首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
北祁连早古生代花岗质岩浆作用及构造演化   总被引:29,自引:14,他引:15  
北祁连山中段花岗岩锆石SHRIMP定年结果表明,柯柯里岩体的斜长花岗岩和石英闪长岩的年龄分别为512Ma和501 Ma,野马咀和金佛寺花岗岩的年龄分别为508Ma和424Ma。结合区内其它花岗岩体的定年资料,根据花岗岩的岩石地球化学特征及岩体产出的构造位置、区域地质资料等,我们认为,早古生代北祁连洋板块向南俯冲,至少引发了两期花岗质岩浆作用,第一次岩浆作用形成柯柯里斜长花岗岩(512Ma)、野马咀花岗岩(508Ma)和柯柯里石英闪长岩(501 Ma),第二次花岗质岩浆作用形成牛心山花岗岩(477Ma)。由于往南俯冲的板块受到柴达木板块向北俯冲的影响,俯冲受阻,继而俯冲极性发生变化,转向北俯冲,形成了民乐窑沟(463Ma)等花岗岩侵入体。大约440Ma之后,洋盆闭合,柴达木陆块和阿拉善陆块对接碰撞,形成北祁连造山带。由于造山带根部岩石圈发生折沉作用,造山带上不同的块体伸展、滑塌,形成一系列碰撞后花岗岩如金佛寺花岗岩(424Ma)及牛心山岩体的石英闪长岩(435Ma)等。  相似文献   

2.
张喜  高俊  董连慧  李继磊  江拓  钱青  苏文 《岩石学报》2011,27(6):1637-1648
新疆中天山乔霍特铜矿位于中天山南缘,毗邻南天山缝合带。矿区南侧出露有1个花岗闪长岩岩体,该岩体与包裹于赋矿火山岩中的钾长花岗岩均属钙碱性弱过铝质I型花岗岩,具有相似的地球化学特征,富集LILE、亏损HFSE,具显著的Eu、Ta、Nb、Ti负异常,其形成可能与南天山洋的北向俯冲密切相关。LA-ICP-MS锆石U-Pb定年获得花岗闪长岩年龄为450.4±1.1Ma,钾长花岗岩年龄为430.8±4.1Ma,指示晚奥陶世时期,乔霍特地区存在南天山洋向中天山复合弧地体之下的俯冲;早志留世晚期,俯冲作用依然持续,此时,天山地区岩浆活动强烈。乔霍特铜矿赋矿火山岩的形成时代晚于431Ma,矿区南侧出露的花岗闪长岩早于赋矿火山岩形成,成矿作用可能与花岗闪长岩的侵位无直接关系。  相似文献   

3.
ABSTRACT

We report geochemical data and zircon SHRIMP U-Pb ages for Late Mesozoic granitoids from the western Zhejiang province and southern Anhui province (the WZSA region) from southeast China. In combination with published geochronological and geochemical data, the granitoids in the region can be divided into three stages: 171–141 Ma, 140–121 Ma, and 120–95 Ma. The first stage of these granitoids is mainly composed of granite porphyry and granodiorite which are similar to I-type granitoids, including having weakly negative Eu anomalies with enrichment in light rare earth elements (LREE), Rb, Th, and U. The second stage of granitoids consists of monzogranite, syenogranite, and granite with the characteristics of both A-type and I-type granitoids including strongly negative Eu anomalies; depletion of Ba, Sr, and Ti; and enrichment of K, Rb, and high field strength elements (HFSEs) (such as Th and U). The third stage of granitoids is mainly composed of granite, quartz monzonite, quartz diorite, and mafic rocks with weakly negative Eu anomalies and also enrichment in LREE, Rb, Th, U, and K. From our work, we propose a transition from compressional to extensional magmatism at ~141 Ma. Based on the geochemical characteristics of these granites and coeval mafic rocks, we propose that the formation of the A-type magmatism in the WZSA region formed as the result of lithospheric extension and asthenospheric upwelling during the Early Cretaceous.  相似文献   

