首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The Bogong High Plains of eastern Victoria occur as plateau remnants in a highly dissected region of the Australian Alps. Results from apatite fission track analyses indicate that the Bogong region experienced multiple episodes of rapid low‐temperature cooling, most of which can be tentatively linked to a tectonic cause. Early episodes of cooling occurred during the Middle to Late Devonian (ca 400–370 Ma) and Late Carboniferous to Early Permian (ca 310–290 Ma), presumably during different stages of deformation associated with the development of the Lachlan Fold Belt and glacial erosion. Rapid cooling occurred during the Late Permian to Early Triassic (ca 260–240 Ma), presumably in response to the Hunter‐Bowen orogenic event along the eastern Australian continental margin. Since the Triassic, two major episodes of fault reactivation have further displaced fission track ages between sample groups on different structural blocks. The first episode occurred during the middle Cretaceous at ca 110–90 Ma, probably in response to initial extension and denudation along the eastern Australian passive margin prior to breakup. Subsequently during the Early to mid‐Tertiary at ca 65–45 Ma, large‐scale fault reactivation occurred along the Kiewa Fault, possibly in response to changes in intraplate stresses which occurred during the middle Tertiary.  相似文献   

2.
Carboniferous‐Permian volcanic complexes and isolated patches of Upper Jurassic — Lower Cretaceous sedimentary units provide a means to qualitatively assess the exhumation history of the Georgetown Inlier since ca 350 Ma. However, it is difficult to quantify its exhumation and tectonic history for earlier times. Thermochronological methods provide a means for assessing this problem. Biotite and alkali feldspar 40Ar/39Ar and apatite fission track data from the inlier record a protracted and non‐linear cooling history since ca 750 Ma. 40Ar/39Ar ages vary from 380 to 735 Ma, apatite fission track ages vary between 132 and 258 Ma and mean track lengths vary between 10.89 and 13.11 μm. These results record up to four periods of localised accelerated cooling within the temperature range of ~320–60°C and up to ~14 km of crustal exhumation in parts of the inlier since the Neoproterozoic, depending on how the geotherm varied with time. Accelerated cooling and exhumation rates (0.19–0.05 km/106 years) are observed to have occurred during the Devonian, late Carboniferous‐Permian and mid‐Cretaceous — Holocene periods. A more poorly defined Neoproterozoic cooling event was possibly a response to the separation of Laurentia and Gondwana. The inlier may also have been reactivated in response to Delamerian‐age orogenesis. The Late Palaeozoic events were associated with tectonic accretion of terranes east of the Proterozoic basement. Post mid‐Cretaceous exhumation may be a far‐field response to extensional tectonism at the southern and eastern margins of the Australian plate. The spatial variation in data from the present‐day erosion surface suggests small‐scale fault‐bounded blocks experienced variable cooling histories. This is attributed to vertical displacement of up to ~2 km on faults, including sections of the Delaney Fault, during Late Palaeozoic and mid‐Cretaceous times.  相似文献   

3.
Apatite fission track analysis and vitrinite reflectance data from outcrop and well samples in the Hodgkinson Province and Laura Basin reveal regional Cretaceous cooling. Apatite fission track analysis appears to define two discrete cooling episodes, in the mid‐Cretaceous (110–100 Ma) and Late Cretaceous (80–70 Ma), although in most samples data allow only definition of a single episode. Rocks now at outcrop cooled from Cretaceous palaeotemperatures generally between 50 and 130°C in the south of the region, and from >100°C in the north. Some samples from the Hodgkinson Province also show evidence for an Early Jurassic cooling episode, characterised by maximum palaeotemperatures varying from at least 95°C (from apatite fission track analysis) to ~200–220°C (from vitrinite reflectance), with cooling beginning at around 200 Ma. Apatite fission track analysis data do not reveal the earlier event in the Laura Basin, but on the basis of vitrinite reflectance data from Permian? units this event is also inferred to have affected the pre‐Jurassic basin units in this region. The regional extent of the Cretaceous cooling episode in the Hodgkinson Province suggests that the elevated palaeotemperatures in this region were most likely due to greater depth of burial, with subsequent cooling due to kilometre‐scale denudation. For a palaeogeothermal gradient of 30°C/km and a palaeosurface temperature of 25°C the total degree of Cretaceous cooling experienced by the samples corresponds to removal of between ~0.8 and >3.0 km of Triassic and younger section removed by denudation, beginning some time between ca 110 and 80 Ma. Higher palaeogradients would require correspondingly lower amounts of removed section. The geology of the Laura Basin suggests that an explanation of the observed Cretaceous palaeotemperatures in this region in terms of deeper burial may be untenable. Heating due to hot fluid flow may be a more realistic mechanism for producing the observed Cretaceous palaeothermal effects in the Laura Basin.  相似文献   

