首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
贵州太平洞金矿床流体包裹体特征及流体不混溶机制   总被引:7,自引:2,他引:5  
太平洞金矿床是兴仁-安龙金矿带灰家堡金矿区的重要卡林型金矿之一。流体包裹体研究证明,石英-黄铁矿阶段(Ⅰ)、石英-黄铁矿-毒砂阶段(Ⅱ)、石英-方解石-雄黄阶段(Ⅲ)的包裹体类型丰富,以气液水两相包裹体、CO2-H2O包裹体和纯液相水包裹体为主,CO2两相包裹体、纯气相有机质包裹体和有机质-H2O包裹体次之,偶见气液有机质包裹体。由Ⅰ→Ⅱ→Ⅲ阶段,气液水包裹体均一温度(200~260℃→180~240℃→100~160℃)呈现逐渐降低的趋势。在Ⅰ阶段的石英中,只在局部偶见到CO2-H2O包裹体和气液两相水包裹体共生;在Ⅱ阶段的石英中,纯液相水包裹体、气液两相盐水包裹体、CO2-H2O包裹体、CO2包裹体及纯气相有机质包裹体共存,它们共生在同一平面中且气液两相盐水包裹体和CO2-H2O包裹体测温数据相差不大,说明当时捕获的是不均匀成矿流体,它是由含有机质的成矿流体经历了CO2-低盐度水的不混溶作用形成的。因而认为,太平洞金矿床中成矿早期流体不混溶作用不明显,主成矿阶段流体的不混溶作用是导致金矿质沉淀的重要原因。  相似文献   

2.
新疆白杨河铀铍矿床流体包裹体研究   总被引:7,自引:2,他引:5  
毛伟  王果  李晓峰  王谋  肖荣 《矿床地质》2013,32(5):1026-1034
新疆白杨河铀铍矿床是近年来发现的亚洲最大的次火山岩型铀铍矿床,该矿床铀铍矿化主要与萤石化密切相关。在野外地质工作和室内分析的基础上,根据不同期次萤石的颜色、结构构造及相互穿插关系将萤石脉划分为4期。4期萤石流体包裹体均一温度变化范围为90℃到176℃,均一温度峰值为120~150℃,表明该矿床为低温热液矿床。萤石中流体包裹体多数为气相CO2-水溶液两相(V-L)包裹体,在降温过程中形成了CO2笼合物。文章采用假设液相CO2含量无限接近于0的方法计算气相CO2-水溶液两相(V-L)包裹体的盐度,获得的成矿流体盐度w(NaCleq)范围为4.69%~19.72%,每一期萤石流体包裹体的平均盐度w(NaCleq)均在10%左右。不同期次萤石流体包裹体均一温度主峰之间差别较小,总体经历了波动性演化,平均盐度之间差别较小。流体盐度特征表明,成矿流体来源不是单一的大气降水,推测高盐度的岩浆水参与了成矿作用。  相似文献   

3.
白云鄂博超大型REE-Nb-Fe矿床赋存在白云岩内,矿体由磁铁矿、稀土氟碳酸盐、萤石、霓石、角闪石、方解石和重晶石等矿物组成。在白云鄂博矿床矿石和脉石矿物中赋存有两/三相富CO2、三相高盐卤水和两相水溶液包裹体3大类型。显微测温表明富CO2包裹体内还有近于纯的CO2,成矿流体为H2O-CO2-NaCl-(F-REE)体系。高盐卤水包裹体和富CO2包裹体共生且具有近似的完全均一温度,表明初始热液发生了流体不混溶作用。流体包裹体中出现稀土子矿物,表明初始成矿流体含有很高的稀土元素,这也许是形成白云鄂博超大型稀土矿床的原因。  相似文献   

