首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A rank series of lignites and coals of low to moderate maturation levels (vitrinite reflectance (R0): 0.27–0.8%) from the New Zealand Coal Band were investigated using alkaline ester cleavage experiments to reveal compositional changes of ester bound components (fatty acids and alcohols) during increasing maturation. Ester bound alcohols are found to be present in highest amounts in the very immature lignite samples (R0: 0.27–0.29%), but show a rapid decrease during early diagenesis. Ester bound fatty acids also show an initial exponential decrease during diagenesis, but reveal an intermittent increase during early catagenesis before decreasing again during main catagenesis. This intermittent increase was related to the short chain fatty acids. To obtain a maturity related signal and to eliminate facies related scattering in the amounts of fatty acids in the coal samples, the carbon preference index of fatty acids (CPIFA) parameter is introduced here. For the long chain fatty acids (C20–C32) originating from terrigenous plant debris, the CPIFA decreases with increasing maturity, showing a strong maturation related signal. During diagenesis, the same trend can be observed for the short chain fatty acids, but the intermittent increase in the amounts of short chain fatty acids is also accompanied by high CPIFA values. This indicates less altered organic biomass at this advanced maturation level and is in contrast to the mature CPIFA signal of the long chain fatty acids of the same samples. One possible reason for this discrepancy could be extremely different amounts of short and long chain fatty acids in the original source organic matter of these samples. However, another intriguing explanation could be the incorporation of immature bacterial biomass from deep microbial communities containing C16 and C18 fatty acids as main cell membrane components. Deep microbial life might be stimulated at this interval by the increasing release of thermally generated potential substrates from the organic matrix during early catagenesis. In contrast to the fatty acids, the high amounts of alcohols in the immature lignite samples are also visible in the alkene distribution from the open system pyrolysis experiments of the organic matrix before and after saponification.  相似文献   

2.
The structural evolution of coals during coalification from peat to the end of the high volatile bituminous coal rank (VRr = 0.22–0.81%) has been studied using a natural maturity series from New Zealand. Samples were studied using a range of standard coal analyses, Rock–Eval analysis, infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), and pyrolysis gas chromatography (Py-GC). The structural evolution of coal during diagenesis and moderate catagenesis is dominated by defunctionalisation reactions leading to the release of significant amounts of oxygen and thereby to an enrichment of aromatic as well as aliphatic structures within the residual organic matter. Based on the evolution of pyrolysis yields and elemental compositions with maturity it can be demonstrated that oxygen loss is the major cause for increasing Hydrogen Index values or hydrocarbon generating potentials of coals at such maturity levels. For the first time, the loss of oxygen in form of CO2 has been quantified. During maturation from peat to high volatile bituminous coal ranks ∼10–105 mg CO2/g TOC has been released. This is equivalent to 2.50E−4 to 1.25E−3 mg CO2 generated from every litre of sediment per year falling into the range of deep biosphere utilisation rates. Immature coals, here New Zealand coals, therefore manifest the potential to feed deep terrestrial microbial life, in contrast to more mature coals (VRr > ∼0.81%) for which defunctionalisation processes become less important.  相似文献   

3.
Low-molecular-weight (LMW) aqueous organic acids were generated from six oil-prone source rocks under hydrous-pyrolysis conditions. Differences in total organic carbon-normalized acid generation are a function of the initial thermal maturity of the source rock and the oxygen content of the kerogen (OI). Carbon-isotope analyses were used to identify potential generation mechanisms and other chemical reactions that might influence the occurrence of LMW organic acids. The generated LMW acids display increasing 13C content as a function of decreasing molecular weight and increasing thermal maturity. The magnitudes of observed isotope fractionations are source-rock dependent. These data are consistent with δ13C values of organic acids presented in a field study of the San Joaquin Basin and likely reflect the contributions from alkyl-carbons and carboxyl-carbons with distinct δ13C values. The data do not support any particular organic acid generation mechanism. The isotopic trends observed as a function of molecular weight, thermal maturity, and rock type are not supported by either generation mechanisms or destructive decarboxylation. It is therefore proposed that organic acids experience isotopic fractionation during generation consistent with a primary kinetic isotope effect and subsequently undergo an exchange reaction between the carboxyl carbon and dissolved inorganic carbon that significantly influences the carbon isotope composition observed for the entire molecule. Although generation and decarboxylation may influence the δ13C values of organic acids, in the hydrous pyrolysis system described, the nondestructive, pH-dependent exchange of carboxyl carbon with inorganic carbon appears to be the most important reaction mechanism controlling the δ13C values of the organic acids.  相似文献   

