首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Blue carbon initiatives require accurate monitoring of carbon stocks. We examined sources of variability in seagrass organic carbon (Corg) stocks, contrasting spatial with short temporal scales. Seagrass morphology and sediment Corg stocks were measured from biomass and shallow sediment cores collected in Moreton Bay, Australia. Samples were collected between 2012 and 2013, from a total of 77 sites that spanned a gradient of water turbidity. Environmental measures of water quality between 2000 and 2013 revealed strong seasonal fluctuations from summer to winter, yet seagrass biomass exhibited no temporal variation. There was no temporal variability in Corg stocks, other than below ground biomass stocks were slightly higher in June 2013. Seagrass locations were grouped into riverine, coastal, and seagrass loss locations and short temporal variability of Corg stocks was analysed within these categories to provide clearer insights into temporal patterns. Above ground Corg stocks were similar between coastal and riverine meadows. Below ground Corg stocks were highest in coastal meadows, followed by riverine meadows. Sediment Corg stocks within riverine meadows were much higher than at coastal meadows and areas of seagrass loss, with no difference in sediment Corg stocks between these last two categories. Riverine seagrass meadows, of higher turbidity, had greater total Corg stocks than meadows in offshore areas irrespective of time. We suggest that Corg stock assessment should prioritise sampling over spatial gradients, but repeated monitoring over short time scales is less likely to be warranted if environmental conditions remain stable.  相似文献   

2.
3.
Seagrass ecosystems are attracting attention as potentially important tools for carbon (C) sequestration, comparable to those terrestrial and aquatic ecosystems already incorporated into climate change mitigation frameworks. Despite the relatively low C stocks in living biomass, the soil organic carbon pools beneath seagrass meadows can be substantial. We tested the relationship between soil C storage and seagrass community biomass, productivity, and species composition by revisiting meadows experimentally altered by 30 years of consistent nutrient fertilization provided by roosting birds. While the benthos beneath experimental perches has maintained dense, Halodule wrightii-dominated communities compared to the sparse Thalassia testudinum-dominated communities at control sites, there were no significant differences in soil organic carbon stocks in the top 15 cm. Although there were differences in δ13C of the dominant seagrass species at control and treatment sites, there was no difference in soil δ13C between treatments. Averages for soil organic carbon content (2.57?±?0.08 %) and δ13C (?12.0?±?0.3?‰) were comparable to global averages for seagrass ecosystems; however, our findings question the relevance of local-scale seagrass species composition or density to soil organic carbon pools in some environmental contexts.  相似文献   

4.
Spatial and temporal patterns of distribution and abundance were examined for postsettlement sciaenids collected from seagrass meadows in the Aransas Estuary, Texas. Overall, 5443 sciaenid larvae and early juveniles were identified from biweekly epibenthic sled collections taken from August 1994 to August 1995. Eight species were present in seagrass meadows, with five accounting for over 99.9% of sciaenids collected: silver perch (Bairdiella chrysoura), spotted seatrout (Cynoscion nebulosus), spot (Leiostomus xanthurus), Atlantic croaker (Micropogonias undulatus), and red drum (Sciaenops ocellatus). Settlement to seagrass meadows was partitioned temporally with little overlap among the five species. Postsettlers from inshore spawners (B. chrysoura, C. nebulosus, S. ocellatus) inhabited seagrass meadows during the spring and summer, while individuals from offshore spawners (L. xanthurus, M. undulatus) were present in the late fall and winter. Densities ofB. chrysoura, C. nebulosus, S. ocellatus were highest for small individuals (4–8 mm SL) and these taxa remained in seagrass sites through the early juvenile stage. Conversely,L. xanthurus andM. undulatus maintained longer pelagic periods and generally entered seagrass meadows at larger sizes (10–14 mm SL). Moreover, these taxa were only temporary residents of selected seagrass meadows, apparently migrating to alternative habitats shortly after arrival. During peak settlement, mean and maximum densities among species ranged from 0.1 m?2 to 0.8 m?2 and 0.7 m?2 to 23.8 m?2, respectively. Density and mean size of possettlement sciaenids differed significantly between seagrass species (Halodule wrightii, Thalassia testudinum) and among sites within the estuary.  相似文献   