4.
湖南芙蓉锡多金属矿床流体包裹体地球化学研究   总被引:1,自引:0,他引:1  
湖南芙蓉锡多金属矿床是中国最近发现的具有巨大找矿潜力的锡矿田,本文对白蜡水矿区和狗头岭矿区中主要的4种矿化类型(矽卡岩型、蚀变花岗岩、锡石硫化物型、云英岩型)进行了系统的流体包裹体研究,研究表明:该矿床中流体包裹体类型复杂,包括富含CO2包裹体、气液包裹体、含子晶包裹体和气相包裹体。成矿流体为富含CO2、CH4等挥发分的高盐度、高温度的岩浆期后热液,成矿流体压力为1800~179 bar。锡成矿过程早期曾发生过流体不混溶和沸腾作用。CO2相的分离导致热液流体的pH值升高,低盐度、低温大气降水的混入,导致成矿流体的温度进一步降低和锡石的沉淀。  相似文献   

5.
阿尔泰南缘克兰盆地的脉状金-铜矿化及其流体演化   总被引:3,自引:1,他引:2  
阿尔泰山南缘泥盆纪克兰火山-沉积盆地蕴藏有丰富的VMS锌铅铜多金属矿床。自晚泥盆世至早二叠世末, 阿尔泰山南缘为NE-SW向强烈挤压的构造环境, VMS矿石受到变形变质改造,脉状金铜矿化发育。金(铜)石英脉主要有2种产状:(1)白色-灰白色(硫化物)顺层石英脉(QI), 产于韧脆性剪切带发育地段,呈细脉状或透镜状产于绿泥片岩、黑云片岩中;(2)斜切黄铁矿化蚀变岩、层状铅锌矿和变质岩产状的黄铜矿-黄铁矿石英脉(QII),与晚期的脆性构造有关。金(铜)石英脉的流体包裹体发育,按室温下相态特征有3类。第I类为含子矿物的高盐度包裹体(L-V-S型),子晶为NaCl, 有时为KCl,包裹体呈孤立或无序分布,代表变质早期流体特征。一般NaCl子晶先消失(210~357℃),包裹体的最终均一温度369~512℃,其捕获温度与变质相的相平衡计算温度相当,反映了变质早期中高温热液活动的特征。第II类是富CO2 包裹体,包括单相的碳质流体包裹体(L CO2、L CO2-CH4或L CO2-N2)和两相富CO2包裹体(L CO2-L H2O)2个亚类。碳质流体包裹体是常见类型,有时与L CO2-LH2O型伴生,在较晚期的黄铜矿-黄铁矿石英脉中表现为原生特征,而在较早的石英脉中常表现为次生特征。萨热阔布的碳质流体可分为纯CO2包裹体和CO2-CH4体系包裹体,纯CO2包裹体的固体CO2熔化温度(Tm,CO2)为 -60~-56.5℃,CO2部分均一温度(Th,CO2) 变化于-23~+31℃;密度一般为0.85~0.89g·m-3。CO2-CH4包裹体的Tm,CO2<-57℃,可低达-78.1℃,Th,CO2低达-33.7~-17.7℃, 其密度高达1.01~1.07g·m-3。VMS矿床中晚期叠加的黄铜矿石英脉中碳质流体包裹体可分为贫CH4-N2和富CH4-N2的CO2-CH4-N2包裹体,贫CH4-N2的碳质包裹体Tm,CO2=-63.3~-57℃,Th,CO2=-27.5~+29.7℃;富CH4-N2的CO2-CH4-N2包裹体Tm,CO2=-83.4~-65.5℃,Th,CO2=-56.0~+16.9℃。铜金石英脉中与碳质流体共生的LCO2-LH2O型包裹体均一温度Th,total=205~370℃,略低于第I类高盐度包裹体的Th,total=369~512℃。据CO2流体高温高压相图估算包裹体的捕获压力至少为110~300MPa。金(铜)石英脉的主体在相当于445~566℃的高温条件下形成的,而金铜矿化则是在高于205~370℃、110~330MPa的中高温中深条件下发生的。流体包裹体的δ18O为7.54‰~11.84‰ (QI)和3.82‰~7.82‰ (QII), δD为-84.7‰~-98.2‰(QI)和-75.8‰~-108.8‰ (QII)。结合地质特征和流体研究,说明成矿热液来源与区域变质及相关的岩浆活动有关。  相似文献   