4.
Northeast (NE) China is characterized by large areas of Mesozoic and Paleozoic granitoids, whereas Cenozoic granitoids are scarce. This paper reports LA-ICP-MS zircon U–Pb ages and whole-rock geochemical data for late Paleocene–early Eocene granitoids from the Jiamusi Massif, NE China, in order to determine their petrogenesis and tectonic implications. Geochronological data indicate that the granodiorite and dioritic porphyry from the Wudingshan pluton formed at 51.5 ± 0.3 Ma and 56.3 ± 0.8 Ma, respectively. The biotite–quartz diorite, biotite granodiorite, and dioritic porphyry have high SiO2 (68.38–70.06 wt.%), Al2O3 (15.34–15.79 wt.%), and Na2O (3.96–4.49 wt.%) contents, low MgO contents (1.10–1.26 wt.%), A/CNK ratios of 0.99–1.11, and are classified as medium- to high-K calc-alkaline and weakly peraluminous I-type granitoids. They are enriched in LREEs and LILEs, and depleted in HFSEs, with Nb/Ta ratios of 10.4–15.0. Moreover, they have negative Nb–Ta–Ti anomalies, indicating that they were derived from continental crust. Combining with the previously published isotopic data and regional geological results, we suggest that the late Paleocene–early Eocene granitoids (56–52 Ma) were probably derived from partial melting of juvenile lower crust, and formed in an active continental margin setting, possibly related to subduction slab rollback of the Paleo-Pacific Plate.  相似文献   

5.
内蒙古达茂旗花岗岩类LA-ICP-MS 锆石U-Pb年龄及其地质意义   总被引:2,自引:1,他引:1  
冯丽霞  张志诚  韩宝福  任荣  李建锋  苏犁 《地质通报》2013,32(11):1737-1748
对内蒙古达茂旗北部构造单元的巴特敖包岛弧带2个花岗闪长岩岩体样品和南部构造单元一个花岗岩岩体的2件样品进行了LA-ICP-MS锆石U-Pb定年。北部构造单元采自2个花岗闪长岩岩体的样品锆石206Pb/238U年龄分别为468Ma±2Ma和452Ma±3Ma,代表了这2个岩体的侵位时间,表明古亚洲洋向华北克拉通之下俯冲不晚于468Ma±2Ma;南部构造单元采自同一花岗岩岩体的2件样品获得的锆石206Pb/238U年龄分别为268Ma±2Ma和264Ma±2Ma,和该单元西部岩体已有的锆石年龄相符。这为华北克拉通北缘岩浆作用研究提供了新的年代学证据。  相似文献   

6.
The area of Arghash in northeast Iran, prominent for its gold mineralization, was newly mapped on a scale of 1:20,000 with particular attention to the occurring generations of igneous rocks. In addition, geochronological and geochemical investigations were carried out. The oldest geological unit is a late Precambrian, hornblende-bearing diorite pluton with low-K composition and primitive isotope signatures. This diorite (U–Pb zircon age 554 ± 6 Ma) is most likely a remnant from a Peri-Gondwana island-arc or back-arc basin. About one-third of the map area is interpreted as an Upper Cretaceous magmatic arc consisting of a volcanic and a plutonic part. The plutonic part is represented by a suite of hornblende-bearing medium-K, I-type granitoids (minor diorite, mainly quartz–monzodiorite and granodiorite) dated at 92.8 ± 1.3 Ma (U–Pb zircon age). The volcanic part comprises medium-K andesite, dacite and tuffitic rocks and must be at least slightly older, because it is locally affected by contact metamorphism through the hornblende–granitoids. The Upper Cretaceous arc magmatism in the Arghash Massif is probably related to the northward subduction of the Sabzevar oceanic basin, which holds a back-arc position behind the main Neotethys subduction front. Small occurrences of pillow basalts and sediments (sandstone, conglomerate, limestone) tectonically intercalated in the older volcanic series may be relics of earlier Cretaceous or even pre-Cretaceous rocks. In the early Cenozoic, the Cretaceous magmatic arc was intruded by bodies of felsic, weakly peraluminous granite (U–Pb zircon age 55.4 ± 2.3 Ma). Another strong pulse of magmatism followed slightly later in the Eocene, producing large masses of andesitic to dacitic volcanic rocks. The geochemistry of this prominent Eocene volcanism is very distinct, with a high-K signature and trace element contents similar to shoshonitic series (high P, Zr, Cr, Sr and Ba). High Sr/Y ratios feature affinities to adakite magmas. The Eocene magmatism in the Arghash Massif is interpreted as related to thermal anomalies in crust and mantle that developed when the Sabzevar subduction system collapsed. The youngest magmatic activities in the Arghash Massif are lamprophyres and small intrusions of quartz–monzodiorite porphyries, which cut through all other rocks including an Oligocene–Miocene conglomerate cover series.  相似文献   

