首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Beidellite, a low-cost, locally available and natural mineral was used as an adsorbent for the removal of lead and cadmium ions from aqueous solutions in batch experiments. The kinetics of adsorption process was tested for the pseudo first-order, pseudo second-order reaction and intra-particle diffusion models. The rate constants of adsorption for all these kinetic models were calculated. Comparison amongst the models showed that the sorption kinetics was best described by the pseudo second-order model. Langmuir and Freundlich isotherm models were applied to the experimental equilibrium data for different temperatures. The adsorption capacities (Q°) of beidellite for lead and cadmium ions were calculated from the Langmuir isotherm. It was found that adsorption capacity was in the range of 83.3–86.9 for lead and 42–45.6 mg/g for cadmium at different temperatures. Thermodynamic studies showed that the metal uptake reaction by beidellite was endothermic in nature. Binary metal adsorption studies were also conducted to investigate the interactions and competitive effects in binary adsorption process. Based on the optimum parameters found, beidellite can be used as adsorbent for metal removal processes.  相似文献   

2.
Removal of dyes by low-cost adsorbents is an effective method in wastewater treatment. Iranian natural clays were determined to be effective adsorbents for removal of a basic dye (methylene blue) from aqueous solutions in batch processes. Characterizations of the clays were carried out by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis and field-emission scanning electron microscopy. Effects of the operational parameters such as adsorbent dosage, initial dye concentration, solution pH and temperature were investigated on the adsorption performance. Adsorption isotherms like Langmuir, Freundlich and Temkin were used to analyze the adsorption equilibrium data and Langmuir isotherm was the best fit. Adsorption kinetics was investigated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models and the results showed that the adsorption system conforms well to the pseudo-second-order model. The thermodynamic parameters of adsorption (ΔS°, ΔH° and ΔG°) were obtained and showed that the adsorption processes were exothermic.  相似文献   

3.
In the present study, the retention capacity of carbonaceous material obtained from the diesel engine exhaust mufflers for Cr(VI) removal has been investigated. The physicochemical properties such as density, pH of aqueous slurry, pH at point of zero charge, ash content, moisture content, volatile matter, surface area, scanning electron microscopy and electron dispersive spectroscopy of the carbonaceous material were determined. The capacity of adsorbent for removal of Cr(VI) from aqueous solution was observed under different experimental condition like contact time, initial concentration of metal ions, pH and temperatures on the adsorption capacity of the adsorbent. Maximum adsorption of Cr(VI) ions was found at low pH. The adsorption process was found to follow second-order kinetics. The rate constant was evaluated at different temperatures along with other thermodynamic parameters like activation energy, Gibbs free energy change, enthalpy change and entropy change. Both Langmuir and Freundlich isotherms were used to describe the adsorption equilibrium of carbonaceous material at different temperatures. Langmuir isotherm shows better fit than Freundlich isotherm at given conditions. The result shows that low-cost carbonaceous material from diesel engine exhaust mufflers can be efficiently used for wastewater treatment containing Cr(VI) ions.  相似文献   

4.
Kinetics and equilibrium study of chromium adsorption on zeoliteNaX   总被引:2,自引:1,他引:1  
This study aims to report Batch adsorption study of hexavalent chromium, Cr (VI) on zeoliteNaX. Kinetics of Cr (VI) adsorption and adsorption isotherms were determined by varying operating parameters such as pH, initial concentration, temperature and contact time. ZeoliteNaX was found to remove Cr (VI) in acidic solutions down to ppm level at pH of about 4. Removal rate of Cr (VI) was found to decrease as pH rises above 4.0. Langmuir, Freundlich, Temkin and Redlich-Peterson models were applied to adsorption equilibrium data to find the best amongst these models. Langmuir model with R2 = 0.9711 best fits the adsorption data. The kinetics of adsorption was found to follow the first order reversible reaction. The separation parameter, RL values of less than 1.0 i.e., 0.7369, 0.5834 and 0.4828 corresponding to initial concentrations of 10, 20 and 30 mg/L, respectively indicated that adsorption of Cr (VI) on zeoliteNaX is favoured. The estimated values of thermodynamic parameters such as heat of adsorption and standard gibbs free energy confirmed the exothermic nature of adsorption of Cr (VI) on zeoliteNaX.  相似文献   