6.
西藏弄如日金矿流体包裹体研究   总被引:4,自引:0,他引:4  
弄如日金矿床位于青藏高原南部冈底斯-喜马拉雅构造区的冈底斯构造岩浆带东段,是该成矿带上首次发现的浅成低温热液型金锑矿床。本文在详细的野外矿床地质研究基础上,通过对各期与成矿密切相关的流体包裹体岩相学、显微测温分析、包裹体成分的LRM分析和包裹体中子矿物相的SEM/EDS分析等,对与矿化有关的成矿流体的特征、演化以及金的迁移与沉淀机制进行了讨论。通过研究流体成矿过程包括:形成黄铁矿-石英组合的早期阶段,发育以含子矿物的三相包裹体为主,均一温度集中于256~335℃,盐度29.7%~38.9% NaCleqv;形成毒砂-富砷黄铁矿-石英组合的主成矿阶段,发育富CO2包裹体,均一温度集中于230~357℃,盐度1.81%~9.74% NaCleqv,CO2密度为0.16~0.29g·cm-3;形成辉锑矿-石英、雄黄-石英和碳酸岩脉组合的晚期阶段,发育水溶液包裹体,均一温度集中于134~245℃,盐度1.91%~8.95% NaCleqv。与金成矿有关的流体为中温、低盐度的富CO2、CH4、N2、Na+流体体系,成矿流体温度、压力降低造成了流体不混溶,使CO2相与水溶液相分离是造成金沉淀的主要机制。  相似文献   

7.
岩浆到热液演化的包裹体记录——以骑田岭花岗岩体为例   总被引:3,自引:2,他引:1  
骑田岭花岗岩是燕山期花岗岩早期多阶段侵入复式岩体,岩石化学的研究表明它是富碱的、高分异的A型花岗岩,形成于板内拉张的构造环境。在其第二阶段中细粒黑云母花岗岩内广泛发育着厘米级至米级似伟晶岩囊状体和石英晶洞, 它们是富挥发份岩浆固结的产物,代表岩石形成过程经历了明显的岩浆-热液过渡阶段。包裹体显微岩相学研究在骑田岭黑云母花岗岩的石英中发现熔体-流体包裹体和流体包裹体共存,这一结果进一步证实骑田岭中细粒黑云母花岗岩中的似伟晶岩囊状体和石英晶洞是花岗质熔体在岩浆-热液过渡阶段的产物。显微测温结果显示,熔体-流体包裹体的捕获温度大于530℃,说明岩浆热液过渡阶段的温度不低于该温度;闪锌矿中流体包裹体的均一温度在285~417℃之间,盐度为11.7% NaCleqv,代表了成矿流体的温度和盐度;流体包裹体的均一温度为172~454℃,代表热液阶段流体的温度。从中细粒黑云母花岗岩到似伟晶岩囊状体再到石英晶洞,岩浆-热液体系经历了富挥份熔体→熔体+高盐度流体→高盐度流体→低盐度流体的完整演化过程,形成了CaCl2-NaCl-H2O-CO2体系的岩浆热液流体。包裹体岩相学及激光拉曼探针分析结果显示,在流体包裹体和多晶熔体-流体包裹体中含有长石、方解石、金红石及金属氧化物等子矿物,暗示其所捕获的流体具有较强的成矿能力。  相似文献   