7.
南祁连党河南山花岗岩类特征及其构造环境   总被引:4,自引:0,他引:4  
党河南山地区地处南祁连重要成矿带,区内花岗岩类岩体包括扎子沟岩体、鸡叫沟岩体及贾公台岩体,伴有不同程度的金、铜矿化。扎子沟岩体主要由花岗闪长岩组成,侵位于震旦纪火山岩系。鸡叫沟岩体主要由石英二长闪长岩组成,贾公台岩体主要由斜长花岗岩组成,两者侵位于奥陶纪碎屑岩系。3个岩体Rb-Sr等时线年龄分别为(510.85±14)Ma、(395.06±51)Ma及(355±91)Ma,前者对应于早-中寒武世,后二者对应于志留纪-泥盆纪。3个岩体均属于钙碱性花岗岩系列,其中扎子沟岩体属于该系列的中钾花岗闪长岩系列,鸡叫沟岩体属于高钾二长岩系列,贾公台岩体属于低钾奥长花岗岩系列。综合岩相学、岩石化学及微量元素和稀土元素的地球化学特征,区内3个岩体均形成于I型活动陆缘环境,为中南祁连造山带加里东期构造岩浆活动的产物。  相似文献   

8.
门巴区晚白垩世花岗岩主要分布于冈底斯中段的扎雪、金达和桑巴附近,由黑云母钾长花岗岩、钾长花岗岩和二云母钾长花岗岩及花岗闪长岩等组成。其中花岗闪长岩SHRIMP 锆石U--Pb 年龄为68. 8 ± 1. 6 Ma; 钾长花岗岩黑云母K--Ar 年龄为78. 2 ± 1. 2 Ma 和81. 5 ± 1. 4 Ma; 黑云母钾长花岗岩和二云母钾长花岗岩的黑云母K--Ar 分别为90. 8 ± 1. 81 Ma 和91. 2 ± 1. 8 Ma。岩石学和地球化学分析结果表明,S 型和低Sr 低Yb 特征的黑云母钾长花岗岩和二云母钾长花岗岩形成于拉萨地块与羌塘地块碰撞造山过程中的地壳加厚背景; S 型和总体低Sr、高Yb 特征的钾长花岗岩形成于造山带晚期阶段的伸展背景; I 型花岗闪长岩应是新特提斯洋俯冲作用的结果,形成于岛弧构造环境。  相似文献   

9.
Early Palaeozoic granitoids in the South Qilian Belt, central China, record details of the tectonic evolution and crustal growth of the Qilian orogenic belt. Five representative granitoids from the western South Qilian Belt were sampled for zircon LA-ICPMS U–Pb dating, Lu–Hf isotopes, and whole-rock geochemical analyses. Zircon U–Pb dating of two porphyritic granodiorites and a porphyritic monzogranite yielded ages of 442.7 ± 3.5, 441.8 ± 4.3, and 435.4 ± 3.5 Ma, respectively. These granitoids exhibit a geochemical affinity to I-type granite, are metaluminous with a low aluminium saturation index (A/CNK = 0.75–1.15), have moderate Al2O3 and low MgO contents, high La/Yb and low Sr/Y ratios, and are depleted in Nb, Ta, P, and Ti, which suggests a subduction zone magmatic arc affinity, with mixing between a primary mantle-derived magma with lesser continental crustal material. The syenogranite and monzogranite from the South Qilian Belt, which yield U–Pb zircon ages of 440.4 ± 9.0 and 442.3 ± 1.2 Ma, respectively, have pronounced S-type geochemical affinities, are peraluminous with A/CNK values of 1.07–1.16, have relatively high SiO2, Al2O3, K2O, and Rb contents, low Y and Yb, low Sr/Y and La/Yb ratios, positive Th, U, and light Rare Earth Element (REE) anomalies, and depletions in Nb, Ta, Sr, and Ti. Their geochemical signature suggests derivation from partial melting of continental crust in a syn-collisional setting. The Hf isotopic data of zircons from the granitoids show a significant input of Paleoproterozoic crust in the crustal formation of the western South Qilian Belt in Palaeozoic. Compare the εHf(t) value of S-type granite with that of I-type granite, the former may have a comparatively homogeneous source. Together with regional evidence, it is proposed that a collisional event occurred between the South Qilian Belt and the Central Qilian Belt at ca. 442–435 Ma.  相似文献   

