首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Heavy metal distribution patterns in river sediments aid in understanding the exogenic cycling of elements as well as in assessing the effect of anthropogenic influences. In India, the Subernarekha river flows over the Precambrian terrain of the Singhbhum craton in eastern India. The rocks are of an iron ore series and the primary rock types are schist and quartzite. One main tributary, the Kharkhai, flows through granite rocks and subsequently flows through the schist and quartzite layers. The Subernarekha flows through the East Singhbhum district, which is one of India’s industrialised areas known for ore mining, steel production, power generation, cement production and other related activities. Freshly deposited river sediments were collected upstream and downstream the industrial zone. Samples were collected from four locations and analysed in <63-μm sediment fraction for heavy metals including Zn, Pb, Cd and Cu by anodic stripping voltammetry. Enrichment of these elements over and above the local natural concentration level has been calculated and reported. Sediments of the present study are classified by Muller’s geo-accumulation index (I geo) and vary from element to element and with climatic seasons. During pre-monsoon period the maximum I geo value for Zn is moderately to highly polluted and for Cu and Pb is moderately polluted, respectively, based on the Muller’s standard. Anthropogenic, lithogenic or cumulative effects of both components are the main reasons for such variations in I geo values. The basic igneous rock layer through which the river flows or a seasonal rivulet that joins with the main river may be the primary source for lithogenic components.  相似文献   

2.
In order to assess the pollution levels of selected heavy metals, 45 bottom sediment samples were collected from Al-Kharrar lagoon in central western Saudi Arabia. The concentrations of the heavy metals were recorded using inductively coupled plasma-mass spectrometer (ICP-MS). The results showed that the concentrations of Pb and Cd exceeded the environmental background values. However, the heavy metal contents were less than the threshold effect level (TEL) limit. The concentrations of heavy metals in lagoon bottom sediments varied spatially, but their variations showed similar trends. Elevated levels of metals were observed in the northern and southern parts of the lagoon. Evaluation of contamination levels by the sediment quality guidelines (SQG) of the US-EPA revealed that sediments were non-polluted-moderately to heavily polluted with Pb; non-polluted to moderately polluted with Cu; and non-polluted with Mn, Zn, Cd, and Cr. The geoaccumulation index showed that lagoon sediments were unpolluted with Cd, Mn, Fe, Hg, Mo, and Se; unpolluted to moderately polluted with Zn and Co; and moderately polluted with Pb, Cr, Cu, and As. The high enrichment factor values for Pb, As, Cu, Cr, Co, and Zn (>2) indicate their anthropogenic sources, whereas the remaining elements were of natural origins consistent with their low enrichment levels. The values of CF indicate that the bottom sediments of Al-Kharrar lagoon are moderately contaminated with Mn and Pb.  相似文献   

3.
A multivariate statistical analysis was carried out with log-transformed values of Cu, Ni, Co, Pb, Zn, Ag, Cr, Mn, Ca, and Sr in several sets of samples collected across the mineralized base metal zone in sheared soda granite, feldspathic schist, and chlorite schist from the central section of Mosaboni Mine of the famous Singhbhum Copper Belt of eastern India. Linear correlation coefficient matrices of two sets of ore samples (>0.5% Cu)—one from levels 18 and 21 and the other from levels 25 and 28—indicate two well-defined and distinct clusters comprising Cu, Ni, Co, Pb, and Zn on one hand and Ca, Sr, and Mn on the other. Varimax-rotatedR-mode factor analysis of two above-noted sample sets, taken along with available geologic information, indicates that over 80% of the variability in data matrices for 9–10 elements can be accounted for by four distinct processes: (a) an early phase of copper mineralization which apparently replaced Mn, Ca, and Sr in the host rock; (b) a silicate-cum-oxide phase of crystallization/recrystallization of host rock; (c) remobilization of sulfide-forming ore elements (Cu, Ni, Co, Pb, and Zn); and (d) a phase of mineralization of Ag which appears to have replaced Cr, Ca and Cu. Process (c) was quantitatively most important. Factor score studies are suggestive of preferred introduction of Ni, Co, Pb, and Zn along central parts of preexisting copper-mineralized zones.  相似文献   

