首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
The aim of this study is to produce landslide susceptibility mapping by probabilistic likelihood ratio (PLR) and spatial multi-criteria evaluation (SMCE) models based on geographic information system (GIS) in the north of Tehran metropolitan, Iran. The landslide locations in the study area were identified by interpretation of aerial photographs, satellite images, and field surveys. In order to generate the necessary factors for the SMCE approach, remote sensing and GIS integrated techniques were applied in the study area. Conditioning factors such as slope degree, slope aspect, altitude, plan curvature, profile curvature, surface area ratio, topographic position index, topographic wetness index, stream power index, slope length, lithology, land use, normalized difference vegetation index, distance from faults, distance from rivers, distance from roads, and drainage density are used for landslide susceptibility mapping. Of 528 landslide locations, 70 % were used in landslide susceptibility mapping, and the remaining 30 % were used for validation of the maps. Using the above conditioning factors, landslide susceptibility was calculated using SMCE and PLR models, and the results were plotted in ILWIS-GIS. Finally, the two landslide susceptibility maps were validated using receiver operating characteristic curves and seed cell area index methods. The validation results showed that area under the curve for SMCE and PLR models is 76.16 and 80.98 %, respectively. The results obtained in this study also showed that the probabilistic likelihood ratio model performed slightly better than the spatial multi-criteria evaluation. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

2.
The objective of this study was to validate the outcomes of a modified decision tree classifier by comparing the produced landslide susceptibility map and the actual landslide occurrence, in an area of intensive landslide manifestation, in Xanthi Perfection, Greece. The values that concerned eight landslide conditioning factors for 163 landslides and 163 non-landslide locations were extracted by using advanced spatial GIS functions. Lithological units, elevation, slope angle, slope aspect, distance from tectonic features, distance from hydrographic network, distance from geological boundaries and distance from road network were among the eight landslide conditioning factors that were included in the landslide database used in the training phase. In the present study, landslide and non-landslide locations were randomly divided into two subsets: 80 % of the data (260 instances) were used for training and 20 % of the data (66 instances) for validating the developed classifier. The outcome of the decision tree classifier was a set of rules that expressed the relationship between landslide conditioning factors and the actual landslide occurrence. The landslide susceptibility belief values were obtained by applying a statistical method, the certainty factor method, and by measuring the belief in each rule that the decision tree classifier produced, transforming the discrete type of result into a continuous value that enabled the generation of a landslide susceptibility belief map. In total, four landslide susceptibility maps were produced using the certainty factor method, the Iterative Dichotomizer version 3 algorithm, the J48 algorithm and the modified Iterative Dichotomizer version 3 model in order to evaluate the performance of the developed classifier. The validation results showed that area under the ROC curves for the models varied from 0.7936 to 0.8397 for success rate curve and 0.7766 to 0.8035 for prediction rate curves, respectively. The success rate and prediction curves showed that the modified Iterative Dichotomizer version 3 model had a slightly higher performance with 0.8397 and 0.8035, respectively. From the outcomes of the study, it was induced that the developed modified decision tree classifier could be efficiently used for landslide susceptibility analysis and in general might be used for classification and estimation purposes in spatial predictive models.  相似文献   

3.
The main goal of this study is to produce landslide susceptibility maps of a landslide-prone area (Haraz) in Iran by using both fuzzy logic and analytical hierarchy process (AHP) models. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 78 landslides were mapped from various sources. Then, the landslide inventory was randomly split into a training dataset 70?% (55 landslides) for training the models and the remaining 30?% (23 landslides) was used for validation purpose. Twelve data layers, as the landslide conditioning factors, are exploited to detect the most susceptible areas. These factors are slope degree, aspect, plan curvature, altitude, lithology, land use, distance from rivers, distance from roads, distance from faults, stream power index, slope length, and topographic wetness index. Subsequently, landslide susceptibility maps were produced using fuzzy logic and AHP models. For verification, receiver operating characteristics curve and area under the curve approaches were used. The verification results showed that the fuzzy logic model (89.7?%) performed better than AHP (81.1?%) model for the study area. The produced susceptibility maps can be used for general land use planning and hazard mitigation purpose.  相似文献   