8.
杨孝强  厉子龙 《岩石学报》2013,29(10):3446-3456
北疆阿尔泰造山带南缘晚古生代超高温麻粒岩存在高铝斜方辉石+夕线石+石英和尖晶石+石英等超高温特征矿物组合,其退变质作用主要以典型的降压反应矿物堇青石的形成为标志。对其中新发现的石榴子石及石英流体包裹体开展显微测温和激光拉曼探针分析,结果表明:基质中的石英以及被石榴子石包裹的石英中孤立分布的原生流体包裹体成分为近纯CO2(部分含少量的N2),均一温度在10.1~29℃之间,其对应的密度在0.631~0.861g/cm3。石榴子石中的原生和假次生CO2包裹体费米峰差在104.1cm-1左右,低于石英中CO2包裹体的费米峰差(~104.7cm-1),暗示其密度低于石英中的CO2包裹体。由CO2流体包裹体密度所得到的等容线从P-T轨迹退变质阶段的下方穿过结合区域地质背景,我们初步认为阿尔泰超高温麻粒岩的形成与幔源岩浆底侵有关。基性岩浆的底侵不但提供了异常高的地温梯度,同时其所释放的大量CO2降低了水活度,使得变质作用峰期的特征矿物得以保存。低密度的CO2流体指示了阿尔泰超高温麻粒岩沿顺时针P-T轨迹紧随超高温峰期变质之后快速抬升降压,捕获的同变质流体包裹体因腔体体积增大而密度降低的一种退变质过程。  相似文献   

9.
黄惠兰  常海亮  李芳  张春红  谭靖  周云 《矿床地质》2012,31(6):1171-1183
西华山钨矿床是一个产于燕山期花岗岩中的大脉型钨矿床。笔者利用红外显微镜、冷热台及其他相关设备对矿床中的透明矿物(石英、绿柱石和萤石)与不透明矿物(黑钨矿、黄铁矿)中的流体包裹体进行了对比研究。结果显示,共生透明矿物与不透明矿物之间,在包裹体均一温度等特征上既可基本相同又可出现很大差异。一般来说,黑钨矿能有效地保存原生流体包裹体(th=300~420℃;晶洞中为220~290℃),仅有少量次生包裹体(th=160~280℃),而与之共生的石英中原生包裹体则几乎被破坏殆尽,现在所见到的包裹体绝大多数是次生的或是在较晚结晶时捕获的(th=130~270℃)。只有未经后期应力作用和流体改造的晶洞水晶及与其共生的黑钨矿,二者获得的结果才相同或相似。绿柱石中通常有大量的次生包裹体和原生包裹体。黑钨矿与绿柱石中硅酸盐熔融包裹体的出现,表明西华山钨矿床的成矿作用始于岩浆-热液过渡阶段,其初始成矿流体是一种岩浆-热液过渡性流体,尔后才演变成单一的热水溶液。笔者认为,在进行金属矿床流体包裹体研究时,应强调共生透明矿物与不透明矿物的对比研究,在进行对比研究时,详尽的基础地质研究和包裹体岩相学观察必不可少;当单独利用透明矿物包裹体资料对金属矿床进行地质解释时,需慎之又慎。  相似文献   

10.
佛子冲矿床发育在钦杭成矿带南段广西境内,是近年来在全国危机矿山接替资源勘查项目中取得重要突破的一处大型铅锌多金属矿床。本研究通过流体包裹体和H-O-S-Pb同位素地球化学研究手段,重点提取了佛子冲矿床古益矿区深部矿段的成因信息。流体包裹体分析表明,早期硫化物阶段(阶段I)出现含子矿物型、CO2-H2O型及H2O型包裹体类型组合,而主成矿阶段(阶段Ⅱ)和晚期硫化物阶段(阶段Ⅲ)则变化为相对单一的H2O型包裹体,成矿流体的均一温度和盐度均表现出从成矿作用早期到晚期逐渐降低的趋势。H、O同位素(δD值介于-59‰~-41‰,δ18OH2O值介于-5.47‰~4.00‰)和流体包裹体成分指示,初始成矿流体可能来自于岩浆分异热液,但随着成矿作用的进行,天水热液的掺入比例显著增大。矿石硫化物的δ34S值集中于2.3‰~4.3‰,指示矿化剂S主要来自于矿区内的中酸性岩浆岩体系。矿石铅的206Pb/204Pb比值为18.592~18.794,207Pb/204Pb比值为15.648~15.864,208Pb/204Pb比值为38.909~39.580,数据分布呈线性趋势,且正好落入岩浆铅和地层铅之间,构成一条混合线,它指示了成矿物质可能具有岩浆源和地层源的混合属性。野外地质和矿床地球化学证据都表明,佛子冲矿床的发育与燕山晚期(106Ma)的花岗斑岩侵入事件密切相关,该期岩浆作用在矿区内导致了强烈的热液流体活动并产生了显著的铅锌银多金属成矿效应。河三和古益两个矿区的矿化类型有所不同,前者代表了产在斑岩接触带的矽卡岩型,而后者代表了远离斑岩的中低温热液充填交代型,二者在整体上构成了一个以Pb-Zn为主矿种的岩浆热液流体成矿系统。  相似文献   