4.
Ether functionalities form an important cross-linking structure within the macromolecular organic matrix of lignites and coals. To obtain a deeper insight into the complex internal structure of such macromolecules and the maturation related changes of the ether compounds within the network structure, boron tribromide (BBr3) ether cleavage was applied to a series of lignite and coal samples of different maturity (R0 0.27-0.80%) obtained from coal mines and natural outcrops from the North and South Island of New Zealand. Terminal ether-bound alcohols rapidly decrease during diagenesis and occur only in low amounts during the catagenetic stage. Comparison between ester- and ether-bound terminal alcohols indicates a parallel decreasing trend during the diagenetic stage, suggesting that the stability differences between both linkages are not large enough to be observed in maturation processes over geological time scales. Polyether compounds were detected with chain length up to five carbon atoms. After a small decrease during the diagenetic phase these compounds occur in relatively high concentrations, even in the main catagenetic stage. This suggests that these linkage structures represent important cross-linking substructures within the macromolecular matrix of lignites and coals being sterically protected within the macromolecular network during the maturation process. Additional cross-linking substructures were (poly)ether aromatics, esters and ketones.  相似文献   

5.
《Applied Geochemistry》2003,18(6):845-861
Recent sediments of the Andaman Backarc Basin, Indian Ocean, between the Andaman Nicobar islands and the Malay Peninsula have been analyzed for biomarker lipids. Three cores were selected: one each from the fault zone in a deep basin (a graben between two fault systems), another from a location adjacent to the fault, and the third from the topographic high in the rift valley. The molecular composition of the lipid classes (n-alkanes, isoprenoids, alkylbenzenes, alkylcyclohexanes, hopanoids, polycyclic aromatic hydrocarbons, steranes, alcohols, sterols and fatty acids) was examined by gas chromatography (GC) and GC/mass spectrometry to understand the nature and source of the hydrocarbons present and the processes of maturation of organic matter. The data show that the hydrocarbons are of hydrothermal origin, derived from thermal alteration of sedimentary organic matter, consisting of a mixture predominantly of marine-derived components with some terrestrial inputs. Normal alcohols and fatty acids also corroborate the distribution of n-alkanes. The distribution profiles and various parameters computed from the concentration of the target compounds suggest that oxidative reactions and microbial degradation in this environment are insignificant. Triterpane and PAH compositions indicate that the thermal maturity of the bitumen in the samples is comparable to or lower than that found at other hydrothermal regions such as the Northern Juan de Fuca Ridge, Guaymas Basin and Escanaba Trough.  相似文献   

6.
Phenanthrene (PHE) and methylphenanthrenes (MPs) extracted from coaly shale and coal samples containing terrestrial organic matter are compared with the same compounds from marine shales in terms of yields and δ13C values at marginally to fully mature stages of thermal evolution. The shales derived from four boreholes in the Hils Half-Graben area, northwestern Germany, were shown to be representative of a greater number of samples from the same sites. The δ13C values of extractable PHE and MPs are less negative in the terrestrial (−24.3 to −26.0‰) than in the marine (−28.8 to −30.5‰) samples. Since these values are unrelated to mean vitrinite reflectance (Rr) values in the range of 0.5–0.9%, it appears that the stable carbon isotope composition of PHE and MPs is controlled by organic matter type rather than maturity.  相似文献   

7.
9^#煤是安太堡煤矿的主要可采煤层之一,宏观煤岩类型为半暗型煤。通过对煤中可溶有机质成分特征及饱和烃、芳香烃中各项生物指标化合物含量进行分析,得出:(1)样品中较高的芘含量反映煤样中的成煤母质中陆源高等植物占优势;(2)OEP指数和芳香烃中MPI指数均呈现低值,指示有机质的成熟度较低;(3)Pr/Ph值变化较大,氧芴含量稍高,指示成煤环境海侵频繁,氧化还原沉积环境交替。  相似文献   