4.
Heavy metals and metalloids in sediments from the Llobregat basin,Spain   总被引:1,自引:0,他引:1  
The concentration of heavy metals and metalloids (As, Cd, Cr, Cu, Hg, Ni, Pb, Sb and Zn) in sediments from the River Llobregat and its tributaries (Anoia and Cardener) was studied. Samples collected at 17 locations during four different periods were analysed by ICP-MS. The heavy metal enrichment at some sites along the rivers reflects the effects of agricultural activities, sewage treatment plant effluents, collectors' discharges and industrial activities. Principal component analysis (PCA) was used to describe trends in contamination and to find groupings among the investigated areas. The Llobregat and Cardener sediments appeared to have features of an unpolluted river, even though significant amounts of domestic and industrial wastewater are discharged into these rivers. On the other hand, the sediments from the River Anoia showed high Cr and Hg levels originating from industrial activities. The concentrations of Cr and Hg ranged from 91–540 and 0.28–2.29 µg/g respectively.  相似文献   

5.
This paper reports a geochemical study of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan province (P. R. China). Trace metals Ba, Bi, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Sn, Sb, Pb, Tl, Th, U, Zr, Hf, Nb and Ta were analyzed using ICP-MS, and Pb isotopes of the bulk sediments were measured by MC-ICP-MS. The results show that trace metals Cd, Bi, Sn, Sc, Cr, Mn, Co, Ni, Cu, Zn, Sb, Pb and Tl are enriched in the sediments. Among these metals, Cd, Bi and Sn are extremely highly enriched (EF values >40), metals Zn, Sn, Sb and Pb significantly highly (5 < EF < 20), and metals Sc, Cr, Mn, Co, Ni, Cu and Tl moderately highly (2 < EF < 5) enriched in the river sediments. All these metals, however, are moderately enriched in the lake sediments. Geochemical results of trace metals Th, Sc, Co, Cr, Zr, Hf and La, and Pb isotopes suggest that metals in the river sediments are of multi-sources, including both natural and anthropogenic sources. Metals of the natural sources might be contributed mostly from weathering of the Indosinian granites (GR) and Palaeozoic sandstones (PL), and metals of anthropogenic sources were contributed from Pb–Zn ore deposits distributed in upper river areas. Metals in the lake sediments consist of the anthropogenic proportions, which were contributed from automobile exhausts and coal dusts. Thus, heavy-metal contamination for the river sediments is attributed to the exploitation and utilization (e.g., mining, smelting, and refining) of Pb–Zn ore mineral resources in the upper river areas, and this for the lake sediments was caused by automobile exhausts and coal combustion. Metals Bi, Cd, Pb, Sn and Sb have anthropogenic proportion of higher than 90%, with natural contribution less than 10%. Metals Mn and Zn consist of anthropogenic proportion of 60–85%, with natural proportion higher than 15%. Metals Sc, Cr, Co, Cu, Tl, Th, U and Ta have anthropogenic proportion of 30–70%, with natural contribution higher than 30%. Metals Ba, V and Mo might be contributed mostly from natural process.  相似文献   

6.
以金矿开发影响的黄河二级支流太峪水系沉积物为研究对象,沿河采集16个表层沉积物样品,分层采集垂向剖面10件水库沉积物样品,测定了样品中重金属元素Hg、Pb、Cd、Cr、As、Cu和Zn的含量,采用Hakanson潜在生态指数法和Tomlinson污染负荷指数法评价重金属元素污染程度和潜在生态风险。结果表明,矿业活动是太峪水系沉积物重金属元素污染的主要因素;变异系数、富集系数和最高污染系数均反映Hg、Pb、Cd是太峪水系沉积物的特征污染重金属元素,Cr和As的质量分数接近地区背景值;太峪水系表层沉积物受到重金属元素的极强污染,山区段污染较山外更严重;整个流域的Hg、Pb、Cd具有很强的潜在生态危害,Cr、As、Zn的潜在生态危害轻微;太峪水系沉积物垂向各层沉积物都受到重金属元素的极强污染,生态问题以Hg、Pb、Cd的潜在生态危害为主,其污染和生态危害程度都高于流向上的沉积物。潜在生态危害指数评价突出了不同元素的毒性和危害程度,而污染负荷指数法侧重于样本空间上的污染程度,二者互补使用有利于实际问题的全面评价。  相似文献   

7.
北京市密云水库上游土壤重金属污染调查评价   总被引:12,自引:0,他引:12  
廖海军 《城市地质》2007,2(3):31-34
2002年9月在密云水库周边及上游地区(北京境内)总共采集土样98个,以《土壤环境质量标准》GB15168-95Ⅰ级标准为评价标准,对密云水库上游地区土壤重金属Cd、Pb、As、Hg、Cr、Cu、Ni、Zn的污染状况作了初步评价。研究结果发现密云水库周边及上游地区重金属污染以Cr和Hg为主,牤牛河上游为污染最严重地区,清水河上游、潮河下游放马峪地区、德田沟--崎峰茶地区受Cr元素轻度污染。该地区土壤重金属污染,主要原因是金属矿山不合理排放的尾砂及废矿石等人为因素所致。  相似文献   