5.
Asexual spores of the filamentous fungus Rhizopus arrhizus were used as the resting biomass as they tolerate chitosan gelling for mycelia growing in chitosan beads. Biosorption of lead using the dead detergent pre-treated chitosan-immobilised and grown fungal beads was performed with initial lead (II) nitrate concentrations ranging from 9.02 to 281.65 mg/L. The adsorption data were best correlated with equilibrium adsorption isotherms in the order Redlich–Peterson, Langmuir, Freundlich and Fritz–Schlünder by non-linear regression. The biosorption kinetic model of pseudo second-order (R 2 > 0.99) fitted better than pseudo first-order and modified pseudo first-order models. Among the four pseudo second-order kinetic models, the Blanchard model was the best fit for the experimental biosorption data. The rate-limiting step of biosorption of lead was shown to be intraparticle diffusion controlled according to Weber and Morris model fitting. The beads could be regenerated using 1 M nitric acid solution. This illustrated the good performance of the beads for regenerated sorption/desorption at least five cycles.  相似文献   

6.
In this study, the adsorption kinetics, equilibrium and thermodynamics of Fe3+ ions on natural (NAP) and synthetic (HAP) apaties were examined. The adsorption efficiency of Fe3+ onto the NAP and HAP was increased with increasing temperature. The kinetics of adsorption of Fe3+ ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 37.15 and 49.84 kJ·mol 1 for NAP and HAP, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin–Redushkevich (D–R) isotherm equations at different temperatures. RL separation factor for Langmuir and the n value for Freundlich isotherm show that Fe3+ ions are favorably adsorbed by NAP and HAP. Various thermodynamic parameters such as enthalpy (ΔH), Gibbs free energy (ΔG) and entropy (ΔS) changes were computed and the results showed that the adsorption of Fe3+ ions onto NAP and HAP were spontaneous and endothermic in nature.  相似文献   

7.
In this research, a new low cost and abundant biosorbent; Agave americna (L.) fibres has been investigated in order to remove metal dye (Alpacide yellow) from aqueous solutions. In order to optimize the biosorption process, the effect of pH, temperature, contact time and initial solution concentration was investigated in batch system. The results indicated that acidic pH=2 was favourable for metal dye removal. The increase of temperature increases the velocity of the biosorption reaction. The biosorption kinetics of alpacide yellow were closer to the pseudo-second order than to the first order model for all concentrations and temperature. The calculated thermodynamic parameters such as dGG°, dGH° and dGS° indicated a spontaneous and endothermic biosorption process of metal dye onto Agave americana fibres. The equilibrium data were analysed using the Langmuir and Freundlich isotherms and showed a good fit with Langmuir model at lower temperatures and with Freundlich model at 50 °C.  相似文献   

8.
Bimetallic Fe/Ni nanoparticles were synthesized and used for the removal of profenofos organophosphorus pesticide from aqueous solution. These novel bimetallic nanoparticles (Fe/Ni) were characterized by scanning electron microscopy, energy-dispersive X-ray analysis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The effect of the parameters of initial pesticide concentration, pH of the solution, adsorbent dosage, temperature, and contact time on adsorption was investigated. The adsorbent exhibited high efficiency for profenofos adsorption, and equilibrium was achieved in 8 min. The Langmuir, Freundlich, and Temkin isotherm models were used to determine equilibrium. The Langmuir model showed the best fit with the experimental data (R 2 = 0.9988). Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were tested to determine absorption kinetics. The pseudo-second-order model provided the best correlation with the results (R 2 = 0.99936). The changes in the thermodynamic parameters of Gibb’s free energy, enthalpy, and entropy of the adsorption process were also evaluated. Thermodynamic parameters indicate that profenofos adsorption using Fe/Ni nanoparticles is a spontaneous and endothermic process. The value of the activation energy (E a = 109.57 kJ/mol) confirms the nature of the chemisorption of profenofos onto Fe/Ni adsorbent.  相似文献   

9.
The batch removal of Cr(VI) from aqueous solution using lignocellulosic solid wastes such as sawdust and pine leaves under different experimental conditions was investigated in this study. The influence of pH, temperature, contact time, initial concentration of Cr(VI) and particle size on the chromium removal was investigated. Adsorption of Cr(VI) is highly pH-dependent and the results indicate that the optimum pH for the removal is 2. The capacity of chromium adsorption at equilibrium by these natural wastes increased with absorbent concentration. Temperature in the range of 20–60 °C showed a restricted effect on the adsorption capacity of pine leaves, but had a considerable effect on the adsorption capacity of sawdust. The capacity of chromium adsorption at the equilibrium increased with the decrease in particle sizes. The suitability of adsorbents was tested with Langmuir and Freundlich isotherms and their constants were evaluated. Results indicated that the Freundlich model gave a better fit to the experimental data in comparison with the Langmuir equation. The study showed that lignocellulosic solid wastes such as sawdust and pine leaves can be used as effective adsorbents for removal of Cr(VI) from wastewater.  相似文献   