11.
The Paleoproterozoic terranes (Birimian) of West Africa are well known to host numerous economic gold mineralizations. The Angovia gold mineralization is located in a brecciated and mylonitic zone within the Birimian greenstones. The sulfide–gold mineralization is mainly represented by gold associated with pyrite and chalcopyrite. A fluid inclusion study undertaken on mineralized quartz veins revealed the presence of aqueous-carbonic (CO2–H2O) fluids, the association of carbonic (CO2) and early aqueous fluids, followed by later aqueous (H2O-salt) and finally nitrogen-rich fluids. Entrapment of the initial homogeneous aqueous-carbonic fluids prior to fluid immiscibility depicts the evolution of the P–T conditions during the exhumation of the terranes after the peak of green-schist metamorphism. The CO2 rich-fluid occurs especially in gold-bearing quartz, and are considered as the main evidence of the ore-forming process in the gold-bearing quartz veins. It is considered as a product of immiscibility of the CO2–H2O parent. The volatile fraction of carbonic and aqueous-carbonic fluid inclusions is dominated by CO2, containing minor amounts of N2, even smaller amounts of CH4 and sporadically, H2S. The aqueous-carbonic fluids have moderate salinity (3–10 wt.% eq. NaCl). Late aqueous and N2 – (CH4–CO2) fluids are considered as later, unrelated to the main ore stage, and were trapped during the cooling of the hydrothermal system from 300 to 200 °C.The immiscibility has been favored by a strong pressure drop, the main trapping P–T conditions being 320–370 °C and 105–135 MPa. The mineralizing process is likely related to the immiscibility event, which was probably favored by the release of the fluid pressure after fracturing along the main shear zones. The ore process is likely to have occurred along the main shear zones or related secondary structures affected by cycling of the fluid pressure and quartz sealing–fracturing processes. The superimposed process can also explain the relative complexity of the quartz textures and fluid inclusion microfractures, and the rather wide range in the density of both parent fluid and CO2-dominated fluid.  相似文献   

12.
Fluid inclusion microthermometry and structural data are presented for quartz vein systems of a major dextral transcurrent shear zone of Neoproterozoic–Cambrian age in the Ribeira River Valley area, southeastern Brazil. Geometric and microstructural constraints indicate that foliation–parallel and extensional veins were formed during dextral strike–slip faulting. Both vein systems are formed essentially by quartz and lesser contents of sulfides and carbonates, and were crystallized in the presence of CO2–CH4 and H2O–CO2–CH4–NaCl immiscible fluids following unmixing from a homogeneous parental fluid. Contrasting fluid entrapment conditions indicate that the two vein systems were formed in different structural levels. Foliation–parallel veins were precipitated beneath the seismogenic zone under pressure fluctuating from moderately sublithostatic to moderately subhydrostatic values (319–397 °C and 47–215 MPa), which is compatible with predicted fluid pressure cycle curves derived from fault–valve action. Growth of extensional veins occurred in shallower structural levels, under pressure fluctuating from near hydrostatic to moderately subhydrostatic values (207–218 °C and 18–74 MPa), which indicate that precipitation occurred within the near surface hydrostatically pressured seismogenic zone. Fluid immiscibility and precipitation of quartz in foliation–parallel veins resulted from fluid pressure drop immediately after earthquake rupture. Fluid immiscibility following a local pressure drop during extensional veining occurred in pre-seismic stages in response to the development of fracture porosity in the dilatant zone. Late stages of fluid circulation within the fault zone are represented dominantly by low to high salinity (0.2 to 44 wt.% equivalent NaCl) H2O–NaCl–CaCl2 fluid inclusions trapped in healed fractures mainly in foliation–parallel veins, which also exhibit subordinate H2O–NaCl–CaCl2, CO2–(CH4) and H2O–CO2–(CH4)–NaCl fluid inclusions trapped under subsolvus conditions in single healed microcracks. Recurrent circulation of aqueous–carbonic fluids and aqueous fluids of highly contrasting salinities during veining and post-veining stages suggests that fluids of different reservoirs were pumped to the ruptured fault zone during faulting episodes. A fluid evolution trending toward CH4 depletion for CO2–CH4–bearing fluids and salinity depletion and dilution (approximation of the system H2O–NaCl) for aqueous–saline fluids occurred concomitantly with decrease in temperature and pressure related to fluid entrapment in progressively shallower structural levels reflecting the shear zone exhumation history.  相似文献   