10.
大兴安岭地区显生宙花岗岩分布广泛,但区内中生代花岗岩的研究相对薄弱.通过对大兴安岭中段扎兰屯以西的毕家店岩体和神山岩体进行年代学和地球化学研究,探讨了本区早白垩世花岗岩的成因及构造背景.其中毕家店岩体主要由正长花岗岩和花岗斑岩组成,神山岩体主要由碱长花岗岩组成.毕家店岩体的锆石U-Pb年龄为136±3 Ma、139.5±0.9 Ma和128.1±0.8 Ma,神山岩体为119.3±0.8 Ma,均形成于早白垩世.地球化学特征上,两岩体均呈现高硅、低钙、富碱、Eu负异常等特征,亏损Nb、Ta,富集Rb、Th和U,属于弱过铝质高钾钙碱性系列,为岩浆演化晚期的高分异I型花岗岩.两岩体具有活动大陆边缘构造属性,结合大兴安岭地区同时期I型、A型花岗岩特征,认为早白垩世花岗质岩石的形成与太平洋板块俯冲背景下的拆沉作用密切相关.  相似文献   

11.
ABSTRACT

This article presents new zircon U–Pb geochronology, Hf isotopic, and whole-rock major- and trace-element geochemical data that provide insights into the petrogenesis and tectonic history of the Riwanchaka granodiorite porphyries of Central Qiangtang, Tibet. Zircon U–Pb ages of 236–230 Ma indicate an early Late Triassic age of emplacement of the porphyries, and zircon Hf isotopic data yield εHf(t) values of – 7.0 to – 1.5 and ancient zircon Hf crustal model ages (TDMC) of 1524–1220 Ma. The granodiorite porphyries are characterized by low K2O contents, high Mg# values, and relatively high Cr and Ni contents. They are classified as I-type calc-alkaline granite and are considered to have formed through the anatexis of ancient mafic crustal rocks with contributions from mantle-derived components. The geochemistry and isotopic compositions of all samples are similar to those of magmatic rocks that originated in the South Qiangtang crust. However, field observations indicate that the pluton intrudes the North Qiangtang crust, and we propose that the granodiorite porphyries were derived by partial melting of subducted continental crust of the South Qiangtang terrane. These new data have been integrated with data from previous studies to construct a new model of slab rollback during northward subduction of the Southern Qiangtang continental crust at ca. 245–226 Ma, thereby improving our understanding of magmatic processes involved in continental subduction in collision settings.  相似文献   

12.
对内蒙古达茂旗北部构造单元的巴特敖包岛弧带2个花岗闪长岩岩体样品和南部构造单元一个花岗岩岩体的2件样品进行了LA—ICP-MS锆石u—Pb定年。北部构造单元采自2个花岗闪长岩岩体的样品锆石^206Pb/^238U年龄分别为468Ma±2Ma和452Ma±2Ma,代表了这2个岩体的侵位时间,表明古亚洲洋向华北克拉通之下俯冲不晚于468Ma±2Ma;南部构造单元采自同一花岗岩岩体的2件样品获得的锆石~pb/z38U年龄分别为268Ma±2Ma和264Ma±2Ma,和该单元西部岩体已有的锆石年龄相符。这为华北克拉通北缘岩浆作用研究提供了新的年代学证据。  相似文献   