10.
Barium ion cross-linked alginate beads have shown great affinity to toxic hexavalent chromium ions in aqueous solution, in contrast to the traditionally used calcium alginate beads. Our adsorption experiments were carried out by the batch contact method. The optimal pH for removal was found to be pH 4. The equilibrium was established in 4 h, and the removal efficiency of chromium(VI) was found to be 95 %. The adsorption data were applied to Langmuir, Freundlich, Dubinin–Redushkevich (D–R), and Temkin isotherm equations. Both Langmuir and Freundlich isotherm constants indicated a favorable adsorption. The value of mean sorption energy calculated from D–R isoterm indicates that the adsorption is essentially physical. The high maximum chromium(VI) adsorption capacity was determined from the Langmuir isotherm as 36.5 mg/g dry alginate beads. The chromium(VI) adsorption data were analyzed using several kinetic models such as the pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models, and the rate constants were quantified. Our study suggests that barium alginate beads can be used as cost-effective and efficient adsorbents for the removal of chromium(VI) from contaminated waters.  相似文献   

11.
Partial pyrolysis alters the chemical and textural properties of the lignocellulosic material. This work reports the effect of partial pyrolysis of olive wood on adsorption isotherms, kinetics and thermodynamics of chloro and nitrophenols. Shape of adsorption isotherms of the partially pyrolyzed sorbents was L3 for phenol; L2 for 2-nitrophenol and 2,4-dinitrophenol; H3 for 2-chlorophenol, 3-chlorophenol and 4-nitrophenol; and H2 for 4-chlorophenol. The pyrolyzed olive wood sorbents obeyed Langmuir and Freundlich models. Pyrolysis raised adsorption capacity, favorability and spontaneity; the adsorption became more exothermic; the randomness decreased. The adsorption was mainly physical; it occurred first by film diffusion then by pore-filling. Adsorption followed second-order rate kinetics. Adsorption of phenols on olive wood seemed to be governed by hydrophobic interaction. Washing the pyrolyzed olive wood with ethanol caused a decrease in adsorption capacity, favorability and spontaneity, and the adsorption became less exothermic. This indicated that pyrolysis produced species on the olive wood surface that played a significant role in phenols adsorption.  相似文献   

12.
The kinetic and thermodynamic of the bath sorption of lead (Pb) on to activated carbon from Coconut (CA) and Seed hull of the Palm tree (GA) have been investigated. The effects of initial Pb concentration, contact time and temperature were examined. The results showed that the adsorption capacities of the activated carbons increased with the initial lead concentration. The process sorption followed a pseudo first order kinetics and parameters such as Ea and k0 were determined. It could be best fitted by the Langmuir and Freundlich isotherms. From the first, the equilibrium sorption capacities of lead ion were determined and found to be respectively 4.38 and 3.77 mg/ g for CA and GA at 60 °C. The thermodynamic parameters such as dGH, dGS and dGG were computed from the experimental data. These values show that the adsorption is endothermic and non spontaneous. Moreover, the relative weak values of dGH (~5 kcal/mol) confirm a physical adsorption. The maximum adsorptions were obtained at 60 °C, pH 4 and with a Pb initial concentration of 100 mg/L.  相似文献   

13.
Adsorption of lead using a new green material obtained from Portulaca plant   总被引:2,自引:1,他引:1  
In the present study the potential of a new green material obtained from Portulaca oleracea plant was investigated. The material was used without any chemical treatment to study the adsorption behavior of lead ions from aqueous solution. Various batch experiments were carried out using different experimental conditions such as pH, contact time, adsorbent concentration, and metal ion concentration to identify the optimum conditions. The influence of these parameters on the adsorption capacity was studied. Results showed the optimum initial pH for adsorption as 6. Adsorption equilibrium was reached in 120?min. The adsorption data were modeled using both the Langmuir and Freundlich classical adsorption isotherms. Results show ~78% removal of lead from aqueous solution. The kinetic data corresponded well with pseudo second-order equation. From the initial results, the green material obtained from the waste of Portulaca seems to be a potential low-cost adsorbent for removal of lead ions from water.  相似文献   