13.
Fluid inclusions that bear halite daughter minerals were discovered in volcanic rocks at Pingnan area in the Dongying sag. The samples of the fluid inclusions collected from the BGX-15 well drill cores are hosted in quartz of diorite-porphyrite. The daughter minerals are identified as NaCl crystals after being observed under a microscope and analyzed by in situ Raman spectroscopy at −185°C. The results of micro-thermal analysis show that the homogenization temperatures of primary fluid inclusions are between 359 and 496°C, and the salinities of fluid inclusions are from 43.26 to 54.51 wt-%. All fluid inclusions in the studied samples can be divided into five types including primary fluid inclusions and secondary fluid inclusions. The fact that five types of fluid inclusions were symbiotic in the same quartz grain implies that immiscibility happened in magma. Due to the decrease in temperature and pressure during the ascent of magma, the fluids became intensively immiscible. This process accelerates the degassing of CO2 from magma, but the remnant fluids with high salinity are preserved in fluid inclusions. Thus, the primary fluid inclusions are mainly in NaCl-H2O fluids and poor in CO2. The results of our study indicate that the degassing of magma and accumulation of CO2 gas at the Pingnan area are relative to the immiscibility of high salinity fluids. This discovery is important because it can help us have a further understanding of the mechanism of magma degassing and accumulation of the inorganic CO2 in eastern China. Translated from Acta Geologica Sinica, 2006, 80(11): 1699–1705 [译自: 地质学报]  相似文献   

14.
The giant Bayan Obo REE–Nb–Fe deposit consists of replacement bodies hosted in dolomite marble made up of magnetite, REE fluorocarbonates, fluorite, aegirine, amphibole, calcite and barite. Two or three phase CO2-rich, three phase hypersaline liquid–vapor–solid, and two phase liquid-rich inclusions have been recognized in mineralized fluorite and quartz samples. Microthermometry measurements indicate that the carbonic phase in CO2-rich inclusions is nearly pure CO2. Fluids involving in REE–Nb–Fe mineralization at Bayan Obo might be mainly of H2O–CO2–NaCl–(F–REE) system. Coexistences of brine inclusions and CO2-rich inclusions with similar homogenization temperatures give evidence that immiscibility happened during REE mineralization. An unmixing of an original H2O–CO2–NaCl fluid probably derived from carbonatitic magma. The presence of REE-carbonates as an abundant solid in fluid inclusions shows that the original ore-forming fluids are very rich in REE, and therefore, have the potential to produce economic REE ores at Bayan Obo.  相似文献   

15.
There are many melt and fluid inclusions (mainly CO2-rich) in olivine and pyroxene phenocrysts in basalts from the Ross Island area. The melt inclusions can be classified as follows: (1) crystalline melt inclusions (type I), (2) fluid-melt inclusions (type II) and (3) glass inclusions (type III). The daughter minerals in type I include olivine, plagioclase, ilmenite, etc. Fluid-melt inclusions are a new type which represent the immiscibility of magma and fluid at a particular stage of evolution. Three types of fluid-melt inclusions were examined in this study: a) crystal + liquid + gas, b) inclusions coexisting with glass inclusions and fluid inclusions, and c) crystal + daughter mineral (dissolved salt) + gas. Both primary and secondary melt inclusions are recognizable in the samples. The secondary melt inclusions were formed during healing of fractures in the host minerals in the process of magma rise. The homogenization temperatures (both Leitz 1350 stage and quench method were used) of melt inclusions in basalts range from 1190 to 135°C at high pressure (about 7 kbars), indicating that the basalts may have come from the upper mantle. Melt-fluid immiscibility in basaltic magma shows that the CO2-rich fluids may be the main fluid phase in the upper mantle, which are of significance in understanding the evolution of magma and various processes in the deep levels of the earth. The homogenization temperatures of melt and aqueous fluid inclusions in granites and metamorphic rocks in this area vary from 980 to 1100°C and 279 to 350°C, respectively.  相似文献   

