首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhanced coalbed methane (ECBM) involves the injection of a gas, such as nitrogen or carbon dioxide, into the coal reservoir to displace the methane present. Potentially this strategy can offer greater recovery of the coal seam methane and higher rates of recovery due to pressure maintenance of the reservoir. While reservoir simulation forms an important part of the planning and assessment of ECBM, a key question is the accuracy of existing approaches to characterising and representing the gas migration process. Laboratory core flooding allows the gas displacement process to be investigated on intact coal core samples under conditions analogous to those in the reservoir. In this paper a series of enhanced drainage core floods are presented and history matched using an established coal seam gas reservoir simulator, SIMED II. The core floods were performed at two pore pressures, 2 MPa and 10 MPa, and involve either nitrogen or flue gas (90% nitrogen and 10% CO2) flooding of core samples initially saturated with methane. At the end of the nitrogen floods the core flood was reversed by flooding with methane to investigate the potential for hysteresis in the gas displacement process. Prior to the core flooding an independent characterisation programme was performed on the core sample where the adsorption isotherm, swelling with gas adsorption, cleat compressibility and geomechanical properties were measured. This information was used in the history matching of the core floods; the properties adjusted in the history matching were related to the affect of sorption strain on coal permeability and the transfer of gas between cleat and matrix. Excellent agreement was obtained between simulated and observed gas rates, breakthrough times and total mass balances for the nitrogen/methane floods. It was found that a triple porosity model improved the agreement with observed gas migration over the standard dual porosity Warren-Root model. The Connell, Lu and Pan hydrostatic permeability model was used in the simulations and improved history match results by representing the contrast between pore and bulk sorption strains for the 10 MPa cases but this effect was not apparent for the 2 MPa cases. There were significant differences between the simulations and observations for CO2 flow rates and mass balances for the flue gas core floods. A possible explanation for these results could be that there may be inaccuracy in the representation of mixed gas adsorption using the extended Langmuir adsorption model.  相似文献   

2.
It is generally accepted that typical coalbed gases (methane and carbon dioxide) are sorbed (both adsorbed and absorbed) in the coal matrix causing it to swell and resulting in local stress and strain variations in a coalbed confined under overburden pressure. The swelling, interactions of gases within the coal matrix and the resultant changes in the permeability, sorption, gas flow mechanics in the reservoir, and stress state of the coal can impact a number of reservoir-related factors. These include effective production of coalbed methane, degasification of future mining areas by drilling horizontal and vertical degasification wells, injection of CO2 as an enhanced coalbed methane recovery technique, and concurrent CO2 sequestration. Such information can also provide an understanding of the mechanisms behind gas outbursts in underground coal mines.The spatio-temporal volumetric strains in a consolidated Pittsburgh seam coal sample were evaluated while both confining pressure and carbon dioxide (CO2) pore pressure were increased to keep a constant positive effective stress on the sample. The changes internal to the sample were evaluated by maps of density and atomic number determined by dual-energy X-ray computed tomography (X-ray CT). Early-time images, as soon as CO2 was introduced, were also used to calculate the macroporosity in the coal sample. Scanning electron microscopy (SEM) and photographic images of the polished section of the coal sample at X-ray CT image location were used to identify the microlithotypes and microstructures.The CO2 sorption-associated swelling and volumetric strains in consolidated coal under constant effective stress are heterogeneous processes depending on the lithotypes present. In the time scale of the experiment, vitrite showed the highest degree of swelling due to dissolution of CO2, while the clay (kaolinite) and inertite region was compressed in response. The volumetric strains associated with swelling and compression were between ± 15% depending on the location. Although the effective stress on the sample was constant, it varied within the sample as a result of the internal stresses created by gas sorption-related structural changes. SEM images and porosity calculations revealed that the kaolinite and inertite bearing layer was highly porous, which enabled the fastest CO2 uptake and the highest degree of compression.  相似文献   