8.
A series of branched alkylbenzene ranging from C15 to C19 with several isomers (2–5) at each carbon number were identified in sediments from the Dongsheng sedimentary uranium ore deposits, Ordos Basin, China. The distribution patterns of the branched alkylbenzenes show significant differences in the sample extracts. The branched alkylbenzenes from organic-rich argillites and coals range from C15 to C19 homologues, in which the C17 or C18 dominated. On the other hand, the C19 branched alkylbenzenes dominated in the sandstone/siltstone extracts. The obvious differences of the branched alkylbenzene distributions between the uranium-host sandstones/siltstones and the interbedded barren organic-rich mudstones/coals probably indicate their potential use as biological markers associated with particular depositional environments and/or maturity diagenetic processes. Possible origins for these branched alkylbenzenes include interaction of simple aromatic compounds with, or cyclization and aromatization reactions of, these linear lipid precursors such as fatty acids, methyl alkanoates, wax esters or alkanes/alkenes that occur naturally in carbonaceous sediments. The possible simple aromatic compounds may include substituted benzenes, functionalized compounds such as phenols that are bound to kerogen at the benzyl position, and phenols that are decomposition products derived from aquatic and terrestrial sources. The distributions of methyl alkanoates and n-alkanes were found to be different between organic-rich mudstone/coal and sandstone/siltstone. From this result, it can be concluded that such differences of the alkylbenzene distributions were mainly resulting from the differences of organic precursors, although maturity effect and radiolytic alteration cannot be completely excluded.  相似文献   

9.
In order to improve understanding of the stratigraphy of the Lake Turkana Basin, one of the important sites in the evolution of early man, this study evaluates the usefulness of organic biological marker compounds, n-alkanes and fatty acids, for correlation of isolated sedimentary strata.Eighty-five paleosol samples were collected from well-defined sedimentary horizons in two regions (Area 103 and Area 130) of the Koobi Fora area of Lake Turkana. Results indicate that most of the organic matter present was derived from terrestrial plant waxes. In sediments where extensive diagenesis has occurred, microbial input of organic matter may have been substantial. Algae were either not an important source of organic matter, or their marker compounds have been removed or altered by degradative processes.The fate of the original paleosol organic matter has been governed to some extent by weathering processes, especially in Area 130. Weathering decreased the amount of extractable lipids, particularly fatty acids and the low molecular weight alkanes (C17C20); produced or retained relatively large amounts of alkanes greater than C21 within a unimodal distribution; and lowered CPI values. Consequently, stratigraphic correlation by unique alkane and fatty acid distributions has been confined to short distances (many meters).Both n-alkanes and fatty acids have been retained better by association with clay minerals than by sand matrices. The alkane distribution of sandstones differs from that of clay organics in having a narrower carbon chain length distribution and lower CPI values. In Area 103, where weathering was less severe, compositional variations with stratigraphic position indicate that lipid material has been retained within each of the facies examined.  相似文献   