16.
赛盛勋  邱昆峰 《岩石学报》2020,36(5):1547-1566
位于胶东东部苏鲁地体内的乳山金矿曾是我国单脉金储量最大的矿床,其主矿脉为一具有复杂内部结构的富金石英脉,形成于包含周期性流体活动的增量增长过程。该矿床成矿流体演化、精细成矿过程和金沉淀机制仍缺乏有效制约。本研究在详细结构构造观察基础上,在代表单次成矿流体活动的同一石英层内识别出分别代表三个连续成矿阶段的三类黄铁矿,开展激光剥蚀-电感耦合等离子质谱原位微量元素测试。结果显示不同阶段黄铁矿微量元素成分基本一致,Co、Ni、As等元素因成矿流体间歇性压力波动而周期性地以不同含量进入黄铁矿,形成这些元素的韵律成分环带。Au等其他微量元素在不同阶段黄铁矿内均匀分布,其分布行为受压力波动影响较小。间歇性压力波动和由此引发的周期性流体不混溶使乳白色粗粒石英和黄铁矿、烟灰色中细粒他形石英和黄铁矿依次大规模沉淀,金银碲化物、银金矿、自然金和方铅矿、闪锌矿、黄铜矿等硫化物随后在愈加富Au、Ag、Te、Pb、Zn和Cu等的流体中近于同时沉淀。在此过程中成矿流体虽整体表现为还原性,但其还原性随着压力波动而不断递减氧化性持续增加;流体碲逸度早期保持稳定,后期则大幅上升。金以可见金形式充填先成黄铁矿裂隙或沿黄铁矿边缘分布,周期性流体压力波动引发的间歇性流体不混溶导致H_2S、CO_2和CH_4等气体大规模逸出,金硫络合物失稳分解,金被吸附至黄铁矿内水力致裂形成的裂隙面发生沉淀。排除了先成黄铁矿内不可见金再活化为可见金的可能性,认为周期性流体压力波动引起的流体不混溶是引发乳山金矿床可见金高效沉淀的关键机制。  相似文献   

17.
Quartz and alkali feldspar from vuggy granitic blocks containup to 1010 fluid inclusions per cubic centimeter, of three maincompositional types, I–III; the inclusions are presumablythe result of the trapping of three discrete, individually homogeneousfluids, plus fewer inclusions of other compositions, includingseveral mixed types. The original fluid trapped in inclusionsof type I was a silicate-rich magma; at room temperature itconsists of silicate glass, with a small, very low-pressuregas bubble and sometimes a crystal of fluorite(?). The originalmaterial trapped in type II was a dense saline fluid with 50–70weight per cent NaCl; at room temperature it consists of saturatedwater solution, a large halite crystal (usually with other crystallinephases), and a large gas bubble containing some CO2. The originalmaterial trapped in type III was a dense aqueous-rich fluidor steam; at room temperature it consists of a dilute watersolution and a very large, high-pressure CO2 gas bubble. Type III apparently represents vapor coexisting with type IIfluids (i.e. boiling); it occurs both as independent primaryinclusions and in intimate association with type II in planesof secondary inclusions. It is believed that type II represents immiscible globules ofdense saline fluid, suspended in silicate magma, and trapped,possibly because of preferential surface wetting during crystalgrowth. If both types I and II are primary, their random interdistributionimplies immiscibility. Regardless of primary or secondary origin,the examples of mixed type I–II inclusions, containing(at room temperature) a saturated water solution, a large halitecrystal, a gas bubble, and a variable amount of silicate glass,seem to require simultaneous coexistence of silicate and salinefluids as a heterogeneous mixture, i.e. immiscibility. Similar inclusions are found in blocks quenched from both aboveand below the alkali feldspar solvus. Despite the complex geologicalhistory of the samples, such inclusions throw light on the chemicalnature of the residual fluids produced during crystallizationof these granites, and may permit environmental P-T estimates.They should be looked for in other granites.  相似文献   