5.
Quantitative suction sampling was used to characterize and compare the species composition, abundance, biomass, and secondary production of macrofauna inhabiting intertidal mud-flat and sand-flat, eelgrass meadow, and salt-marsh-pool habitats in the Nauset Marsh complex, Cape Cod, Massachusetts (USA). Species richness and abundance were often greatest in eelgrass habitat, as was macroinvertebrate biomass and production. Most striking was the five to fifteen times greater rate of annual macrofaunal production in eelgrass habitat than elsewhere, with values ranging from approximately 23–139 g AFDW m2 yr?1. The marsh pool containing widgeon grass (Ruppia maritima) supported surprisingly low numbers of macroinvertebrates, probably due to stressfully low dissolved oxygen levels at night during the summer. Two species of macroinvertebrates, blue mussels (Mytilus edulis) and to a lesser extent bay scallops (Argopecten irradians), used eelgrass as “nursery habitat.” Calculations showed that macroinvertebrate production is proportionally much greater than the amount of primary production attributable to eelgrass in the Nauset Marsh system, and that dramatic changes at all trophic levels could be expected if large changes in seagrass abundance should occur. This work further underscores the extraordinarily large impact that seagrass can have on both the structure and function of estuarine ecosystems. *** DIRECT SUPPORT *** A01BY070 00006  相似文献   

6.
In modern marine ecosystems, sea‐grass and chlorophyte meadows play an important ecological role by serving as a carbon sink. Despite their generally limited areal distribution, the high productivity of sea‐grass meadows makes them an efficient assimilator of CO2. During the early Palaeozoic, complex life was virtually confined to the marine environment, with algae being one of the common carbon‐fixers, alongside abundant calcifying cyanobacteria, rhodophytes, chlorophytes and charophytes, as well as non‐skeletal dinoflagellates and acritarchs. Fossil and molecular data indicate that marine thallophytic algae first appeared in the Early Proterozoic and became widespread in the Palaeozoic, although their fossil record is sporadic because of their soft‐bodied nature; in the absence of angiosperm sea grass and mangroves and poorly understood phytoplankton biomass, thallophytic algae were probably major primary producers. In this article, we suggest that thallophytic algae may have played a significant role as a carbon sink in the Early Silurian, analogous to modern sea‐grass meadows or kelp forests, based on the well‐preserved Early Silurian thallophytic algal meadow from Anticosti Island, eastern Canada.  相似文献   

7.
Widespread use of septic tanks in the Florida Keys increase the nutrient concentrations of limestone groundwaters that discharge into shallow nearshore waters, resulting in coastal eutrophication. This study characterizes watershed nutrient inputs, transformations, and effects along a land-sea gradient stratified into four ecosystems that occur with increasing distance from land: manmade canal systems (receiving waters of nutrient inputs), seagrass meadows, patch reefs, and offshore bank reefs. Soluble reactive phosphorus (SRP), the primary limiting nutrient, was significantly elevated in canal systems compared to the other ecosystems, while dissolved inorganic nitrogen (DIN; NH4 + and NO3 ?) a secondary limiting nutrient, was elevated both in canal systems and seagrass meadows. SRP and NH4 + concentrations decreased to low concentrations within approximately 1 km and 3 km from land, respectively. DIN and SRP accounted for their greatest contribution (up to 30%) of total N and P pools in canals, compared to dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) that dominated (up to 68%) the total N and P pools at the offshore bank reefs. Particulate N and P fractions were also elevated (up to 48%) in canals and nearshore seagrass meadows, indicating rapid biological uptake of DIN and SRP into organic particles. Chlorophylla and turbidity were also elevated in canal systems and seagrass meadows; chlorophylla was maximal during summer when maximum watershed nutrient input occurs, whereas turbidity was maximal during winter due to seasonally maximum wind conditions and sediment resuspension. DO was negatively correlated with NH4 + and SRP; hypoxia (DO<2.5 mg l?1) frequently occurred in nutrient-enriched canal systems and seagrass meadows, especially during the warm summer months. These findings correlate with recent (<5 years) observations of increasing algal blooms, seagrass epiphytization and die-off, and loss of coral cover on patch and bank reef ecosystems, suggesting that nearshore waters of the Florida Keys have entered a stage of critical eutrophication.  相似文献   