3.
考虑基质收缩效应的煤层气应力场-渗流场耦合作用分析   总被引:2,自引:0,他引:2  
在煤层气的初级生产过程中,为了获取较高的生产率,需要降低储层压力,储层压力下降对于煤层气的渗透率具有两个相反的效应:(1)储层压力下降,有效应力增加,煤层裂隙压缩闭合,渗透率降低;(2)煤层气解吸,煤基质收缩,煤层气流动路径张开,渗透率升高。Shi和Durucan、Palmer-Mansoori以及Gray等都建立了包含了基质收缩效应以及有效应力的影响的渗透率模型,其模型都基于以下两个关键假设:煤岩体处于单轴应变状态以及竖向应力恒定。为了检验上述两个假设的合理性,建立了一个考虑基质收缩效应以及渗流场-应力场耦合作用下的煤层气流动模型,对煤层气初级生产过程中渗透率的变化进行了耦合分析。分析结果表明:单轴应变的假设具有合理性,而竖向应力是随指向生产井的应变梯度的变化而变化的,其对于渗透率的变化具有重要影响,因此,竖向应力恒定的假设可能导致渗透率预测出现误差;上述渗透率模型都可能低估煤层气初级生产过程中渗透率的变化。  相似文献   

4.
Geologic sequestration in deep unmineable coal seams and enhanced coalbed methane production is a promising choice, economically and environmentally, to reduce anthropogenic gases such as carbon dioxide in the atmosphere. Unmineable coal seams are typically known to adsorb large amounts of carbon dioxide in comparison to the sizeable amounts of sorbed methane, which raises the potential for large scale sequestration projects. During the process of sequestration, carbon dioxide is injected into the coalbed and desorbed methane is produced. The coal matrix is believed to shrink when a gas is desorbed and swell when a gas is sorbed, sometimes causing profound changes in the cleat porosity and permeability of the coal seam. These changes may have significant impact on the reservoir performance. Therefore, it is necessary to understand the combined influence of swelling and shrinkage, and geomechanical properties including elastic modulus, cleat porosity, and permeability of the reservoir.The present paper deals with the influence of swelling and shrinkage on the reservoir performance, and the geomechanical response of the reservoir system during the process of geologic sequestration of carbon dioxide and enhanced coalbed methane production in an actual field project located in northern New Mexico. A three-dimensional swelling and shrinkage model was developed and implemented into an existing reservoir model to understand the influence of geomechanical parameters, as well as swelling and shrinkage properties, on the reservoir performance. Numerical results obtained from the modified simulator were compared to available measured values from that site and previous studies. Results show that swelling and shrinkage, and the combination of geomechanical and operational parameters, have a significant influence on the performance of the reservoir system.  相似文献   

5.
An alternative approach is proposed to develop an improved permeability model for coalbed methane (CBM) and CO2-enhanced CBM (ECBM) recovery, and CO2 geosequestration in coal. This approach integrates the textural and mechanical properties to describe the anisotropy of gas permeability in coal reservoirs. The model accounts for the stress dependent deformation using a stress–strain correlation, which allows determination of directional permeability for coals. The stress–strain correlation was developed by combining mechanical strain with sorption-induced strain for any given direction. The mechanical strain of coal is described by the general thermo-poro-elastic constitutive equations for solid materials under isothermal conditions and the sorption-induced strain is approximated by treating the swelling/shrinkage of coal matrix equivalent to the thermal contraction/expansion of materials. With directional strains, the permeability of coal in any given direction can be modeled based on the theory of rock hydraulics. In this study, the proposed model was tested with both literature data and experiments. The experiments were carried out using a specially designed true tri-axial stress coal permeameter (TTSCP). The results show that the proposed model provides better predictions for the literature data compared with other conventional coal permeability models. The model also gives reasonable agreement between the predicted and measured stress–strains and directional permeabilities under laboratory conditions.  相似文献   

6.
晋城煤层气藏成藏机制   总被引:3,自引:0,他引:3  
通过晋城煤层气的规模开发、压裂煤层气井的解剖、井下煤层瓦斯抽放、构造地应力场研究、煤储层大裂隙系统“CT”式解剖与煤层气封闭保存条件研究, 发现3#煤储层内部存在大量煤层气包, 构造微破裂作用促使煤层气包之间广泛合并联通, 煤层气包内部储层的非均质性弱化, 渗透率增加, 煤层气包内部的游离气体比例增加, 流体压力系统边界逐渐清晰并形成煤层气藏. 揭示煤层气藏的成藏机制, 认识煤层气藏的内部细节特征, 促进了该区的煤层气开发技术进步, 提高了井下煤层瓦斯的抽放效率.   相似文献   