18.
We address general features of carbonatite monogenetic volcanic fields located in continental settings which are peculiar being associated with kamafugites or melilite-bearing leucitites. Instructive examples are the Toro Ankole in Uganda, West Qinling in China, and Campo de Calatrava in Spain and the Intra-mountain Ultra-alkaline Province (IUP) of Italy. Maars are the typical volcanic forms, occurring in isolation or in clusters along fault systems. Concentric-shelled juvenile lapilli and bombs, having a upper-mantle peridotite kernel, are unique to this type of volcanism. These pyroclasts are interpreted as the result of deep-seated fragmentation of magma having a high carbon dioxide-water (CO2/H2O) ratio. The presence of discrete, large peridotitic nodules implies a high-velocity propagation of magma, while the associated large CO2 emission suggests a high proportion of juvenile CO2. Magma fragmentation is inferred to occur as a consequence of explosive CO2 exsolution at the upper mantle level (diatresis) followed by immiscibility. Based on field evidence, carbonatitic maar formation could be due to violent CO2 expansion and does not require phreatomagmatic phenomena. Extrusive carbonatites and associated rocks represent very primitive melts having a distinct High Field Strength Elements (HFSE) distribution, the source of which is related to enriched mantle. Carbonated peridotite is a stable paragenesis at depths of 400–600 km; thus, primary carbonatitic silicate magma can be produced at these depths as a consequence of rising deeper melt/fluids that are trapped at the transition zone. In our opinion, carbonatitic carbon is linked to the primary process of deep-mantle differentiation and Earth's core degassing.  相似文献   

19.
Study of fluid inclusions in quartz segregations and in the rock matrix of a calcareous psammite and a carbonate schist suggests that brines containing 23–24 weight percent salt (NaCl equivalent) are immiscible with CO2 at the metamorphic conditions of approximately 600° and 6.5 Kb. The presence of a high temperature solvus between saline brine and CO2 is supported by other fluid inclusion studies as well as experimental measurements from the literature. As saline brines are common in metamorphic and hydrothermal systems, CO2-brine immiscibility should play an important role in petrogenesis. The fluid inclusions preserved in the quartz segregations probably represent the fluids generated by prograde metamorphic reactions, whereas the compositions of the fluids trapped in the rock matrix quartz suggest they have reequilibrated with the matrix minerals during incipient retrograde reactions. The isochores from the densest inclusions observed in this study pass close to the inferred peak metamorphic conditions; other isochores suggest an episode of deformation and recrystallization at 275° C and 1.4 Kb. Using the density information preserved in all the inclusions, a convex-downward uplift path on a P-T diagram is inferred for these rocks.  相似文献   

20.
This paper reviews the origin and evolution of fluid inclusions in ultramafic xenoliths,providing a framework for interpreting the chemistry of mantle fluids in the different geodynamic settings.Fluid inclusion data show that in the shallow mantle,at depths below about 100 km,the dominant fluid phase is CO_2±brines,changing to alkali-,carbonate-rich(silicate) melts at higher pressures.Major solutes in aqueous fluids are chlorides,silica and alkalis(saline brines;5-50 wt.%NaCl eq.).Fluid inclusions in peridotites record CO_2 fluxing from reacting metasomatic carbonate-rich melts at high pressures,and suggest significant upper-mantle carbon outgassing over time.Mantle-derived CO_2(±brines) may eventually reach upper-crustal levels,including the atmosphere,independently from,and additionally to magma degassing in active volcanoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号