous magmatic arc.The diorite porphyry and plagiogranite porphyry are host porphyries, but the plagiogranite porphyry is a productive porphyry. It caused the porphyry-style Cu mineralization and associated alteration. The alteration assemblages include early potassic and propylitic assemblages. These were overprinted by a chlorite–sericite assemblage, which in turn was overprinted by a late phyllic assemblage. The phyllic alteration is associated with the highest Cu grades. The mineralization is recognized to include three stages, from early to late: stage 1, a potassic alteration associated with a chalcopyrite + pyrite assemblage; stage 2, represented by chlorite–sericite alteration with a chalcopyrite + pyrite assemblage; and stage 3, the main-ore stage that is marked by phyllic alteration with chalcopyrite + pyrite ± molybdenite and producing more than 70% of the total copper production at Yandong. Yandong may represent a common scenario for Paleozoic porphyry Cu systems in the Central Asian Orogenic Belt.  相似文献   

8.
Metamorphic and magmatic rocks are present in the northwestern part of the Schwaner Mountains of West Kalimantan. This area was previously assigned to SW Borneo (SWB) and interpreted as an Australian-origin block. Predominantly Cretaceous U-Pb zircon ages (c. 80–130 Ma) have been obtained from metapelites and I-type granitoids in the North Schwaner Zone of the SWB but a Triassic metatonalite discovered in West Kalimantan near Pontianak is inconsistent with a SWB origin. The distribution and significance of Triassic rocks was not known so the few exposures in the Pontianak area were sampled and geochemical analyses and zircon U-Pb ages were obtained from two meta-igneous rocks and three granitoids and diorites. Triassic and Jurassic magmatic and metamorphic zircons obtained from the meta-igneous rocks are interpreted to have formed at the Mesozoic Paleo-Pacific margin where there was subduction beneath the Indochina–East Malaya block. Geochemically similar rocks of Triassic age exposed in the Embuoi Complex to the north and the Jagoi Granodiorite in West Sarawak are suggested to have formed part of the southeastern margin of Triassic Sundaland. One granitoid (118.6 ± 1.1 Ma) has an S-type character and contains inherited Carboniferous, Triassic and Jurassic zircons which indicate that it intruded Sundaland basement. Two I-type granitoids and diorites yielded latest Early and Late Cretaceous weighted mean ages of 101.5 ± 0.6 and 81.1 ± 1.1 Ma. All three magmatic rocks are in close proximity to the meta-igneous rocks and are interpreted to record Cretaceous magmatism at the Paleo-Pacific subduction margin. Cretaceous zircons of metamorphic origin indicate recrystallisation at c. 90 Ma possibly related to the collision of the Argo block with Sundaland. Subduction ceased at that time, followed by post-collisional magmatism in the Pueh (77.2 ± 0.8 Ma) and Gading Intrusions (79.7 ± 1.0 Ma) of West Sarawak.  相似文献   

9.
Zijinshan is a large porphyry–epithermal Cu–Au–Mo–Ag ore system located in the Zijinshan mineral field (ZMF) of southwestern Fujian Province, China. Although it is commonly accepted that the early Cretaceous magmatism and the metallogenesis of the mineral field are closely related, the tectonic setting for the ore-forming event(s) has been controversial and regarded as either extensional or subduction-related. New U–Pb zircon geochronology, Sr–Nd–Pb isotopic systematics, and geochemical data presented here from granites and volcanic rocks in the mineral field help to clarify this uncertainty.LA–MC–ICP-MS U–Pb zircon analyses yield weighted mean ages of between ca. 165 and 157 for the monzogranite, ca. 112 Ma for granodiorite, and between ca. 111 and 102 Ma for nine samples of volcanic units in the study area. These dates, integrated with previous geochronological data, indicate that there were two magmatic events in the area during the Middle to Late Jurassic and the Early Cretaceous. Major and trace element geochemistry indicates that these rocks are high-K, calc-alkaline granites, are enriched in LREE and Th, U, Ta, Nd, Sm and Yb, and depleted in Ba, K, Sr, P, Ti and Y. These features are characteristic of volcanic-arc granites or active-continental margin granites. The Middle to Late Jurassic monzogranitic plutons in the region have initial 87Sr/86Sr ratios of 0.7096 to 0.7173, εNdT values of − 10.1 to − 7.6, 206Pb/204Pb isotope ratios of 18.51–18.86, 207Pb/204Pb isotope ratios of 15.64–15.73, and 208Pb/204Pb isotope ratios of 38.76–39.18. The Early Cretaceous granodiorite and volcanic rocks are distinctly different with initial 87Sr/86Sr ratios of 0.7055–0.7116, εNdT values of − 8 to 0.5, 206Pb/204Pb ratios ranging between 18.49 and 19.77, 207Pb/204Pb ratios of 15.63–15.71, and 208Pb/204Pb ratios of 38.71–40.62. These characteristics suggest that the source for the Middle to Late Jurassic monzogranitic plutons is a partially melted Mesoproterozoic substrate, with a minor component from Paleozoic material, whereas the Early Cretaceous granodiorite and volcanic rocks may represent mixing of crustal and mantle-derived melts. It is therefore suggested that the Middle to Late Jurassic monzogranitic plutons, and the Early Cretaceous granodiorite and volcanic rocks in the ZMF are the result of an active continental-margin setting related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent. Given that the mineralization and the early Cretaceous granodiorite and volcanic rocks in the area are genetically related, the Zijinshan porphyry–epithermal ore system formed in the subduction-related tectonic setting.  相似文献   