8.
Degraded water quality due to water column availability of nitrogen and phosphorus to algal species has been identified as the primary cause of the decline of submersed aquatic vegetation in Chesapeake Bay and its subestuaries. Determining the relative impacts of various nutrient delivery pathways on estuarine water quality is critical for developing effective strategies for reducing anthropogenic nutrient inputs to estuarine waters. This study investigated temporal and spatial patterns of nutrient inputs along an 80-km transect in the Choptank River, a coastal plain tributary and subestuary of Chesapeake Bay, from 1986 through 1991. The study period encompassed a wide range in freshwater discharge conditions that resulted in major changes in estuarine water quality. Watershed nitrogen loads to the Choptank River estuary are dominated by diffuse-source inputs, and are highly correlated to freshwater discharge volume. in years of below-average freshwater discharge, reduced nitrogen availability results in improved water quality throughout most of the Choptank River. Diffuse-source inputs are highly enriched in nitrogen relative to phosphorus, but point-source inputs of phosphorus from sewage treatment plants in the upper estuary reduce this imbalance, particularly during summer periods of low freshwater discharge. Diffuse-source nitrogen inputs result primarily from the discharge of groundwater contaminated by nitrate. Contamination is attributable to agricultural practices in the drainage basin where agricultural land use predominates. Groundwater discharge provides base flow to perennial streams in the upper regions of the watershed and seeps directly into tidal waters. Diffuse-source phosphorus inputs are highly episodic, occurring primarily via overland flow during storm events. Major reductions in diffuse-source nitrogen inputs under current landuse conditions will require modification of agricultural practices in the drainage basin to reduce entry rates of nitrate into shallow groundwater. Rates of subsurface nitrate delivery to tidal waters are generally lower from poorly-drained versus well-drained regions of the watershed, suggesting greater potential reductions of diffuse-source nitrogen loads per unit effort in the well-drained region of the watershed. Reductions in diffuse-source phosphorus loads will require long-term management of phosphorus levels in upper soil horizons. *** DIRECT SUPPORT *** A01BY074 00021  相似文献   

9.
We examined the rhizosphere structure of 14 seagrass meadows (seven mixed, three Enhalus acoroides, two Zostera japonica, one Thalassia hemprichii, and one Halophila ovalis) in the Philippines and Vietnam and tested their effect on sediment redox potential by comparing the redox potential in vegetated vs unvegetated sediments. The effect of seagrass photosynthesis on sediment redox potential was tested in an E. acoroides meadow during a short-term (2-day) clipping experiment. In all the meadows, the centroidal depth (i.e., depth comprising 50%) of seagrass belowground biomass was within the top 15 cm sediment layer. Redox potentials in vegetated sediments tended to be higher than those in adjacent unvegetated ones; sediment redox potential anomaly ranged from −61 to 133 mV across the meadows. The centroidal depths of positive redox potential anomaly and seagrass root biomass were significantly correlated across the meadows investigated (type II regression analysis, slope = 0.90, lower confidence limit [CL] = 0.42 upper CL = 1.82, R 2 = 0.59, p < 0.01). Experimental removal of E. acoroides leaves resulted in a decrease in rhizosphere redox potential by 20 mV, further confirming the positive effect of seagrass roots and rhizomes on sediment redox potential and, thus, the general conditions for microbial processes in the coastal zone.  相似文献   

10.
Beginning in 1986, the U.S. Geological Survey began an effort to develop a National Water-Quality Assessment Program. The basic premise underlying this initiative is that a better understanding of the quality of water resources across the country, both surface- and groundwater, is needed to develop effective programs and policies to meet the nation's water-quality concerns. The program will focus on water-quality conditions that are prevalent or large in scale, such as occur from nonpoint sources of pollution or from a high density of point sources.The design of the program is substantially different from the traditional approach of a diffuse national monitoring network.The major activities of the assessment program will be clustered within a set of hydrologic systems (river basins and aquifer systems), referred to as study units. In aggregate, the study units will account for a large part of the nation's water use and represent a wide range of settings across the country.Unique attributes of the program include: (1) the use of consistent study approaches, field and laboratory methods, water-quality measurements, and ancillary data measurements for all study units; (2) the development of a progressive understanding of water-quality conditions and trends in each study unit through long-term studies that rotate periods of intensive data collection and analysis with periods during which the assessment activities are less intensive; and (3) the focus of considerable effort on synthesizing results from among the study units to provide information on regional and national water-quality issues.Paper presented at 28th International Geological Congress, Washington, D.C., July 10, 1989.  相似文献   