4.
Zinc mineralization in Devonian carbonates of the Lennard Shelf, northern Canning Basin is similar in many respects to that of the Mississippi Valley‐type including estimated minimum temperatures of sulphide precipitation between 70 and 110°C. Apparent apatite fission track ages for Precambrian granitic basement and for detrital apatites in Devonian carbonates in and near Pb‐Zn mineralization generally range between 260 and 340 Ma, with Precambrian samples tending to have slightly older apatite fission track ages than the Devonian carbonates. These apparent ages are younger than the stratigraphic age of the material analysed, indicating that appreciable annealing of fission tracks in apatite has occurred in post‐Devonian times. Mean horizontal confined track lengths are 12–13 μm for most samples and preclude attaching any ‘event’ significance to the fission track ages. Studies of well sequences (Grevillea 1 and Kennedia 1) indicate a period of rapid uplift in the area during the Late Triassic/Early Jurassic. Assuming a constant geothermal gradient of 30°C/km, approximately 1.5 km of uplift and erosion is estimated. Immediate thermal effects related to Miocene lamproite intrusion into Precambrian basement appear to be restricted to within 200 m of the contact zone.

For outcropping Devonian carbonates, a thermal history is proposed involving burial in the Late Palaeozoic/Early Mesozoic, followed by uplift and cooling from peak temperatures around 70–80°C in mid‐Mesozoic times. With reference to this period of burial, Pb‐Zn occurrences represent thermal anomalies when reported fluid inclusion homogenization temperatures are compared with the estimated peak temperatures. However the possibility of a phase of higher temperatures during the Late Devonian/ Early Carboniferous is suggested by the apatite fission track results, in which case sulphide mineralization may reflect ambient regional temperatures if it formed at that time. The absence of enhanced annealing effects in detrital apatites proximal to Pb‐Zn deposits suggests that either sulphide mineralization preceded or accompanied peak regional temperatures suspected during the Late Devonian/Early Carboniferous, or that the mineralizing episodes were of too short a duration to significantly anneal fission tracks in apatite.  相似文献   

5.
Apatite fission track results are reported for 26 outcrop samples from the Mt Painter Inlier, Mt Babbage Inlier and adjacent Neoproterozoic rocks of the northwestern Curnamona Craton of South Australia. Forward modelling of the data indicates that the province experienced variable regional cooling from temperatures >110°C during the Late Palaeozoic (Late Carboniferous to Early Permian). The timing of this cooling is similar to that previously reported from elsewhere in the Adelaide Fold Belt and the Curnamona Craton, suggesting that the entire region underwent extensive Late Palaeozoic cooling most likely related to the waning stages of the Alice Springs or Kanimblan Orogenies. Results from the Paralana Fault Zone indicate that the eastern margin of the Mt Painter Inlier experienced a second episode of cooling (~40–60°C) during the Paleocene to Eocene. The entire region also experienced significant cooling (less than ~40°C) during the Late Cretaceous to Palaeogene in response to unroofing and/or a decrease in geothermal gradient. Regional cooling/erosion during this time is supported by: geomorphological and geophysical evidence indicating Tertiary exhumation of at least 1 km; Eocene sedimentation initiated in basins adjacent to the Flinders and Mt Lofty Ranges sections of the Adelaide Fold Belt; and Late Cretaceous ‐ Early Tertiary cooling previously reported from apatite fission track studies in the Willyama Inliers and the southern Adelaide Fold Belt. Late Cretaceous to Palaeogene cooling is probably related to a change in stress field propagated throughout the Australian Plate, and driven by the initiation of sea‐floor spreading in the Tasman Sea in the Late Cretaceous and the Eocene global plate reorganisation.  相似文献   

6.
The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track(AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault(LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50°C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with ~1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of Qinling Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at ~100 Ma.  相似文献   

7.
赵珍  陆露  吴珍汉 《地学前缘》2019,26(2):249-263
本文综合磷灰石裂变径迹年龄(113~43 Ma)、锆石裂变径迹年龄(169~103 Ma)、锆石U-Pb年龄(215~206 Ma)、黑云母K-Ar年龄(186~178 Ma),通过磷灰石热史模拟,TASC图谱分析和矿物封闭温度年龄等手段,获得了中央隆起晚三叠世至今较为完整的冷却抬升历史。中央隆起主要经历了早侏罗世、晚侏罗世-早白垩世、晚白垩世-中新世早期和中新世晚期至今四期冷却事件,与南北羌塘板块后碰撞伸展、拉萨羌塘板块碰撞、新特提斯洋板片俯冲、印度欧亚板块碰撞以及中新世南北向走滑伸展存在动力学联系,造成11.4 km、2.85 km、4.3~5 km和0.85 km的抬升量。中央隆起在侏罗纪相对两侧盆地抬升,随着两侧盆地经历了侏罗纪的沉积增厚,与两侧盆地高差减小,在早白垩世早期可能位于海平面附近,随后快速抬升至2~2.5 km,统一接受晚白垩世红层沉积,并经历长期持续的逆冲推覆构造活动,进一步抬升至5 km,随后受到中新世古大湖夷平和南北向伸展作用影响,中央隆起相对盆地发生差异抬升。  相似文献   