10.
The collision of oceanic arcs with continents is a common plate tectonic process in the Phanerozoic, but its recognition in the Precambrian is hampered by deformation and metamorphism. The Rio Capim volcanic–plutonic–sedimentary belt lies in sharp tectonic contact with Archaean rocks of the Uauá block in the northern part of the São Francisco craton. Field relationships and high-precision geochronology indicated that the Rio Capim basalts, gabbros, diorites, and dacites were emplaced approximately at 2148–2143 Ma, and later intruded by 2128 Ma-old diorite to tonalite plutons. All rocks were metamorphosed under amphibolite to granulite facies conditions mainly between 2080 Ma and 2070 Ma, but deformation may have lasted until about 2040 Ma as estimated from syn-deformation zircon and titanite grains. The association of basalt, andesite, dacite, and their plutonic counterparts, combined with their positive εNd(t) values and incompatible trace element geochemical signatures similar to island arc magmas, support the proposition that the Rio Capim belt was a Palaeoproteorozoic intra-oceanic arc sequence that collided with a continent, of which the Mesoarchaean Uauá block is a remnant. The implications for the regional evolution and metallogenesis are also discussed.  相似文献   

11.
The study area covered by this work is located along the Bir Tawilah fault zone which encompasses the Arabian Shield between Afif terrane and western oceanic terranes. The rocks are dominantly ophiolite assemblages, island arc metavolcanic and metasedimentary rocks, and dioritic to granitic intrusions. The diorite and granodiorite rocks are I-type granitoids, calk-alkaline, metaluminous to peraluminous, formed in a volcanic arc setting, whereas the monzogranite is classified as A-type granite, alkaline and highly fractionated calc-alkaline, generated in within-plate tectonic setting. Nb and Y relationships indicated that the diorites and granodiorites were generated by a mafic parental magma contaminated with crustal materials, and controlled by fractional crystallization, whereas the monzogranites were generated from a magma characterized by an enriched mantle (EM) source.Mineralization including gold is hosted by the carbonatized serpentinite (listvenite) and the syn-tectonic granodiorite along Bir Tawilah thrust zone. U-Pb zircon geochronology indicates that the granodiorite at Jabal Ghadarah is emplaced at ca. 630 ± 12 Ma, probably suggests that the metallic minerals associated with the granodiorite along Bir Tawilah thurst zone are the result of remobilization of pre-existing gold mineralization associated with listevenite that is related to arc accretion.  相似文献   