11.
Studies of fish assemblages between natural and newly recolonized (<4 yr) seagrass meadows have shown no significant differences in community composition between meadow types. However, comparison of natural and well-established (31 yr) recolonized seagrass meadows in the Indian River Lagoon, Florida, showed that, although patterns in fish assemblages are complex and not always consistent, differences were evident. Species richness was higher in natural meadows during spring and autumn while density and species richness were higher in recolonized meadows during summer. Juveniles of all but the five most abundant species were more common in one or the other meadow type. Additionally, species composition was distinctly different between recolonized and natural seagrass meadows, as indicated by UPGMA cluster analysis based on the Morisita-Horn similarity index, Spearman'sr s (r s>0.05 in all but one case), and a maximum of only 58.5% species in common. There were also significant differences in the length-frequency distribution for six of seven abundant species. Our results suggest that a well-established recolonized seagrass meadow has the potential to maintain species complements distinct from nearby natural meadows. Reasons for our differing results may include differences in seagrass morphology and collecting techniques between our study and the former studies. Additionally, species may have a longer time to establish specific habitat-use patterns in well-established compared to newly-formed recolonized meadows. Recolonized seagrass meadows appear to be as suitable a habitat as natural meadows for juvenile and small adult fishes.  相似文献   

12.
Shoal grass, Halodule wrightii, exhibited different morphologies when growing in a monospecific meadow compared to plants growing under a canopy of turtle grass, Thalassia testudinum. When growing under a turtle grass canopy, shoal grass had longer internodes, less frequent branching, and lower aboveground to belowground biomass ratios than when growing in a monospecific meadow. Aquarium studies approximated the observed phenomena in the field study. Rhizome growth of sprigs of shoal grass (mm d?1) was greater for plants grown under 35% light reduction caused by blades of turtle grass than for sprigs grown under ambient light. Sprigs grown under 35% light reduction caused by neutral density screens had rhizome growth rates lower than controls. Greater rhizome growth rates of sprigs grown under turtle grass blades were due to increased internode distances, rather than increased rates of shoot formation. The environmental factor responsible for inducing morphological changes in shoal grass appears to be the ratio between red and far-red light. This ratio declines as light passes through a canopy of blades of turtle grass.  相似文献   

13.
The fringing environments of lower Chesapeake Bay include sandy shoals, seagrass meadows, intertidal mud flats, and marshes. A characterization of a fringing ecosystem was conducted to provide initialization and calibration data for the development of a simulation model. The model simulates primary production and material exchange in the littoral zone of lower Chesapeake Bay. Carbon (C) and nitrogen (N) properties of water and sediments from sand, seagrass, intertidal silt-mud, and intertidal marsh habitats of the Goodwin Islands (located within the Chesapeake Bay National Estuarine Research Reserve in Virginia, CBNERR-VA) were determined seasonally. Spatial and temporal differences in sediment microalgal biomass among the habitats were assessed along with annual variations in the distribution and abundance ofZostera marina L. andSpartina alterniflora Loisel. Phytoplankton biomass displayed some seasonality related to riverine discharge, but sediment microalgal biomass did not vary spatially or seasonally. Macrophytes in both subtidal and intertidal habitats exhibited seasonal biomass patterns that were consistent with other Atlantic estuarine ecosystems. Marsh sediment organic carbon and inorganic nitrogen differed significantly from that of the sand, seagrass, and silt habitats. The only biogeochemical variable that exhibited seasonality was low marsh NH4 +. The subtidal sediments were consistent temporally in their carbon and nitrogen content despite seasonal changes in seagrass abundance. Eelgrass has a comparatively low C:N ratio and is a potential N sink for the ecosystem. Changes in the composition or size of the vegetated habitats could have a dramatic influence over resource partitioning within the ecosystem. A spatial database (or geographic information system, GIS) of the Goodwin Islands site has been initiated to track long-term spatial habitat features and integrate model output and field data. This ecosystem characterization was conducted as part of efforts to link field data, geographic information, and the dynamic simulation of multiple habitats. The goal of these efforts is to examine ecological structure, function, and change in fringing environments of lower Chesapeake Bay.  相似文献   

14.
Current information on feeding habits of the numerous small invertebrates concentrated among seagrass blades has been inadequate to predict basic food requirements, natural influences of these crowded animals on their shared foods, or the animals’ resulting influences on each other. Apparently detrital food webs in seagrass meadows are reported frequently, but recent data from various seagrass meadows and other environments indicate that such detritus is often refractory to digestion by microorganisms and small invertebrates. A summary of literature on natural feeding habits among common seagrass meadow invertebrates, and detailed analyses of foraging by the commonest invertebrates in NW Gulf of Mexico seagrass meadows, show various degrees of feeding selectivity for epiphytic algae. Different species of epiphytes progressing along a seagrass blade can provide a gradient of food types and abundance for detailed studies on selective feeding. For minimal disturbance to feeding behavior, remote photographic sampling coupled with microacoustic monitoring and immediate, high-resolution gut analyses enable one to compare foraging frequencies on different foods to the available areas of those foods. Such comparisons can be interpreted for evidence of selectivity when an animal forages on a food more frequently than is expected by chance movement over the available areas of food. Feeding appears to be most frequent while the various invertebrates are among epiphytic algae at night, not while they are on bottom detritus. Based on available evidence from various detrital and other food webs, an hypothesis for future research is derived in which particular ephemeral algae are generally selected over other foods, but detritus may be important insteads when particular epiphytic foods are scarce. Even when total detrital foods are common, highly selected foods may be limited among such densely populated animals as in seagrass meadows.  相似文献   