8.
 The Yamuna River sediments, collected from Delhi and Agra urban centres, were analysed for concentration and distribution of nine heavy metals by means of atomic adsorption spectrometry. Total metal contents varied in the following ranges (in mg/kg): Cr (157–817), Mn (515–1015), Fe (28,700–45,300), Co(11.7–28.4), Ni (40–538), Cu (40–1204), Zn (107–1974), Pb (22–856) and Cd (0.50–114.8). The degree of metal enrichment was compared with the average shale concentration and shows exceptionally high values for Cr, Ni, Cu, Zn, Pb and Cd in both urban centres. In the total heavy metal concentration, anthropogenic input contains 70% Cr, 74% Cu, 59% Zn, 46% Pb, 90% Cd in Delhi and 61% Cr, 23% Ni, 71% Cu, 72% Zn, 63% Pb, 94% Cd in Agra. A significant correlation was observed between increasing Cr, Ni, Zn, and Cu concentrations with increasing total sediment carbon and total sediment sulfur content. Based on the Müller's geoaccumulation index, the quality of the river sediments can be regarded as being moderately polluted to very highly polluted with Cr, Ni, Cu, Zn, Pb and Cd in the Delhi and Agra urban centres. The present sediment analysis, therefore, plays an important role in environmental measures for the Yamuna River and the planning of these city centres. Received: 21 June 1999 · Accepted: 1 October 1999  相似文献   

9.
This study examines the sediment particle size distribution and the trace metal concentrations from a dammed-river watershed (Nestos River) to its deltaic zone in NE Greece. The study area is relatively unpolluted. The distribution of trace metals (Cu, Cr, Cd, Ni, Pb, Hg) in sediments throughout the catchment area showed selective “trapping” of certain elements behind the two artificial dams (Thissavros and Platanovrisi dams) in the watershed and a sudden reduction downstream (83% for Cd, 81% for Cr, 94% for Cu, 90% for Ni, 86% for Hg and 33% for Pb). Marked sediment particle separation is observed at the upstream dam (Thissavros), where coarse material including sand is trapped (coarse fraction 12.9–49.3%). Fine-grained material (<63 μm) is trapped behind the Platanovrisi dam (68.1%), and the reservoir showed elevated metal concentrations, especially for Cu and Cd (16.3 and 0.5 μg/g, respectively). Lead exhibited a homogenous distribution throughout the watershed (20.1–32.3 μg/g). All other trace metals (Cu, Cr, Cd, Ni and Hg) decline sharply downstream of the dam complex. In the delta system, nearshore sediments consist of shallow deposits in the vicinity of river mouth and are enriched in Cr (4.4–53.0 μg/g) and Ni (2.6–44.3 μg/g), while the further offshore and slightly deeper (20–40 m) sediments illustrate elevated Hg (0–0.07 μg/g), Cd (0.09–0.18 μg/g), Cu (11.5–18.3 μg/g) and Ni (38–54.5 μg/g).  相似文献   

10.
Among environmental contaminants, heavy metals are currently considered to be some of the most toxic ones present worldwide due to their harmful effects on organisms and ability to bioaccumulate in aquatic systems. In this work, the concentration of heavy metals (Cd, Cu, Pb, Zn, Ni and Cr) in Brachidontes rodriguezii and in the fine sediments of several coastal sites at the southwest of Buenos Aires Province, Argentina is analyzed. The Bahía Blanca Estuary and Pehuen-Có beach are located in a highly complex oceanographic and ecological regional system, which creates the basis of one of the most valuable Argentinean habitats for fishing commercial species. An assessment, which involved analyzing distribution pattern of trace metals, comparative studies with sediment and ecological quality guidelines; and a sequential and integrated index analyses approach (containing Metal Pollution Index, Biosediment Accumulation Factor, Geo-accumulation Index (Igeo), Pollution Load Index and the mean Probable Effect Level quotients), was followed to estimate enrichment and risks of heavy metals in the sediments and in the mussels from these study areas. The results showed higher concentrations of some heavy metals (e.g., Cd, Cr and Ni) in mussels collected at Pehuen-Có, while no spatial differences in sediments were observed. According to the international environmental regulations, mean values of trace metals in mussels allowed to place both sites between “unpolluted and moderately polluted” and between the “low and medium category” of pollution. Furthermore, the mean concentrations found were within the detected ranges in other coastal sites worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号