4.
The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning.  相似文献   

5.
Landslide susceptibility maps are vital for disaster management and for planning development activities in the mountainous country like Nepal. In the present study, landslide susceptibility assessment of Mugling?CNarayanghat road and its surrounding area is made using bivariate (certainty factor and index of entropy) and multivariate (logistic regression) models. At first, a landslide inventory map was prepared using earlier reports and aerial photographs as well as by carrying out field survey. As a result, 321 landslides were mapped and out of which 241 (75?%) were randomly selected for building landslide susceptibility models, while the remaining 80 (25?%) were used for validating the models. The effectiveness of landslide susceptibility assessment using GIS and statistics is based on appropriate selection of the factors which play a dominant role in slope stability. In this case study, the following landslide conditioning factors were evaluated: slope gradient; slope aspect; altitude; plan curvature; lithology; land use; distance from faults, rivers and roads; topographic wetness index; stream power index; and sediment transport index. These factors were prepared from topographic map, drainage map, road map, and the geological map. Finally, the validation of landslide susceptibility map was carried out using receiver operating characteristic (ROC) curves. The ROC plot estimation results showed that the susceptibility map using index of entropy model with AUC value of 0.9016 has highest prediction accuracy of 90.16?%. Similarly, the susceptibility maps produced using logistic regression model and certainty factor model showed 86.29 and 83.57?% of prediction accuracy, respectively. Furthermore, the ROC plot showed that the success rate of all the three models performed more than 80?% accuracy (i.e. 89.15?% for IOE model, 89.10?% for LR model and 87.21?% for CF model). Hence, it is concluded that all the models employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of Mugling?CNarayanghat road section. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

6.
This study presents a landslide susceptibility assessment for the Caspian forest using frequency ratio and index of entropy models within geographical information system. First, the landslide locations were identified in the study area from interpretation of aerial photographs and multiple field surveys. 72 cases (70 %) out of 103 detected landslides were randomly selected for modeling, and the remaining 31 (30 %) cases were used for the model validation. The landslide-conditioning factors, including slope degree, slope aspect, altitude, lithology, rainfall, distance to faults, distance to streams, plan curvature, topographic wetness index, stream power index, sediment transport index, normalized difference vegetation index (NDVI), forest plant community, crown density, and timber volume, were extracted from the spatial database. Using these factors, landslide susceptibility and weights of each factor were analyzed by frequency ratio and index of entropy models. Results showed that the high and very high susceptibility classes cover nearly 50 % of the study area. For verification, the receiver operating characteristic (ROC) curves were drawn and the areas under the curve (AUC) calculated. The verification results revealed that the index of entropy model (AUC = 75.59 %) is slightly better in prediction than frequency ratio model (AUC = 72.68 %). The interpretation of the susceptibility map indicated that NDVI, altitude, and rainfall play major roles in landslide occurrence and distribution in the study area. The landslide susceptibility maps produced from this study could assist planners and engineers for reorganizing and planning of future road construction and timber harvesting operations.  相似文献   

7.
Landslides every year impose extensive damages to human beings in various parts of the world; therefore, identifying prone areas to landslides for preventive measures is essential. The main purpose of this research is applying different scenarios for landslide susceptibility mapping by means of combination of bivariate statistical (frequency ratio) and computational intelligence methods (random forest and support vector machine) in landslide polygon and point formats. For this purpose, in the first step, a total of 294 landslide locations were determined from various sources such as aerial photographs, satellite images, and field surveys. Landslide inventory was randomly split into a testing dataset 70% (206 landslide locations) for training the different scenarios, and the remaining 30% (88 landslides locations) was used for validation purposes. To providing landslide susceptibility maps, 13 conditioning factors including altitude, slope angle, plan curvature, slope aspect, topographic wetness index, lithology, land use/land cover, distance from rivers, drainage density, distance from fault, distance from roads, convergence index, and annual rainfall are used. Tolerance and the variance inflation factor indices were used for considering multi-collinearity of conditioning factors. Results indicated that the smallest tolerance and highest variance inflation factor were 0.31 and 3.20, respectively. Subsequently, spatial relationship between classes of each landslide conditioning factor and landslides was obtained by frequency ratio (FR) model. Also, importance of the mentioned factors was obtained by random forest (RF) as a machine learning technique. The results showed that according to mean decrease accuracy, factors of altitude, aspect, drainage density, and distance from rivers had the greatest effect on the occurrence of landslide in the study area. Finally, the landslide susceptibility maps were produced by ten scenarios according to different ensembles. The receiver operating characteristics, including the area under the curve (AUC), were used to assess the accuracy of the models. Results of validation of scenarios showed that AUC was varying from 0.668 to 0.749. Also, FR and seed cell area index indicators show a high correlation between the susceptibility classes with the landslide pixels and field observations in all scenarios except scenarios 10RF and 10SVM. The results of this study can be used for landslides management and mitigation and development activities such as construction of settlements and infrastructure in the future.  相似文献   

8.