7.
为总结注热联合井群开采低渗透储层煤层气运移采出规律,基于传热学、弹性力学、渗流力学、岩石力学理论,建立了注蒸汽开采低渗透储层煤层气藏过程的热固流耦合数学模型。结合潞安矿区山西组3#煤层地质参数,利用有限元软件进行了注热联合井群开采煤层气藏运移规律的数值模拟,得到了不同布井方式下注热10 d、开采100 d过程中煤层温度场、应力场及煤层气渗流场变化规律。结果显示,煤层平均传热速度为1.57 m/d,注热10 d后,中心井35 m范围内为有效注热区;随井筒数量的增加和井间距的减小,井间干扰作用增强,煤储层压力下降加快,煤层气供气及解吸区域增加,累积产量显著增加。七井模型20 m井间距注热开采累积产气量是五井模型30 m井间距未注热开采累积产气量的2.01倍。模拟结果显示了注热和井间干扰开采优势,为低渗透储层煤层气井群注热联合工业开采提供理论依据。  相似文献   

8.
There is still no clear understanding of the specific interactions between coal and gas molecules. In this context sorption–desorption studies of methane and carbon dioxide, both in a single gas environment and gas mixtures, are of fundamental interest. This paper presents the results of unique simultaneous measurements of sorption kinetics, volumetric strain and acoustic emission (AE) on three tetragonal coal samples subjected to sorption of carbon dioxide and methane mixtures. The coal was a high volatile bituminous C coal taken from the Budryk mine in the Upper Silesia Basin, Poland. Three different gas mixtures were used in the sorption tests, with dominant CO2, with dominant CH4 and a 50/50 mixture.The experimental set-up was designed specially for this study. It consisted of three individual units working together: (i) a unit for gas sorption experiments using a volumetric method, (ii) an AE apparatus for detecting, recording and analysing AE, and (iii) a strain meter for measuring strains induced in the coal sample by gas sorption/desorption. All measurements were computer aided.The experiments indicated that the coal tested showed preferential sorption of CH4 at 2.6 MPa pressure and exhibited comparable affinities for CH4 and CO2 at higher pressures (4.0 MPa). The results of chromatographic analysis of the gas released on desorption suggested that the desorption of methane from the coal was favoured. The relationship between the volumetric strain and the amount of sorbed gas was found to be non-linear. These results were contrary to common opinions on the coal behaviour. Furthermore, it appeared that the swelling/shrinkage of coal was clearly influenced by the network of fractures. Besides, the AE and strain characteristics suggested common sources of sorption induced AE and strain.The present results may have implications for the sequestration of carbon dioxide in coal seams and enhanced coalbed methane recovery (ECBM).  相似文献   

9.
Interpretation of carbon dioxide diffusion behavior in coals   总被引:3,自引:1,他引:3  
Storage of carbon dioxide in geological formations is for many countries one of the options to reduce greenhouse gas emissions and thus to satisfy the Kyoto agreements. The CO2 storage in unminable coal seams has the advantage that it stores CO2 emissions from industrial processes and can be used to enhance coalbed methane recovery (CO2-ECBM). For this purpose, the storage capacity of coal is an important reservoir parameter. While the amount of CO2 sorption data on various natural coals has increased in recent years, only few measurements have been performed to estimate the rate of CO2 sorption under reservoir conditions. An understanding of gas transport is crucial for processes associated with CO2 injection, storage and enhanced coalbed methane (ECBM) production.A volumetric experimental set-up has been used to determine the rate of sorption of carbon dioxide in coal particles at various pressures and various grain size fractions. The pressure history during each pressure step was measured. The measurements are interpreted in terms of temperature relaxation and transport/sorption processes within the coal particles. The characteristic times of sorption increase with increasing pressure. No clear dependence of the characteristic time with respect to the particle size was found. At low pressures (below 1 MPa) fast gas diffusion is the prevailing mechanism for sorption, whereas at higher pressures, the slow diffusion process controls the gas uptake by the coal.  相似文献   