14.
In the present study, adsorption of lead (II) ions from aqueous solution by alluvial soil of Bhagirathi River was investigated under batch mode. The influence of solution pH, sorbent dose, initial lead (II) concentration, contact time, stirring rate and temperature on the removal process were investigated. The lead adsorption was favored with maximum adsorption at pH 6.0. Sorption equilibrium time was observed in 60 min. The equilibrium adsorption data were analyzed by the Freundlich, Langmuir, Dubinin–Radushkevich and Temkin adsorption isotherm models. The kinetics of lead (II) ion was discussed by pseudo first-order, pseudo second-order, intra-particle diffusion, and surface mass transfer models. It was shown that the adsorption of lead ions could be described by the pseudo second-order kinetic model. The activation energy of the adsorption process (E a) was found to be ?38.33 kJ mol?1 using the Arrhenius equation, indicating exothermic nature of lead adsorption onto alluvial soil. Thermodynamic parameters, such as Gibbs free energy (?G 0), the enthalpy (?H 0), and the entropy change of sorption (?S 0) have also been evaluated and it has been found that the adsorption process was spontaneous, feasible, and exothermic in nature. The results indicated that alluvial soil of Bhagirathi River can be used as an effective and low cost adsorbent to remove lead ions from aqueous solutions.  相似文献   

15.
This paper presents the results of a study on Ni(II) removal from water by adsorption using abundant and low-cost volcanic rock grains: Scoria (VSco) and Pumice (VPum), which could be used as an alternative approach to remove potentially harmful metals from contaminated water. Basic process characteristics were determined under batch conditions. The maximum adsorption capacities for Ni(II) on VSco and VPum were found to be 980 and 1187 mg kg−1, respectively. These results were obtained at the optimized conditions of pH (5.0), temperature (24.9 °C), contact time (24 h), adsorbent/solution ratio (1:20), particle size (fine) and with the variation of initial concentrations between 0.5 and 50 mg L−1. Competitive adsorption of Ni(II), Cd(II) and Cu(II) on the adsorbents present in binary as well as ternary mixtures were also compared with the single metal solution. Thus, given that enough volcanic rock grains are provided, Ni(II) ions could be removed even from a metal ion bearing matrix. A number of available models like Lagergren pseudo-first order kinetics, second-order kinetics, intra-particle diffusion and liquid film diffusion were utilized to evaluate the kinetics and the mechanism of the sorption interactions. The results revealed that the pseudo-second order equation best described the kinetics mechanisms of Ni(II) adsorption although the removal process was found to be complex. Moreover, three adsorption models have been evaluated in order to attempt to fit the experimental data, namely the Langmuir, the Freundlich and the Redlich–Peterson isotherm models. It was found that the first two isotherms most closely described the adsorption parameters.  相似文献   

16.
Leonardite, a by-product from coal mines, was applied to adsorb Cd(II) and Zn(II) from aqueous solutions. Individual and simultaneous adsorptions of the two metal ions were investigated. In a single-component adsorption system, Langmuir and Freundlich isotherms were fitted to the adsorption data. Linear and nonlinear regression methods were used for the assessment of the optimum adsorption isotherm. Error functions including root-mean-square error, sum of the squares of the errors, mean absolute percentage error, Marquardt’s percent standard deviation (MPSD), and Chi-square were applied in the nonlinear regression. The most suitable model for the adsorption of Cd(II) and Zn(II) in the single system is the Freundlich isotherm. The isotherm parameters calculated by MPSD provided the lowest sum of normalized error (SNE) value. The adsorption capacity was found to be 23.89 mg/g for Cd(II) and 16.86 mg/g for Zn(II). It was observed that the adsorption of Cd(II) on leonardite is greater than that of Zn(II). For binary component adsorption systems, Cd(II) and Zn(II) showed antagonistic behavior. The presence of the other metal ions could decrease the amount of metal adsorbed. Binary adsorption of Cd(II) and Zn(II) was tested with regard to four multi-component isotherms: Extended Langmuir, Modified Langmuir, Sheindorf–Rebuhn–Sheintuch, and Extended Freundlich. The Extended Freundlich isotherm proved to be a good fit for the experimental data.  相似文献   