13.
The southern Midyan terrane is a composite Tonian to Ediacaran tectonostratigraphic crustal block in the northern Arabian Shield that prior to Red Sea opening was contiguous with coeval rocks in the Eastern Desert of Egypt and Sinai. Ion microprobe (sensitive high-resolution ion microprobe [SHRIMP]) dating of 12 rock samples described here and the results of other dating programmes establish a clear timeframe for depositional, intrusive, and structural events in the region and provide a chronology of tectonism in this part of the Arabian-Nubian Shield. Deposition of Zaam and Bayda group volcanosedimentary rocks and emplacement of mafic-ultramafic complexes and TTG-type diorite, tonalite, and granodiorite denote formation of the Tonian (780–715 Ma) Zaam arc and fore-arc ophiolite above a possible west-dipping subduction system in the southern part of the Midyan terrane. Convergence with the Hijaz terrane farther south and obduction of ophiolite nappes resulted by ~700 Ma in development of the Yanbu suture. Ongoing or a new subduction system led to a ~705–660 Ma Cryogenian pulse of magmatism represented by I-type calc-alkaline diorite, granodiorite, and granite that have volcanic-arc and syn-collisional granite affinities. This was followed, after a brief end-Cryogenian hiatus, by a 635–~570 Ma period of Ediacaran magmatism marked by monzogranite, syenogranite, and minor gabbro and diorite. These rocks are reported to have within-plate to volcanic-arc and syncollision chemical characteristics but their precise tectonic setting is uncertain. Structurally, the intrusions are diapiric and were evidently emplaced in an extensional regime consistent with an overlap between intrusion and Najd faulting associated, at this time, with transpressional collision and northward extension through much of the ANS. Terminal magmatism in the southern Midyan terrane postdated cessation of Najd faulting at ~575 Ma and resulted in the emplacement of undeformed within-plate A-type alkali-feldspar granites and mafic (lamprophyre) and felsic dikes.  相似文献   

14.
The Indosinian orogeny is recorded by Triassic angular unconformities in Vietnam and South China and by widely occurring granitoids in the Yunkai-Nanling and the Xuefengshan belts of South China. The Longtan pluton in the northwestern part of the Xuefengshan belt is a typical high-K, calc-alkaline, I-type granitoid, which can shed light on the relationship between the Indosinian tectonic and magmatic activity in the region. Three precise zircon U–Pb ages yielded a mean of 218 ± 0.8 Ma, which is taken as the age of crystallization. The pluton consists of both granodiorite (64.59–68.01 % SiO2 and 3.25–4.22 % K2O) and granite (70.49–71.80 % SiO2 and 4.07–4.70 % K2O). The granodiorites are characterized by relatively high Mg# (54–57), low contents of Na2O (3.2–4.3 wt%), low abundances of incompatible elements (LILE, Nb and P), high initial 87Sr/86Sr (0.7175–0.7184) and negative εNd(t) (?9.98 to ?9.72). REE patterns show moderate fractionation ((La/Yb)cn = 8.07–18.80) with negative Eu anomalies (Eu/Eu* = 0.62–0.86). Compared with the granodiorite, the granite has a wider range of Mg# (49–59), lower contents of Na2O (2.8–4.2 wt%), higher initial 87Sr/86Sr (0.7232–0.7243) and more negative εNd(t) (?12.07 to ?11.24) values. REE patterns are relatively flat ((La/Yb)cn = 14.73–29.37) with smaller negative Eu anomalies (Eu/Eu* = 0.48–0.63). The granodiorite has lower K2O/Na2O and Al2O3/(MgO + FeOTot) values than the granite. Based on major and trace element geochemistry and Sr–Nd isotopes, we interpret the Longtan granodioritic magma to have been derived by partial melting of interlayered Proterozoic metabasaltic to metatonalitic source rocks, whereas the granite was probably derived from a mixture of Proterozoic metagraywackes and metaigneous rocks. Field, petrographic and geochemical evidence indicate that partial melting and fractional crystallization were the dominant mechanism in the evolution of the pluton. The Longtan granodiorites and granites are petrologically and geochemically similar to typical Indosinian varieties and are considered to have been produced in a similar manner. The Indosinian granitoids in the region show a magmatic peak age of ~238 Ma from the Yunkai-Nanling belt in the southeast and a magmatic peak age of ~218 Ma of the Xuefengshan belt to the northwest. These early and late magmatic episodes of the Indosinian granitoids also display slight variations of regular compositions, εNd(t) values and T DM ages. Thus, we propose a syncollisional extension model that Indosinian granitoids were generated by decompressional partial melting of crustal materials triggered by two extensions during collision of the Indochina and South China blocks. The Longtan pluton in the northwesternmost part of the orogenic belt marks the termination of the Indosinian magmatism and orogenesis.  相似文献   