10.
A theoretical model for gas adsorption-induced coal swelling   总被引:6,自引:2,他引:6  
Swelling and shrinkage (volumetric change) of coal during adsorption and desorption of gas is a well-known phenomenon. For coalbed methane recovery and carbon sequestration in deep, unminable coal beds, adsorption-induced coal volumetric change may cause significant reservoir permeability change. In this work, a theoretical model is derived to describe adsorption-induced coal swelling at adsorption and strain equilibrium. This model applies an energy balance approach, which assumes that the surface energy change caused by adsorption is equal to the elastic energy change of the coal solid. The elastic modulus of the coal, gas adsorption isotherm, and other measurable parameters, including coal density and porosity, are required in this model. Results from the model agree well with experimental observations of swelling. It is shown that the model is able to describe the differences in swelling behaviour with respect to gas species and at very high gas pressures, where the coal swelling ratio reaches a maximum then decreases. Furthermore, this model can be used to describe mixed-gas adsorption induced-coal swelling, and can thus be applied to CO2-enhanced coalbed methane recovery.  相似文献   

11.
煤层渗透率变化受多种因素制约,其中有效应力和煤吸附–解吸过程中煤基质的膨胀/收缩是两个主要因素。基于这两方面影响因素,采用体积不变原理和MATCHSTICK模型,提出新的预测渗透率变化的模型,有效回避了经典模型中使用不确定参数引起的渗透率模拟误差问题。研究结果表明,渗透率随煤层压力的变化存在3种理论模型,煤层气排采过程中,应尽可能使得渗透率变化曲线呈现下降缓慢、抬升稳定快速且增幅较大的趋势。最后,通过与经典的Palmer-Mansoori模型和Shi-Durucan模型的模拟对比,并利用现场实测数据进行验证,证明了本文推导模型的正确性和实用性。   相似文献   

12.
Studying gas transport mechanisms in coal seams is crucial in determining the suitability of coal formations for geosequestration and/or CO2-enhanced coal bed methane recovery (ECBM), estimating CO2 storage capacity and recoverable volume of methane, and predicting the long-term integrity of CO2 storage and possible leakages. Due to the dual porosity nature of coal, CO2 transport is a combination of viscous flow and Fickian diffusion. Moreover, CO2 is adsorbed by the coal which leads to coal swelling which can change the porous structure of coal and consequently affects the gas flow properties of coal, i.e. its permeability. In addition, during CO2 permeation, the coal seam undergoes a change in effective stress due to the pore pressure alteration and this can also change the permeability of the coal seam. In addition, depending on the in situ conditions of the coal seam and the plan of the injection scheme, carbon dioxide can be in a supercritical condition which increases the complexity of the problem. We provide an overview of the recent studies on porous structure of coal, CO2 adsorption onto coal, mechanisms of CO2 transport in coalbeds and their measurement, and hydro-mechanical response of coal to CO2 injection and identify opportunities for future research.  相似文献   

13.
李国庆  孟召平  刘金融 《地球科学》2017,42(8):1356-1363
扩散是煤层甲烷运移的关键环节之一,而目前有关煤层中甲烷扩散特征的认识并不充分.以沁水盆地南部高煤阶煤层气藏为例,应用微纳渗流力学理论分析了煤基质中气体扩散模式及定量表征参数;应用Simed软件开展了扩散性能对不同煤体结构煤层气排采规律的影响数值研究.结果表明:煤层甲烷的扩散受化学势梯度的驱动,产气过程中体相扩散、努森扩散和构型扩散模式并存且呈动态变化;甲烷扩散性能受气体温度、压力、气体种类、水分以及基质孔隙结构共同影响,基质孔隙吸附甲烷会改变微孔孔径并影响扩散路径的空间形态;煤基质中甲烷的扩散是非热力平衡过程,扩散系数是吸附量的函数.基于拟稳态扩散的数值研究表明,扩散性能强弱对于长期累计产气量几乎没有影响,而对短期产气速率具有较大的影响;扩散性能弱的,产气速率峰值较低,但峰值之后的一段时间内产气速率相对较高;与高渗煤层相比,低渗构造煤层的产气速率对吸附时间常数更敏感.   相似文献   