10.
Previous studies on lipid biomarkers preserved in Chinese stalagmites have indicated that ratios of low‐molecular‐weight (LMW) to high‐molecular‐weight (HMW) n‐alkanes, n‐alkan‐2‐ones, n‐alkanols and n‐alkanoic acids can be used as an index of vegetation versus microbial organic matter input to the system and, by extension, a marker of climatic changes, with increases in the proportion of LMW compounds coinciding with colder periods. Here we test whether this hypothesis is equally applicable to a different geographical region (north‐west Scotland), by examining a stalagmite record of the past 200 years, and a wider range of lipid markers. We also test the applicability of other lipid proxies in this context, including the use of n‐alkane ratios, to interpret vegetation changes, and unsaturated alkanoic acid ratios as climatic indicators. The results show that lipid proxies preserved in stalagmites, and especially those related to vegetation, are potentially extremely useful in palaeoenvironmental research. Of particular value is the use of C27/C31 n‐alkane ratios as a proxy for vegetation change, clearly indicating variations between herbaceous and arboreal cover. This proxy has now been successfully applied to samples from diverse environments, and can be considered sufficiently robust to be of use in analysing future stalagmite records. It will be of particular value in areas where reliable pollen records are not available, as is often the case with deeper cave deposits. However, the division between LMW and HMW aliphatic compounds is not a clear‐cut case of microbial versus plant activity, with the changes in LMW compounds relating more closely to those in their HMW analogues than in specific bacterial biomarkers. The use of unsaturated alkanoic acid ratios here gives conflicting results, with the observed variation through time depending on the isomer measured. The discrepancies between the findings of this study and previous work are likely to be due to the varying controls on the lipids (original organic matter input, and compound degradation), which in turn will be affected by whether the main climatic limiting factor on the soil is temperature or precipitation. This suggests that lipid proxies preserved in stalagmites must be interpreted with care, particularly in the case of bacterial compounds which may be derived from within the cave or from the soil. However, many of these issues can be resolved by the use of multi‐proxy studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Low molecular weight organic acids (LMWOA) are produced in soil by various biological and chemical processes and can exhibit substantial metal complexing and dissolution capacity. The reactivity of these compounds in the soil environment is dependent on their non-complexed concentration in the soil solution. Adsorption of LMWOA has been shown to reduce their concentration in the soil solution; however, little is known about the reduction of LMWOA concentration due to microbial degradation. To examine the extent of microbial degradation in reducing LMWOA concentration in the soil solution, three-biometer methods were used: a soil biometer flask, an in-situ field biometer and a soil column biometer. Four soil horizons were used with each method. To each soil sample, 2.0×10−6 moles of organic acid containing 3.7×104 Bq total activity was applied. The 14C-radiolabeled aliphatic and aromatic acids studied included oxalic, malonic, succinic, and phthalic acid. Evolved 14CO2 was trapped in 0.5 mol l−1 NaOH and measured using liquid scintillation counting. Labeled acids degraded rapidly within the first 5 days for the Ap1, Ap2, and BA horizons, with a generally slower rate of 14CO2 evolution being observed for the Bt1 horizon. The % degradation of labeled acid was substantially greater for the soil biometer flask method, compared to the field and soil column biometer methods. The average % degradation for the soil biometer flask was 67% for all soil horizons and organic acids, compared to 14% for the field biometer and 13% for the soil column biometer. Results indicate that substantial microbial degradation of organic acids can occur within a relatively short time period and the biometer method selected can influence the % acid degraded. Based on primary results, the soil column biometer method better approximated microbial degradation under field conditions, as evaluated using the field biometer.  相似文献   

12.
Supercritical CO2 (scCO2) is a good solvent for organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests have shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. Results showed that the extent of mobilization for the organic compounds was a function of the source rock. In fate and transport sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon the results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate the risks.  相似文献   

13.
Core samples were collected in Lagoa Vermelha, a hypersaline lagoon located about 100 km east of Rio de Janeiro (Brazil). The sediment composition is predominantly carbonate in amounts up to 93%. Analysis of δ13C of the total organic matter in the sediments showed that marine organic matter predominates throughout the core (δ13C ranges from −15.84 to −22.64‰ vs. PDB). Organic carbon contents (TOC) ranged from 0.81 to 13.28%. A series of cadinane-type sesquiterpenoids can be recognized in the gas chromatography-mass spectrometry data. Essentially the same components are present in all the samples, with variations only in their relative abundances. The most abundant compounds are α- and β-cubebene, α- and β-cedrene, cadinenes (different isomers), α-curcumene and calamenene, with minor amounts of calarene, humulene, calacorene and cadalene. Since this lagoon is surrounded by dunes with only minor vegetation typical of this environment (grasses, small non-resinous shrubs and no forest) with no potential source for sesquiterpenoids, a terrestrial origin for these compounds is excluded and an algal origin is more consistent with the locale and the recognition of sesquiterpenoids (including cadinol) in microbial mats from the lagoon. Only the natural product precursor sesquiterpenoids are present in the microbial mats with no detectable diagenetic derivatives (e.g. calamenene and cadalene). This indicates that the compounds in the mats are from recent input and those found in the sediments are most likely derived from former algal biomass in this lagoon, a fact confirmed by the recognition of a series of diagenetic aromatic components in the sediments. Surface sediments contain n-alkanes with no even-to-odd predominance indicating that microbial activity is higher in shallower sediments. Moreover, mass fragmentograms (m/z 191) of biomarkers revealed the presence of 17α(H),21β(H)-hopanes, the mature isomers, together with their ββ precursors and low amounts of the intermediates with the βα configuration (moretanes). This indicates a contribution of mature organic matter to these immature sediments.  相似文献   