12.
The Ciemas gold mining area is located in the Sunda arc volcanic rock belt, West Java, Indonesia. Ore bodies are associated with Miocene andesite, dacite and quartz diorite porphyrite. To constrain ore genesis and mineralization significance, a detailed study was recently conducted examining these deposits, which included detailed field observation, petrographic study, petrochemistry, sulfur isotope analyses, zircon U–Pb dating, and fluid inclusion analysis. The results include the following findings. 1) Ore types have been identified as porphyry, a quartz–sulfide vein, and structure-controlled alteration rocks. 2) In host rocks, zircon LA–ICP-MS U–Pb dating of quartz diorite porphyrite, amphibole tuff breccia and andesite yield ages of 17.1 ± 0.4 Ma, 17.1 ± 0.4 Ma and 17.5 ± 0.3 Ma, respectively. 3) Fluid inclusions in the quartz from ore are given priority to liquid and gas–liquid phases, and their components are of the NaCl–H2O system with homogenization temperatures of 240–320 °C, salinities of 14–17%, densities of 0.85–0.95 g/cm3, and fluid pressure values between 4.1 and 46.8 MPa, corresponding to metallogenic depths from 150 to 1730 m. Fluid characteristics are identified as similar to those of high sulfur epithermal deposits. 4) The sulfur isotopic compositions are notably uniform, the δ34S values of wall rocks range from 3.71 to 3.85‰, and the δ34S values of ores vary from 4.90‰ to 6.55‰. The sulfur isotopic composition of ores is similar to that of the wall rocks, indicating a mixed origin of mantle with a sedimentary basement. 5) The trace element patterns of different ore types are similar, which indicates that they originate from the same source. Au deposits primarily occurred during the late magmatic activity. Finally, we have set up the regional metallogenic model, confirming that this gold deposit in the Sunda arc volcanic rock belt belongs to a metallogenic system from porphyry to epithermal type.  相似文献   

13.
The newly discovered Fuxing porphyry Cu deposit is located in the Dananhu–Tousuquan arc, adjacent to the Tuwu–Yandong Cu deposits of Eastern Tianshan, in the southern Central Asian Orogenic Belt. The Fuxing deposit is hosted by volcanic rocks (basalt and dacite) in the Early Carboniferous Qi'eshan Group and Carboniferous felsic intrusions (plagiogranite porphyry, monzogranite, and quartz diorite). New SIMS zircon U–Pb dating indicates that the plagiogranite porphyry and monzogranite emplaced at 332.1 ± 2.2 Ma and 328.4 ± 3.4 Ma, respectively. The basalts are characterized by low SiO2 contents (47.47–54.90 wt.%), a lack of Eu anomalies, strong depletion of Na, Ta, and Ti elements but positive Sr, U, and Pb anomalies, high Y (20.8–28.2 ppm) and HREE concentrations (Yb = 2.23–3.06 ppm), and relatively low (La/Yb)N (2.20–3.92) values; the dacite samples have high SiO2 contents (66.13–76.93 wt.%), clearly negative Eu anomalies, high Mg# values (36–51), and high Y (41.8–54.9 ppm) and Yb (5.76–8.98 ppm) concentrations. The basalts and dacites exhibit similar signatures as normal arc rocks, and were considered to be derived from partial melting of mantle-wedge peridotite that was previously metasomatized by slab melts. In contrast, the plagiogranite porphyry, monzogranite, and quartz diorite show the same geochemical affinity with modern adakites, which are characterized by high SiO2 contents (67.55–79.00 wt.%), minor negative to positive Eu anomalies, strong depletion of heavy rare earth elements (Yb = 0.17–1.19 ppm) and Y (1.86–10.1 ppm), positive K, Rb, Sr, and Ba but negative Nb, Ta, Th, and Ti anomalies, and high (La/Yb)N ratios and Mg# values. Moreover, these adakitic felsic intrusions display relatively high positive zircon εHf(t) values (+ 11.4 to + 18.3), low 87Sr/86Sr (0.706080–0.711239), high 143Nd/144Nd (0.512692–0.512922) ratios, and consistent zircon δ18O values (4.41‰–5.48‰), suggesting that their parental magma were most likely derived from partial melting of the subducted oceanic crust followed by mantle peridotite interaction. Based on the whole-rock geochemical and Sr–Nd–Hf–O isotopic data, as well as detailed petrographic analyses, we further suggest that the Fuxing igneous rocks and associated porphyry Cu mineralization were generated by the northward subduction of the paleo-Tianshan oceanic plate beneath the Dananhu–Tousuquan island arc during the Early Carboniferous.  相似文献   