The main purpose of this study was to compare and evaluate the performance of two multicriteria models for landslide susceptibility assessment in Constantine, north-east of Algeria. The landslide susceptibility maps were produced using the analytic hierarchy process (AHP) and Fuzzy AHP (FAHP) via twelve landslides conditioning factors, including the slope gradient, lithology, land cover, distance from drainage network, distance from the roads, distance from faults, topographic wetness index, stream power index, slope curvature, Normalized Difference Vegetation Index, slope aspect and elevation. In this study, the mentioned models were used to derive the weighting value of the conditioning factors. For the validation process of these models, the receiver operating characteristic analysis, and the area under the curve (AUC) were applied by comparing the obtained results to The landslide inventory map which prepared using the archives of scientific publications, reports of local authorities, and field survey as well as analyzing satellite imagery. According to the AUC values, the FAHP model had the highest value (0.908) followed by the AHP model (0.777). As a result, the FAHP model is more consistent and accurate than the AHP in this case study. The outcome of this paper may be useful for landslide susceptibility assessment and land use management.

  相似文献   

9.
The purpose of this study is to produce landslide susceptibility map of a landslide-prone area (Daguan County, China) by evidential belief function (EBF) model and weights of evidence (WoE) model to compare the results obtained. For this purpose, a landslide inventory map was constructed mainly based on earlier reports and aerial photographs, as well as, by carrying out field surveys. A total of 194 landslides were mapped. Then, the landslide inventory was randomly split into a training dataset; 70% (136 landslides) for training the models and the remaining 30% (58 landslides) was used for validation purpose. Then, a total number of 14 conditioning factors, such as slope angle, slope aspect, general curvature, plan curvature, profile curvature, altitude, distance from rivers, distance from roads, distance from faults, lithology, normalized difference vegetation index (NDVI), sediment transport index (STI), stream power index (SPI), and topographic wetness index (TWI) were used in the analysis. Subsequently, landslide susceptibility maps were produced using the EBF and WoE models. Finally, the validation of landslide susceptibility map was accomplished with the area under the curve (AUC) method. The success rate curve showed that the area under the curve for EBF and WoE models were of 80.19% and 80.75% accuracy, respectively. Similarly, the validation result showed that the susceptibility map using EBF model has the prediction accuracy of 80.09%, while for WoE model, it was 79.79%. The results of this study showed that both landslide susceptibility maps obtained were successful and would be useful for regional spatial planning as well as for land cover planning.  相似文献   

10.
The current research presents a detailed landslide susceptibility mapping study by binary logistic regression, analytical hierarchy process, and statistical index models and an assessment of their performances. The study area covers the north of Tehran metropolitan, Iran. When conducting the study, in the first stage, a landslide inventory map with a total of 528 landslide locations was compiled from various sources such as aerial photographs, satellite images, and field surveys. Then, the landslide inventory was randomly split into a testing dataset 70 % (370 landslide locations) for training the models, and the remaining 30 % (158 landslides locations) was used for validation purpose. Twelve landslide conditioning factors such as slope degree, slope aspect, altitude, plan curvature, normalized difference vegetation index, land use, lithology, distance from rivers, distance from roads, distance from faults, stream power index, and slope-length were considered during the present study. Subsequently, landslide susceptibility maps were produced using binary logistic regression (BLR), analytical hierarchy process (AHP), and statistical index (SI) models in ArcGIS. The validation dataset, which was not used in the modeling process, was considered to validate the landslide susceptibility maps using the receiver operating characteristic curves and frequency ratio plot. The validation results showed that the area under the curve (AUC) for three mentioned models vary from 0.7570 to 0.8520 $ ({\text{AUC}}_{\text{AHP}} = 75.70\;\% ,\;{\text{AUC}}_{\text{SI}} = 80.37\;\% ,\;{\text{and}}\;{\text{AUC}}_{\text{BLR}} = 85.20\;\% ) $ ( AUC AHP = 75.70 % , AUC SI = 80.37 % , and AUC BLR = 85.20 % ) . Also, plot of the frequency ratio for the four landslide susceptibility classes of the three landslide susceptibility models was validated our results. Hence, it is concluded that the binary logistic regression model employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of study area. Meanwhile, the results obtained in this study also showed that the statistical index model can be used as a simple tool in the assessment of landslide susceptibility when a sufficient number of data are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号