14.
《Applied Geochemistry》2006,21(10):1750-1759
Low-molecular-weight (LMW) organic acids occur widely in soils. Results in pure mineral systems and podzols suggest that LMW organic acids can promote the dissolution of Al from kaolinite, Al oxides and soils, but limited information is available concerning the role of these organic acids on Al mobilization in variable charge soils as yet. This paper deals with the effect of LMW organic acids on Al mobilization and mobilized Al distributed between the solution phase and exchangeable sites in two acidic variable charge soils. The results indicated that LMW organic acids accelerated Al mobilization through proton- and ligand- promoted reactions. The ability of different organic acids to mobilize Al followed the order: citric acid > oxalic acid > malonic acid > malic acid > tartaric acid > salicylic acid > lactic acid > maleic acid. This order was in general agreement with the magnitude of the stability constants of Al–organic acid complexes. The ratio of soluble Al to exchangeable Al also increased as the stability constants increased. These results showed that the organic acids with strong Al-complexation capacity were most effective in Al mobilization, whereas the weak organic acids promoted the retention of mobilized Al by the soil exchangeable sites. Increase in both organic acid concentration and solution pH promoted Al mobilization and also increased the ratio of soluble Al to exchangeable Al due to the increase in the concentration of the effective organic ligands, especially in the strong organic acid systems. These findings may have their practical significance for establishing more effective amelioration procedures for variable charge soils with increased acidity and higher mobility of Al.  相似文献   

15.
River runoff and atmospheric fallout (dust and air particulate matter) are major input sources of natural and anthropogenic terrestrial organic and inorganic components to the Arabian seas. In this study, we report on the various lipid tracer compounds that might be transported to the Arabian Gulf by rivers, dust, and air particulate matter. These are based on geochemical analysis of sediment, dust, and particulate samples collected from Iraq, Kuwait, and Saudi Arabia. The samples were extracted with a dichloromethane/methanol mixture and analyzed by gas chromatography-mass spectrometry. The extractable organic compounds (lipids) in the samples include n-alkanes, n-alkanoic acids, n-alkanols, methyl n-alkanoates, steroids, triterpenoids, carbohydrates, and petroleum hydrocarbons. The steroids and triterpenoids were major components in river and wetland samples. The major sources of these lipids were from natural vegetation, microbial (plankton and bacteria) residues in the sediments, sand, and soils, with some contribution from anthropogenic sources. Accordingly, these sources could be major inputs to the Arabian seas besides the autochthonous marine products. Future studies of the organic and inorganic biogeochemistry on river, dust, and coastal areas are needed to characterize the various regional sources, transformation, and diagenetic processes of the organic matter en route to the marine environment.  相似文献   

16.
Organic ligands in the environment hinder the formation of crystalline Al precipitation products by perturbing the hydrolytic and polymeric reactions of Al resulting in the formation of short-range ordered (SRO) mineral colloids with varying degrees of crystallinity. However, the effect of these ligands on the mechanisms of their formation and nature of the transformation products of Al (oxy)hydroxides at the atomic and molecular levels is not well understood. In this study, the coordination structure of Al in Al (oxy)hydroxides formed under the influence of varying concentrations of low molecular weight (LMW) organic acids such as citric, malic, salicylic and acetic acids and a humic acid (HA) was investigated with X-ray absorption near edge structure (XANES) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis. The Al K- and L-edge XANES spectra showed that with increasing LMW organic acid concentration the coordination number of Al changed from 6-fold to a mixture of 4- and 6-fold, except for acetate as acetate was unable to perturb the formation of Al (oxy)hydroxides at the acetate/Al molar ratio (MR) = 0.1. The proportion of 4-fold to 6-fold coordinated Al in the Al precipitation products depended on the structure and functionality of the LMW organic acids. The incorporation of the LMW organic acid into the network structure of Al (oxy)hydroxides prevented the formation of sheets/inter-layer H-bonding that was required for the formation of crystalline Al (oxy)hydroxides. The HA used in this study only slightly perturbed the crystallization of the Al (oxy)hydroxides at the concentrations used. The Al K-edge data showed that Al coordination number had not been altered in the presence of HA. The findings obtained in the present study are of fundamental significance in understanding the physicochemical behavior of soils and sediments, and their relation to the accumulation and transport of nutrients and pollutants in the environment.  相似文献   