14.
The widespread occurrence of late Mesozoic volcanic rocks in the Gan-Hang Belt in South China is associated with similarly widespread mineralization, but many important questions surrounding these volcanic rocks have not been clearly answered. The Tianhuashan basin located in the northern Wuyi Mountain volcanic belt is one of the most important volcanic basins in the Gan-Hang Belt, and it is primarily composed of the Daguding and Ehuling Formations and their intrusive counterparts. LA-ICP-MS zircon U–Pb dating shows that the Daguding Formation erupted in the Late Jurassic (152–160 Ma), whereas the Ehuling Formation erupted in the Early Cretaceous (131–139 Ma) in the Tianhuashan basin. Volcanic rocks are rhyolite and share similar trace and rare earth element patterns with an enrichment of LREEs and a depletion in Sr, Ba, Nb, Ta, P, Eu and Ti. They are also characterized by negative whole rock εNd(t) and zircon εHf(t) values with Paleoproterozoic t2DM ages, suggesting that they were derived primarily from the remelting of ancient crustal materials. Daguding volcanic rocks are strongly peraluminous and show a higher Mg# than pure crustal melts, implying that they were likely derived from Paleoproterozoic metasedimentary basement materials. However, Ehuling volcanic rocks are weakly peraluminous and have a pronounced A2-type geochemical signature. Detailed elemental and isotopic data suggest that they were formed by the partial melting of the Paleoproterozoic metamorphic basement (including metasedimentary and metaigneous rocks) at a high temperature (~ 840 °C), followed by fractional crystallization. These results imply that during the Late Jurassic, South China on the Gan-Hang Belt was a continental arc coupled with the subduction of the Paleo-Pacific plate. Since the beginning of the Early Cretaceous, an intra-arc rift has formed along the Gan-Hang Belt as a consequence of slab rollback. These results also indicate that the extension in the Gan-Hang Belt began later than the southwestern part of the Shi-Hang Zone and lasted from 139 Ma to 122 Ma.  相似文献   

15.
ABSTRACT

In this study, Early Cretaceous skarn deposits and genesis of their host diorite/monzodiorite porphyry in the Xuzhou-Huaibei (Xu-Huai) region, northern Anhui-Jiangsu have been discussed by detailed geochemical work. In-situ zircon U–Pb dating of the diorites related to Fe–Cu–Au deposits shows that they were formed between 131.4 ± 1.5 Ma and 130.8 ± 1.8 Ma. Geochemical data indicate a depletion of high field strength elements (HFSE) in the diorite porphyry with similarity to that of arc-related igneous rocks. The diorite porphyry was probably derived from typical arc magmas related to continental margin subduction characterized by light rare earth elements (LREEs) enrichment and HFSE depletion. REEs compositions of apatite in the diorite porphyry indicate that the dioritic magma was produced from the metasomatized subcontinental mantle by slab-derived fluids. The magma was proven to be a high oxygen fugacity; thus, it was particularly conducive to the precipitation of Fe, Cu, Au and other ore-forming elements. The δ34S values of pyrite and chalcopyrite of Fe–Cu–Au ores range from ?0.2‰ to 2.8‰, indicating that the sulphur in the ore was probably derived from deep-seated magmas. Integrated with geochronological and geochemical analyses, we suggest that the Early Cretaceous igneous suites associated with Fe–Cu–Au deposits in the Xu-Huai region are related to recycling subduction of Pacific oceanic crust.  相似文献   

16.
Porphyry Cu ± Mo ± Au deposits typically formed in volcanoplutonic arcs above subduction zones. However, there is increasing evidence for the occurrence of porphyry deposits related to magmas generated after the underplating arc has ceased. Post-subduction lithospheric thickening, lithospheric extension, or mantle lithosphere delamination could trigger the remelting of subduction-modified arc lithosphere and lead to the formation of post-subduction porphyry deposits. The NNW-trending Yidun Terrane, located in the eastern Tethys, experienced subduction of Garze–Litang oceanic plate (a branch of the Paleotethys) in the Late Triassic and witnessed two mineralization events respectively associated with the ca. 215 Ma arc-related intermediate–felsic porphyries and the 88–79 Ma mildly-alkaline granitic porphyries. It is, therefore, an ideal place to investigate the genetic linkage between the subduction-related porphyry deposits and post-subduction porphyry deposits. Our new in situ zircon U–Pb dating of the two granitic intrusions (biotite granite, 213.4 ± 0.9 Ma; monzogranite porphyry, 86.0 ± 0.4 Ma) in the Xiuwacu district, the molybdenite Re–Os age (84.7 ± 0.6 Ma) of the mineralization, and previously published geochronological data, together show the spatially overlapping distribution of the multiple Mesozoic porphyry systems in the Late Triassic Yidun arc system. Furthermore, the arc-like elemental signatures and the mixed Sr–Nd–Hf isotopic signatures of the Late Cretaceous ore-related porphyries (i.e., originating from a mixed components between the ∼215 Ma juvenile arc crust and the Mesoproterozoic mafic lower crust) indicate a genetic linkage between the Late Triassic and Late Cretaceous porphyry systems. This suggests that the remelting of underplated arc-related mafic rocks formed during the subduction of the Garze–Litang Ocean could be responsible for the mixing between the mantle-derived components and the Mesoproterozoic lower crustal materials, when post-subduction transtension occurred in the Late Cretaceous. The formation of the Late Cretaceous porphyry–skarn Cu–Mo–W deposits could most likely be related to the remelting of Late Triassic residual sulfide-bearing Cu-rich cumulates in the subduction-modified lower crust that triggered by the Late Cretaceous transtension.  相似文献   