15.
This paper presents new SHRIMP zircon U–Pb chronology, major and trace element, and Sr–Nd–Hf isotopic data of two Early Paleozoic granitic plutons (Yierba and North Kudi) from the western Kunlun orogen, in attempt to further constrain the Proto-Tethys evolution. SHRIMP zircon U–Pb dating shows that the Yierba pluton was emplaced in the Middle Cambrian (513?±?7 Ma) and the North Kudi pluton was emplaced in the Late Silurian (420.6?±?6.3 Ma). The Yierba pluton consists of quartz monzodiorite, quartz monzonite and granodiorite. These granitoids are metaluminous and potassic, with initial 87Sr/86Sr ratios of 0.7072–0.7096, εNd (T) of ?0.2 to ?1.6 and εHf (T) (in-situ zircon) of ?1.2. Elemental and isotopic data suggest that they were formed by partial melting of subducted sediments, with subsequent melts interacting with the overlying mantle wedge in an oceanic island arc setting in response to the intra-oceanic subduction of Proto-Tethys. The North Kudi pluton consists of syenogranite and alkali-feldspar granite. These granites are metaluminous to weakly peraluminous and potassic. They show an affinity of A1 subtype granite, with initial 87Sr/86Sr ratios of 0.7077–0.7101, εNd (T) of ?3.5 to ?4.0 and εHf (T) (in-situ zircon) of ?3.9. Elemental and isotopic data suggest that they were formed by partial melting of the Precambrian metamorphic basement at a shallow depth (<30 km) during the post-orogenic regime caused by Proto-Tethyan oceanic slab break-off. Our new data suggest that the subduction of the Proto-Tethyan oceanic crust was as early as Middle Cambrian (~513 Ma) and the final closure of Proto-Tethys was not later than Late Silurian (~421 Ma), most probably in Middle Silurian.  相似文献   

16.
柴达木盆地北缘西端冷湖花岗岩   总被引:1,自引:0,他引:1  
冷湖花岗岩体由花岗闪长岩和二长花岗岩组成,岩体中发育较多的辉绿岩墙和花岗闪长斑岩岩墙。岩石的常量、稀土、微量元素地球化学研究表明花岗岩类和脉岩类为同源岩浆分异演化而成,Rb-Sr、Sm-Nd同位素特征反映其源岩来自地幔。地球化学判别图解得出,冷湖花岗岩类属I型花岗岩,早期的花岗闪长岩形成于岛弧环境,与柴达木板块、南祁连板块的碰撞有关;晚期的二长花岗岩形成于板块碰撞隆起环境,与阿尔金大型走滑断裂的活动有关。  相似文献   

17.
Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion originated during the late stage of plate subduction. Its related Ta'ergou and Xiaoliugou deposits are two of the few large tungsten deposits formed in the plate subduction environment in the world. The U-Pb dating of the zircons from the biotite granite gave a discordant lower intercept age of 183±4 Ma, which implies that the Yanshanian event was probably superimposed on the North Qilian region.  相似文献   