15.
The nutritional ecology of macroherbivores in seagrass meadows and the roles of grazing by urchins, fishes and green turtles in tropical systems and waterfowl in temperate systems are discussed in this review. Only a few species of animals graze on living seagrasses, and apparently only a small portion of the energy and nutrients in seagrasses is usually channeled through these herbivores. The general paucity of direct seagrass grazers may be a function of several factors in the composition of seagrasses, including availability of nitrogen compounds, presence of relatively high amounts of structural cell walls, and presence of toxic or inhibitory substances. The macroherbivores, however, can have a profound effect on the seagrass plants, on other grazers and fauna associated with the meadow, and on chemical and decompositional processes occurring within the meadow. Grazing can alter the nutrient content and digestibility of the plant, as well as its productivity. Removal of leaf material can influence interrelations among permanent and transient faunal residents. Grazing also interrupts the detritus cycle. Possible consequences of this disruption, either through acceleration or through decreased source input, and the enhancement of intersystem coupling by increased export and offsite fecal production, are discussed. The extent and magnitude of these effects and their ecological significance in the overall functioning of seagrass meadows only can be speculated, and probably are not uniform or of similar importance in both tropical and temperate seagrass systems. However, areas grazed by large herbivores provide natural experiments in which to test hypotheses on many functional relations in seagrass meadows.  相似文献   

16.
The fauna of seagrass-covered mud banks in Florida Bay, documented in the mid 1980s prior to recent seagrass die-off, phytoplankton blooms, and other ecosystem changes, was reexamined in the mid 1990s for faunal changes that might be associated with environmental perturbations. During both decades, decapod crustaceans and fishes were collected with 1-m2 throw traps from seagrass beds at six sites that differ in the amount of freshwater and/or marine influence and in seagrass community metrics. The most common faunal changes were declines in seagrass-canopydwelling forms and increases in benthic forms. At three sites with relatively lush seagrass meadows, above-ground seagrass standing crop declined and abundance of the benthic predatory fishOpsanus beta increased. The degree of faunal change among these sites appeared to be related either to salinity variability or to the degree of exposure to the ecosystem changes that have taken place in Florida Bay. At two sites with poorly developed seagrass meadows, seagrass standing crop and canopy height did not change significantly between decades, but there was an increase in shoot density and total leaf area. The animal communities at these sites were characterized by significant increases in the abundance of benthic crustaceans. At the site on the edge of Rankin Lake, the basin where seagrass die-off was first observed in Florida Bay during 1987, seagrass standing crop, canopy height, shoot density, and leaf area declined significantly between decades, but species richness of both crustaceans and fishes increased. The abundance of canopy-dwelling crustaceans and fishes declined markedly at this site, whereas the abundance of benthic forms less dependent on seagrass cover generally increased. In retrospect, we believe the fauma at this site during the 1980s, characterized by high productivity but few species, was already showing signs of the stresses that led to the seagrass die-off that began in 1987.  相似文献   