17.
The polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu deposits in the Kapan, Alaverdi and Mehmana mining districts of Armenia and the Nagorno–Karabakh region form part of the Tethyan belt. They are hosted by Middle Jurassic rocks of the Lesser Caucasus paleo-island arc, which can be divided into the Kapan Zone and the Somkheto–Karabakh Island Arc. Mineralization in Middle Jurassic rocks of this paleo-island arc domain formed during the first of three recognized Mesozoic to Cenozoic metallogenic epochs. The Middle Jurassic to Early Cretaceous metallogenic epoch comprises porphyry Cu, skarn and epithermal deposits related to Late Jurassic and Early Cretaceous intrusions. The second and third metallogenic epochs of the Lesser Caucasus are represented by Late Cretaceous volcanogenic massive sulfide (VMS) deposits with transitional features towards epithermal mineralization and by Eocene to Miocene world-class porphyry Mo–Cu and epithermal precious metal deposits, respectively.The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are poorly understood and previous researchers named them as copper–pyrite, Cu–Au or polymetallic deposits. Different genetic origins were proposed for their formation, including VMS and porphyry-related scenarios. The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are characterized by diverse mineralization styles, which include polymetallic veins, massive stratiform replacement ore bodies at lithological contacts, and stockwork style mineralization. Sericitic, argillic and advanced argillic alteration assemblages are widespread in the deposits which have intermediate to high-sulfidation state mineral parageneses that consist of tennantite–tetrahedrite plus chalcopyrite and enargite–luzonite–colusite, respectively. The ore deposits are spatially associated with differentiated calc-alkaline intrusions and pebble dykes are widespread. Published δ34S values for sulfides and sulfates are in agreement with a magmatic source for the bulk sulfur whereas published δ34S values of sulfate minerals partly overlap with the isotopic composition of contemporaneous seawater. Published mineralization ages demonstrate discrete ore forming pulses from Middle Jurassic to the Late Jurassic–Early Cretaceous boundary, indicating time gaps of 5 to 20 m.y. in between the partly subaqueous deposition of the host rocks and the epigenetic mineralization.Most of the described characteristics indicate an intrusion-related origin for the ore deposits in Middle Jurassic rocks of the Lesser Caucasus, whereas a hybrid VMS–epithermal–porphyry scenario might apply for deposits with both VMS- and intrusion-related features.The volcanic Middle Jurassic host rocks for mineralization and Middle to Late Jurassic intrusive rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone show typical subduction-related calc-alkaline signature. They are enriched in LILE such as K, Rb and Ba and show negative anomalies in HFSE such as Nb and Ta. The ubiquitous presence of amphibole in Middle Jurassic volcanic rocks reflects magmas with high water contents. Flat REE patterns ([La/Yb]N = 0.89–1.23) indicate a depleted mantle source, and concave-upward (listric-shaped) MREE–HREE patterns ([Dy/Yb]N = 0.75–1.21) suggest melting from a shallow mantle reservoir. Similar trace element patterns of Middle Jurassic rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone indicate that these two tectonic units form part of one discontinuous segmented arc. Similar petrogenetic and ore-forming processes operated along its axis and Middle Jurassic volcanic and volcanosedimentary rocks constitute the preferential host for polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu mineralization, both in the Somkheto–Karabakh Island Arc and the Kapan Zone.  相似文献   

18.
Uranium–Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu–Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (εNd(t) range from + 3.1 to + 7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have < 1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu–Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium–Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu–Au deposits are ~ 372 Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu–Au mineralization are ~ 366 Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu–Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu–Au deposits from younger magmatic suites in the district.  相似文献   