14.
为研究沁水盆地东北部煤层气成藏特征与产出控制因素,基于寺家庄区块煤层气勘探和生产资料,从地质构造、煤厚与煤层结构、埋深和水文地质特征等方面研究了煤层含气性影响因素,并结合压裂排采工艺和煤体结构等因素探讨了煤层气井产能控制因素。结果表明:(1) 研究区煤储层含气性受构造影响较大,在褶皱的轴部及旁侧构造挤压带,多呈现出高含气量,尤其是向斜轴部。在陷落柱和水文地质条件叠加作用下,15号煤层含气量整体较8、9号煤层低,且8、9号煤层含气饱和度也整体高于15号煤层。(2) 8、9和15号煤层含气性均表现出随煤层埋深增加而增大的趋势,但随埋深增加,构造应力和地温场的作用逐渐增强,存在含气量随埋深变化的“临界深度”(700 m左右)。煤层含气性也表现出随煤层厚度增加而增大的趋势,煤层结构越简单,煤层含气性越好。(3) 研究区中部的NNE?NE向褶皱与EW向构造叠加地区,因较大的构造曲率和相对松弛的区域地应力,具备较好渗透率条件和含气性,故成为煤层气高产区。(4) 发育多煤层地区采用分压合采技术可以有效增加产气量,多煤层可以提供煤层气井高产能的充足气源,且多个层位的同时排水降压可使不同煤储层气体产出达到产能叠加,实现长期稳产,含气性较好及游离气可能存在的区域可出现长期持续高产井。   相似文献   

15.
This paper presents reviews of studies on properties of coal pertinent to carbon dioxide (CO2) sequestration in coal with specific reference to Victorian brown coals. The coal basins in Victoria, Australia have been identified as one of the largest brown coal resources in the world and so far few studies have been conducted on CO2 sequestration in this particular type of coals. The feasibility of CO2 sequestration depends on three main factors: (1) coal mass properties (chemical, physical and microscopic properties), (2) seam permeability, and (3) gas sorption properties of the coal. Firstly, the coal mass properties of Victorian brown coal are presented, and then the general variations of the coal mass properties with rank, for all types of coal, are discussed. Subsequently, coal gas permeability and gas sorption are considered, and the physical factors which affect them are examined. In addition, existing models for coal gas permeability and gas sorption in coal are reviewed and the possibilities of further development of these models are discussed. According to the previous studies, coal mass properties and permeability and gas sorption characteristics of coals are different for different ranks: lignite to medium volatile bituminous coals and medium volatile bituminous to anthracite coals. This is important for the development of mathematical models for gas permeability and sorption behavior. Furthermore, the models have to take into account volume effect which can be significant under high pressure and temperature conditions. Also, the viscosity and density of supercritical CO2 close to the critical point can undergo large and rapid changes. To date, few studies have been conducted on CO2 sequestration in Victorian brown coal, and for all types of coal, very few studies have been conducted on CO2 sequestration under high pressure and temperature conditions.  相似文献   

16.
煤层气井排采历史地质分析   总被引:8,自引:0,他引:8  
根据晋城、潞安、焦作、铁法4个矿区25口煤层气生产试验井的排采资料,从煤储层渗透性和含气饱和度、生产压降条件、地下水系统、储层能量系统等方面综合分析研究,将排采曲线归纳为4种具有代表性的类型。认为煤储层渗透率0.5mD以上、临储压力比0.6以上以及含气饱和度80%以上,是获得高产煤层气井的必要储层条件。同时,煤储层和围岩的不同组合。将直接影响煤层气井的生产状况。  相似文献   