17.
Anthropogenic inputs of nutrients to coastal waters have rapidly restructured coastal ecosystems. To examine the response of macrophyte communities to land-derived nitrogen loading, we measured macrophyte biomass monthly for 6 years in three estuaries subject to different nitrogen loads owing to different land uses on the watersheds. The set of estuaries sampled had nitrogen loads over the broad range of 12 to 601 kg N ha−1 year−1. Macrophyte biomass increased as nitrogen loads increased, but the response of individual taxa varied. Specifically, biomass of Cladophora vagabunda and Gracilaria tikvahiae increased significantly as nitrogen loads increased. The biomass of other macroalgal taxa tended to decrease with increasing load, and the relative proportion of these taxa to total macrophyte biomass also decreased. The seagrass, Zostera marina, disappeared from the higher loaded estuaries but remained abundant in the estuary with the lowest load. Seasonal changes in macroalgal standing stock were also affected by nitrogen load, with larger fluctuations in biomass across the year and higher minimum biomass of macroalgae in the higher loaded estuaries. There were no significant changes in macrophyte biomass over the 6 years of this study, but there was a slight trend of increasing macroalgal biomass in the latter years. Macroalgal biomass was not related to irradiance or temperature, but Z. marina biomass was highest during the summer months when light and temperatures peak. Irradiance might, however, be a secondary limiting factor controlling macroalgal biomass in the higher loaded estuaries by restricting the depth of the macroalgal canopy. The relationship between the bloom-forming macroalgal species, C. vagabunda and G. tikvahiae, and nitrogen loads suggested a strong connection between development on watersheds and macroalgal blooms and loss of seagrasses. The influence of watershed land uses largely overwhelmed seasonal and inter-annual differences in standing stock of macrophytes in these temperate estuaries.  相似文献   

18.
We evaluated a hierarchical framework for seagrass monitoring in two estuaries in the northeastern USA: Little Pleasant Bay, Massachusetts, and Great South Bay/Moriches Bay, New York. This approach includes three tiers of monitoring that are integrated across spatial scales and sampling intensities. We identified monitoring attributes for determining attainment of conservation objectives to protect seagrass ecosystems from estuarine nutrient enrichment. Existing mapping programs provided large-scale information on seagrass distribution and bed sizes (tier 1 monitoring). We supplemented this with bay-wide, quadrat-based assessments of seagrass percent cover and canopy height at permanent sampling stations following a spatially distributed random design (tier 2 monitoring). Resampling simulations showed that four observations per station were sufficient to minimize bias in estimating mean percent cover on a bay-wide scale, and sample sizes of 55 stations in a 624-ha system and 198 stations in a 9,220-ha system were sufficient to detect absolute temporal increases in seagrass abundance from 25% to 49% cover and from 4% to 12% cover, respectively. We made high-resolution measurements of seagrass condition (percent cover, canopy height, total and reproductive shoot density, biomass, and seagrass depth limit) at a representative index site in each system (tier 3 monitoring). Tier 3 data helped explain system-wide changes. Our results suggest tiered monitoring as an efficient and feasible way to detect and predict changes in seagrass systems relative to multi-scale conservation objectives.  相似文献   

19.
Recolonization dynamics from disturbance on a Philippine mixed seagrass meadow, containing species spanning more than 10-fold in rhizome elongation rates and reproductive effort, was examined by following the recovery of a 1,200 m2 gap over 2.5 yr. The objective was to assess the contribution of contrasting species to the recovery process and to evaluate the importance of sexual versus vegetative colonization. Large, slow-growing species,Thalassia hemprichii andEnhalus acoroides, that produce large, broadly-dispersed seeds dominated sexual colonization with a total of 2,643 and 210 seedlings, respectively, recruiting to the area. Despite very rapid turnover of sexual recruits, the high frequency of seedling establishment ensured successful development of new patches in areas devoid of vegetation, leading to a scattered and evenly distributed presence of vegetation inside the gap. The small seagrass speciesCymodocea rotundata andHalodule uninervis, characterized by fast rhizome elongation rates but low reproductive output and limited seed dispersal, were the major contributors to the overall 450 m2 increase in vegetation cover through fast lateral extension (144±6 cm yr−1) from meadow edge and surviving patches, forming a compact vegetation cover in one edge of the denuded area. We conclude that contrasting recruitment strategies in the mixed-species seagrass community examined have implications for colonization potential at different spatial scales. Fast clonal growth is only an efficient mechanism for colonization of disturbances within established meadows (small gaps), whereas the large species, which combined high reproductive output with high seed dispersal capacity, may act to accelerate the colonization process in large gaps or distant from established meadows.  相似文献   

20.
Studies of seagrass meadows have shown that the production of algal epiphytes attached to seagrass blades approaches 20% of the seagrass production and that epiphytes are more important as food for associated fauna than are the more refractory seagrass blades. Since epiphytes may compete with seagrasses for light and water column nutrients, excessive epiphytic fouling could have serious consequences for seagrass growth. We summarize much of the literature on epiphytegrazer relationships in seagrass meadows within the context of seagrass growth and production. We also provide insights from mathematical modeling simulations of these relationships for a Chesapeake BayZostera marina meadow. Finally we focus on future research needs for more completely understanding the influences that epiphyte grazers have on seagrass production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号