19.
安徽庐枞盆地泥河铁矿床年代学研究及其意义   总被引:12,自引:6,他引:6  
庐枞盆地位于长江中下游断陷带内,地处扬子板块北缘,是长江中下游成矿带中重要的铁铜多金属成矿区。庐枞盆地内火山岩和侵入岩分布广泛,包括龙门院、砖桥、双庙和浮山4组火山岩以及34个出露地表的侵入岩体。泥河铁矿床是盆地西北部新勘探发现的大型铁矿床,其精确的成岩成矿时代及其形成构造背景研究仍十分薄弱。本次工作在详细野外地质工作的基础上,系统开展了泥河铁矿床成岩成矿年代学研究,通过对岩浆岩锆石LA ICP-MS和金云母40Ar-39Ar定年方法,确定矿区中的辉石闪长玢岩、正长斑岩和粗安斑岩的成岩时代分别为132.4±1.5Ma、129.4±2.0Ma和134.3±1.2Ma,成矿时代为130.9±2.6Ma。矿床地质特征表明辉石闪长玢岩是成矿母岩,粗安斑岩形成于成矿作用之前,正长斑岩为成矿期后形成的脉岩,穿切火山岩地层和矿体。上述定年结果与地质事实吻合,表明泥河铁矿床的成岩成矿作用几乎同时发生。通过与庐枞盆地和区域成岩成矿时代对比,认为盆地内玢岩型铁矿床集中形成于130Ma左右,是长江中下游成矿第二期成矿作用活动的产物,庐枞盆地内130Ma左右的辉石闪长玢岩侵入体是寻找泥河式玢岩型铁矿床的勘探靶区。  相似文献   

20.
The Xinan Cu–Mo deposit, newly-discovered in the Zijinshan Au–Cu–Mo Orefield (the largest porphyry–epithermal system in SE China), is featured by the presence of abundant multi-phase granitoids, which reflects the complex Mesozoic tectono-magmatic evolution in the region.New and published LA-ICP-MS zircon U–Pb age data reveal that the Mesozoic Zijinshan magmatism occurred in two major phases: (1) Middle to Late Jurassic (ca. 169–150 Ma), forming the Zijinshan complex granite and the Xinan monzogranite; (2) late Early Cretaceous to earliest Late Cretaceous (ca. 112–98 Ma), forming the Shimaoshan volcanic rocks, Sifang granodiorite, and the Xinan (fine-grained) granodiorite porphyry, porphyritic granodiorite and late aplite dykes. Additionally, a possible earliest Cretaceous magmatism (ca. 141 Ma) may have occurred based on inherited zircon evidence. Major and trace element geochemistry indicates that all the Zijinshan igneous rocks show subduction-related geochemical affinities. Zircon Ce4 +/Ce3 + values of the late Early Cretaceous to earliest Late Cretaceous granitoids (Ce4 +/Ce3 + = 190–1706) are distinctly higher than the Middle to Late Jurassic ones (Ce4 +/Ce3 + = 27–457), suggesting that the former were derived from more oxidized parental magma. The Middle to Late Jurassic Zijinshan complex granite and monzogranite have εHf (t) values of − 8.02 to − 10.00, with the two-stage Hf model ages (TDM2) of 1.72 to 1.84 Ga (similar to the Paleoproterozoic metamorphosed Cathaysia Block basement), suggesting that they were derived from partial melting of the basement. The late Early Cretaceous to earliest Late Cretaceous Sifang granodiorite and Xinan (fine-grained) granodiorite porphyry, porphyritic granodiorite and aplite dykes contain higher and wider range of εHf (t) values (0.66 to − 6.05), with TDM2 of 1.12 to 1.56 Ga, indicating that they were also partial melting product of the Cathaysia basement but with more mantle and/or juvenile mafic lower crustal input. We propose that the Zijinshan Orefield was in a compressive, Pacific subduction-related tectonic setting during the Middle to Late Jurassic. The regional tectonic regime may have changed to extensional in the late Early Cretaceous to earliest Late Cretaceous, during which the Pacific plate subduction direction change and the accompanying subduction roll-back and slab window-opening occurred. The tectonic regime transition, high oxygen fugacity and mantle/mafic lower crustal materials involvement in the late Early Cretaceous to earliest Late Cretaceous may have generated the Zijinshan porphyry-related Au–Cu–Mo mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号