18.
The Yanhu granitoids are located in the west segment of the Bangongco-Nujiang suture in the western Tibetan Plateau. The main rock types of the granitoids are diorite porphyry, quartz diorite, granodiorite, granite and granite porphyry. Here, their zircon LA-ICP-MS U-Pb ages and petrogeochemical data are reported. Three groups of magmatic events can be distinguished from the Yanhu area: group 1 includes samples AK01 and ZK01 of diorite porphyry, and sample D3658 of quartz diorite that yield mean zircon U-Pb ages of 121.0 ± 2.7 Ma, 116.6 ± 2.0 Ma and 116.0 ± 3.9 Ma, respectively; group 2 includes sample D0050 of diorite porphyry, samples D1393 and D3660 of granodiorite and sample D3065 of granite porphyry that yield mean zircon U-Pb ages of 104.9 ± 2.0 Ma, 105.4 ± 3.8 Ma, 104.2 ± 1.9 Ma and 104.2 ± 1.9 Ma, respectively; group 3 includes sample D3093 of granite that yields mean zircon U-Pb ages of 93.6 ± 1.5 Ma. The zircon LA-ICP-MS U-Pb ages suggest that the Yanhu granitoids were emplaced at 121.0–93.6 Ma, representing Cretaceous magmatism in the west segment of the Bangongco-Nujiang suture. The granitoids are composed of SiO2 (56.57 to 76.98 wt.%), Al2O3 (12.20 to 17.90 wt.%), Na2O (3.61 to 4.98 wt.%), K2O (2.06 to 4.71 wt.%) and CaO (0.27 to 5.74 wt.%). The Yanhu granitoids exhibit enrichment in LREE (light REE) and LILE (large ion lithophile elements) such as Rb, Th, U, Pb and K and depletion of HREE (heavy REE), P, Ti, Nb, Ta and Zr. Their A/CNK ratios of 0.85-1.06 are <1.1, implying that they are high-K, metaluminous-weakly peraluminous I-type granites. TheYanhu granitoids were generated mainly by partial melts of the meta-igneous lower crust and some arc-related materials. The Yanhu granitoids probably formed in VAG and syn-COLG tectonic settings related to the southward subduction of the Tethyan Ocean. Diorite porphyry and quartz diorite magmatism from 121.0 Ma to 116.0 Ma may be associated with the southward Bangongco–Nujiang Tethys oceanic crust subduction. Diorite porphyry, granodiorite, and granite porphyry magmatism from 105.4 Ma to 104.2 Ma may be associated with the rising asthenosphere induced by the slab breakoff. Granite magmatism from 93.6 Ma may be related to the crustal thickening induced by the final amalgamation of the Lhasa Terrane and the Qiangtang Terrane.  相似文献   

19.
东昆仑五龙沟花岗岩特征及其构造背景   总被引:2,自引:0,他引:2  
根据岩石学、地球化学等特征及MC-ICP-MS锆石U-Pb定年,对东昆仑五龙沟地区花岗岩进行了构造环境研究。黄龙沟中粒正长花岗岩具有高硅、高碱、相对富铝、高FeOt/MgO和104Ga/Al值、富集轻稀土、明显的Eu负异常、相对原始地幔明显富集Zr、Ga、Y和Hf等高场强元素并强烈亏损Ba、Sr、P和Ti元素的特征,为A型花岗岩。锆石U-Pb法获得206Pb/238U值加权平均年龄为416.9±1.3 Ma,是早古生代晚志留世造山旋回末后造山碰撞产物,标志晚志留世东昆仑造山旋回进入造山后碰撞阶段。岩金沟矿区东花岗闪长岩为典型准铝质钙碱性花岗岩,具有I型花岗岩稀土元素特征,为I型花岗岩,形成年龄为258.9±2.1 Ma,属于昆南断裂结束后、于晚二叠世开始南区巴颜喀拉地体与昆中区南昆仑地体间发生强烈的壳幔剪切作用的产物。  相似文献   

20.
青海南山侵入体岩石类型为二长花岗岩、花岗闪长岩及英云闪长岩,具俯冲型花岗岩类的地球化学特征。通过高精度的LA-ICP-MS(激光剥蚀等离子体质谱)单颗粒锆石微区U-Pb同位素年龄测定,分别在二长花岗岩、花岗闪长岩及英云闪长岩中获得446.1±3.5Ma、447.2±5.3Ma、443.6±8.6Ma的锆石U-Pb年龄值,为成岩年龄,代表了加里东运动在祁连造山带的地质记录。3种不同岩石类型的成岩年龄可能代表了拉脊山造山带向南俯冲的时代。青海南山地区俯冲型侵入体的形成时代及构造环境的确定,对研究拉脊山造山带的构造演化及动力学机制具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号