17.
瓦窑堡煤系有机岩石学特征及煤成烃潜力研究   总被引:3,自引:0,他引:3  
瓦窑堡煤系是我国重要的含煤岩系之一,陆相生油的观点最早可能源于瓦窑堡煤系含油性特征。通过对瓦窑堡煤系煤和暗色泥岩有机质的显微岩石学和宏观煤岩学特征的分析,提出了瓦窑堡煤系煤主要形成于深覆水森林泥炭沼泽相,类脂组含量高,且镜质组的主要类型为富氢的基质镜质体,有机地球化学结果表明瓦窑堡煤系煤具有Ⅱ型有机质的特征,处于低熟-成熟阶段,热模拟实验证明其具有良好的油气生成潜力。但由于瓦窑堡煤系规模小,煤层厚度薄,煤系泥岩有机质类型偏差,且煤中主要生油显微组分尚末进入大量生油期,因此难以形成油藏。  相似文献   

18.
Lake Kivu is a gas-charged East African rift lake with currently anoxic bottom water. The extractable compounds and residual organic matter of a short sediment core have δ13C values typical of lacustrine microbial detritus. The total extracts consist primarily of polar compounds such as n-alkanoic acids, hydroxyalkanoic acids, triterpenoids, steroids and monosaccharides, with minor amounts of n-alkanes and n-alkanols. These tracer compounds and δ13C values indicate that the organic matter in the surficial and deeper sedimentary record was dominated by bacterial sources. The sapropelic sediment between these horizons contains organic matter from primarily algal with lesser bacterial input. Terrestrial organic markers are minor in all samples. The major fractions of the compounds in the total extracts were oxidized in the upper water column prior to transit through the anoxic bottom water to sedimentary deposition. The sapropelic horizon may reflect lake water turnover with ventilation or hydrothermal activity and consequently increased algal blooms.  相似文献   

19.
Organic geochemical characterization of cutting samples from the Abu Hammad-1 and Matariya-1 wells elucidates the depositional environment and source rock potential of the Jurassic and Lower Cretaceous successions and the Middle Miocene to Pleistocene section in the southern and eastern Nile Delta Basin. The burial and thermal histories of the Mesozoic and Miocene sections were modeled using 1D basin modeling based on input data from the two wells. This study reveals fair to good gas-prone source rocks within the Upper Jurassic and Lower Cretaceous sections with total organic carbon (TOC) averaging 2.7% and hydrogen index (HI) up to 130 mg HC/g TOC. The pristane/n-C17 versus phytane/n-C18 correlation suggests mixed marine and terrestrial organic matter with predominant marine input. Burial and thermal history modeling reveals low thermal maturity due to low heat flow and thin overburden. These source rocks can generate gas in the western and northern parts of the basin where they are situated at deeper settings. In contrast, the thick Middle Miocene shows fair source rock quality (TOC averaging at 1.4%; HI maximizing at 183 mg HC/g TOC). The quality decreases towards the younger section where terrestrial organic matter is abundant. This section is similar to previously studied intervals in the eastern Nile Delta Basin but differs from equivalents in the central parts where the quality is better. Based on 1D modeling, the thick Middle Miocene source rocks just reached the oil generation stage, but microbial gas, however, is possible.  相似文献   

20.
雷闯  殷世艳  叶加仁  吴景富 《地球科学》2021,46(10):3575-3587
为揭示东海盆地椒江凹陷油气勘探潜力,基于地球化学和盆地数值模拟方法对古新统月桂峰组、灵峰组和明月峰组烃源岩开展生烃能力和生烃过程研究.结果表明,月桂峰组和灵峰组泥岩有机质丰度高,以Ⅱ型干酪根为主,为水生生物和陆源高等植物混合来源,且形成于偏还原环境.夹有薄层炭质泥岩和煤的明月峰组泥岩有机质丰度低,以Ⅲ型干酪根为主,为陆源高等植物来源且形成于氧化环境.古新世至始新世,椒江凹陷大幅度沉降且古热流较高,是古新统烃源岩热演化程度增加的主要时期.受埋藏史和成熟度史共同控制,月桂峰组和灵峰组经历了2次生烃作用,第1次发生在古新世晚期,第2次发生在始新世中期至晚期,生烃强度高.明月峰组仅在始新世末期经历了1次生烃作用,生烃强度低.椒江凹陷古新统烃源岩生烃潜力强,具有广阔的油气勘探前景,应围绕生烃中心尤其是月桂峰组生烃中心选择形成于中新世之前的有效圈闭进行钻探.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号