17.
The goal of this study is examination of the mixture between adsorption and permeation process for removing chromium (VI) from the water. Two types of supported membranes are developed: The first one which was made by sol–gel method is called nanoporous and the second one which was made by electrospinning is called nanofiber. The sorption capacity of nanoporous and nanofiber is examined in single batch experiments at various pH values, and it is found that maximum chromium removal is observed for both nanoporous and nanofiber at pH 3.5. Adsorption studies illustrated that the Cr(VI) adsorption onto alumina nanoporous and nanofiber is affected by changes in pH, contact time, dosage of adsorbent, concentration of chromium and solution volume. Langmuir and Freundlich isotherms can be used to explain the adsorption equilibria of Cr(VI) onto alumina nanoporous and nanofiber. It was found that balance adsorption data adequate Langmuir isotherm more than Freundlich model. Adsorption kinetics was found to be fitted to pseudo-second order and Weber and Morris model. The output of multiple linear regressions was run for the second-order response surface model implied that the linear agents of pH, sorbent dosage and Cr(VI) concentration are more significant factors. Manufacturing electrospun alumina nanofiber and sol–gel nanoporous with these cheap materials, renewable and fast methods are so important although the removal percentage is significant.  相似文献   

18.
Activated carbon produced from fluted pumpkin (Telfairia occidentalis) seed shell was utilized for the removal of lead (II) ion from simulated wastewater. Adsorption tests were carried out in series of batch adsorption experiments. Several kinetic models (Bhattacharya-Venkobacher, Elovich, pseudo first and second order, intra-particle and film diffusion) were tasted for conformity to the experimental data obtained. The Langmuir and Freundlich adsorption models were also used to test the data. The amount of lead (II) ion adsorbed at equilibrium from a 200 mg/L solute concentration was 14.286 mg/g. The experimental data conform very well to the pseudo-second order equation where equilibrium adsorption capacities increased with increasing initial lead (II) concentration. The rate of the adsorption process was controlled by the film (boundary layer) diffusion as the film diffusion co-efficient values obtained from data analysis were of the order of 10 6cm2/s. From the plots, the linear regression coefficient (R2) of the Langmuir model was higher than that of the Freundlich: the adsorption isotherm obeyed the Langmuir model better than the Freundlich model.  相似文献   

19.
In the present study, Juglans regia shells were used to prepare activated carbon by acid treatment method. J. regia shell-based activated carbon was used for the adsorption of two synthetic dyes namely, a basic dye malachite green and an acid dye amido black 10B. The prepared adsorbent was crushed and sieved to three different mesh sizes 100, 600 and 1,000 μm. The adsorbent was characterized by scanning electron microscopy, surface acidity and zero-point charge. Batch experiments were carried out by varying the parameters like initial aqueous phase pH, adsorbent dosage and initial dye concentration. The equilibrium data were tested with Langmuir, Freundlich, Redlich–Peterson and Sips isotherm at three different temperatures 293, 300 and 313 K and it was found that the Freundlich isotherm best fitted the adsorption of both the dyes. Kinetic data were tested with pseudo first-order model and pseudo second-order model. The mechanism for the adsorption of both the dyes onto the adsorbent was studied by fitting the kinetic data with intraparticle diffusion model and Boyd plot. External mass transfer was found to be the rate-determining step. Based on the ionic nature of the adsorbates, the extent of film diffusion and intraparticle diffusion varied; both being system specific. Thermodynamic parameters were also calculated. Finally, the process parameters of each adsorption system were compared to develop the understanding of the best suitable system.  相似文献   

20.
The experimental conditions for preparation of pomegranate peel carbon and Fe(III) modified pomegranate peel carbon were studied. The effects of main experimental parameters on carbon preparation such as carbonization time, carbonization temperature and Fe(III) impregnation ratio in pomegranate peel were investigated. The prepared carbons in various conditions were characterized by consideration of the production yield, ash content, iodine number, pH of zero point charge and their ability for adsorption of methylene blue. After preparation of carbons, their efficiency for removal of Cd2+ species from aqueous solution was investigated. The effect of experimental parameters such as Cd2+ initial concentration, pH of solution and contact time was studied by batch adsorption experiments. The fitting of experimental data in thermodynamic isotherms matched the linear results with Langmuir and Freundlich isotherms. The adsorption capacity for Cd2+ species on Fe(III) modified pomegranate peel carbon was 22.72 mg/g and the adsorption kinetic presented the pseudo-second-order kinetic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号