17.
CBM and CO2-ECBM related sorption processes in coal: A review   总被引:1,自引:0,他引:1  
This article reviews the state of research on sorption of gases (CO2, CH4) and water on coal for primary recovery of coalbed methane (CBM), secondary recovery by an enhancement with carbon dioxide injection (CO2-ECBM), and for permanent storage of CO2 in coal seams.Especially in the last decade a large amount of data has been published characterizing coals from various coal basins world-wide for their gas sorption capacity. This research was either related to commercial CBM production or to the usage of coal seams as a permanent sink for anthropogenic CO2 emissions. Presently, producing methane from coal beds is an attractive option and operations are under way or planned in many coal basins around the globe. Gas-in-place determinations using canister desorption tests and CH4 isotherms are performed routinely and have provided large datasets for correlating gas transport and sorption properties with coal characteristic parameters.Publicly funded research projects have produced large datasets on the interaction of CO2 with coals. The determination of sorption isotherms, sorption capacities and rates has meanwhile become a standard approach.In this study we discuss and compare the manometric, volumetric and gravimetric methods for recording sorption isotherms and provide an uncertainty analysis. Using published datasets and theoretical considerations, water sorption is discussed in detail as an important mechanisms controlling gas sorption on coal. Most sorption isotherms are still recorded for dry coals, which usually do not represent in-seam conditions, and water present in the coal has a significant control on CBM gas contents and CO2 storage potential. This section is followed by considerations of the interdependence of sorption capacity and coal properties like coal rank, maceral composition or ash content. For assessment of the most suitable coal rank for CO2 storage data on the CO2/CH4 sorption ratio data have been collected and compared with coal rank.Finally, we discuss sorption rates and gas diffusion in the coal matrix as well as the different unipore or bidisperse models used for describing these processes.This review does not include information on low-pressure sorption measurements (BET approach) to characterize pore sizes or pore volume since this would be a review of its own. We also do not consider sorption of gas mixtures since the data base is still limited and measurement techniques are associated with large uncertainties.  相似文献   

18.
影响一号向斜煤层气可采性的主要地质因素   总被引:3,自引:1,他引:2  
在回顾该地区煤层气勘探历史的基础上,从影响煤层气开采的主要地质因素出发,论述了煤层渗透性及决定煤层渗透性的古、今地应力场特征、煤层天然裂隙发育程度、现今有效地应力大小以及地层压力、等温吸附/解吸特征、含气饱和程度及气体扩散速率等;探讨了一号向斜不同部位煤层气开采具有的不同地质影响因素。了解并掌握这些因素有利于煤层气进一步勘探和开发。  相似文献   

19.
The Panguan Syncline contains abundant coal resources,which may be a potential source of coalbed methane.In order to evaluate the coalbed methane production potential in this area,we investigated the pore-fracture system of coalbed methane reservoirs,and analyzed the gas sorption and seepage capacities by using various analytical methods,including scanning electron microscopy(SEM),optical microscopy,mercury-injection test,low-temperature N2 isotherm adsorption/desorption analyses,lowfield nuclear magnetic resonance and methane isothermal adsorption measurements.The results show that the samples of the coal reservoirs in the Panguan Syncline have moderate gas sorption capacity.However, the coals in the study area have favorable seepage capacities,and are conductive for the coalbed methane production.The physical properties of the coalbed methane reservoirs in the Panguan Syncline are generally controlled by coal metamorphism:the low rank coal usually has low methane sorption capacity and its pore and microfractures are poorly developed;while the medium rank coal has better methane sorption capacity,and its seepage pores and microfractures are well developed,which are sufficient for the coalbed methane’s gathering and exploration.Therefore,the medium rank coals in the Panguan Syncline are the most prospective targets for the coalbed methane exploration and production.  相似文献   

20.
贵州煤层气储层具有高应力、低渗透、低孔隙的特点,常规的压裂技术对该地区煤层改造的程度较低,获得的改造体积和降压面积有限。为探索更高效的煤层改造技术,结合常规油气田暂堵转向理论,引入层内暂堵转向压裂技术,从煤层层内裂缝转向机理、转向半径及影响因素和适应性3个方面进行分析。为确保层内暂堵转向压裂能够更大限度的改造煤层,筛选出ZDJ-02暂堵剂,并对暂堵剂粒径、用量、投加工艺以及施工排量进行了优化。最后,在贵州六盘水和毕节地区优选出3口井开展了层内暂堵转向压裂现场试验,取得了很好的应用效果。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号