8.
The Phanerozoic cooling history of the Western Australian Shield has been investigated using apatite fission track (AFT) thermochronology. AFT ages from the northern part of the Archaean Yilgarn Craton, Western Australia, primarily range between 200 and 280 Ma, with mean confined horizontal track lengths varying between 11.5 and 14.3 μm. Time–temperature modelling of the AFT data together with geological information suggest the onset of a regional cooling episode in the Late Carboniferous/Early Permian, which continued into Late Jurassic/Early Cretaceous time. Present-day heat flow measurements on the Western Australian Shield fall in the range of 40–50 mW m−2. If the present day geothermal gradient of  18 ± 2 °C km−1 is representative of average Phanerozoic gradients, then this implies a minimum of  50 °C of Late Palaeozoic to Mesozoic cooling. Assuming that cooling resulted from denudation, the data suggest the removal of at least 3 km of rock section from the northern Yilgarn Craton over this interval. The Perth Basin, located west of the Yilgarn Craton, contains up to 15 km of mostly Permian to Lower Cretaceous clastic sediment. However, published U–Pb data of detrital zircons from Permian and Lower Triassic basin strata show relatively few or no grains of Archaean age. This suggests that the recorded cooling can probably be attributed to the removal of a sedimentary cover rather than by denudation of material from the underlying craton itself. The onset of cooling is linked to tectonism related to either the waning stages of the Alice Springs Orogeny or to the early stages of Gondwana breakup.  相似文献   

9.
We report the first apatite fission-track thermochronologic data for 17 samples from the southern Catalan Coastal Ranges of NE Spain. Thermal histories of Carboniferous metasediments, Late Hercynian intrusions and Lower-Triassic Buntsandstein sediments from three tectonic blocks, Miramar, Prades and Priorat, are derived and interpreted within the geodynamic framework and tectonic evolution of the region. The apatite fission-track ages range from 198±24 to 38±5 Ma and mean fission-track lengths are all <13.3 μm. Samples throughout the study area underwent total track annealing during the Late Hercynian magmatic episode, followed by fast cooling prior to the deposition of Lower Triassic sediments. The Lower Triassic sediments and basement rocks underwent a temperature increase during a first Mesozoic rift phase in Middle Triassic–Early Jurassic times resulting in the complete or near complete annealing of the fission-tracks. During a second Mesozoic rifting stage, in Late Jurassic to Early Cretaceous time, differential tectonic block activity is observed in the three studied tectonic blocks. Subsequently, during Late Cretaceous a long-period of thermal stability, detected in all samples, is related to the post-rift episode. The onset of fast cooling registered in the apatite fission track system during Paleogene times is related to the Pyrenean orogeny. Compressional forces associated with the ongoing southern migration of the convergence forces at the Iberian plate boundaries caused unroofing of about 2–3 km of material of the Prades and northwestern flank of the Priorat block. Extensional collapse in Late Oligocene–Miocene related to the Western Mediterranean rifting triggered the denudation of about 2 km of material from the southeastern flank of the Miramar, Prades and Priorat blocks.  相似文献   

10.
The low-relief summit plateaus (high plains) of the Southeastern Highlands are remnants of a widespread peneplain that was initially uplifted in the mid-Cretaceous and reached its current elevation in the Miocene–Pliocene. There are two mutually exclusive scenarios for the origin of the high plains: an uplifted peneplain originally formed by long-term denudation through the Mesozoic and late Paleozoic, contrasting with creation by ~1.5 km of erosion following the mid-Cretaceous uplift (based on fission track data). The hypothesis of a Mesozoic peneplain is consistent with the low relief of the high plains, the ca 200 Ma available to form the peneplain, and the pre-late Mesozoic oxygen-isotope composition of secondary kaolinites in weathering profiles on the high plains. If the ca 30 Ma cooling event recorded by the fission track data is due to ~1.5 km of denudation, then the high plains peneplain formed in the Late Cretaceous–early Paleogene, close to sea-level, and was uplifted in the early Paleogene, because evidence from basalts and fossil floras shows that the high plains surface was moderately elevated in the Eocene. This scenario is difficult to reconcile with the long-term erosion necessary to form such an extensive peneplain, the lack of sedimentary evidence for early Paleogene uplift, and the relatively small reduction in elevation (~250 m) that would have resulted from ~1.5 km of erosion (because the crust in this area is in isostatic equilibrium). Furthermore, extensive Cretaceous–early Paleogene denudation should have removed the pre-late Mesozoic secondary kaolinites present in weathering profiles in the highlands. There is no evidence that the Mesozoic peneplain was buried by kilometres of sediment and then exhumed in the Cretaceous–early Paleogene. I therefore conclude that the high plains of the Southeastern Highlands are the remnants of a Mesozoic peneplain uplifted in the mid-Cretaceous and again in the Miocene–Pliocene.  相似文献   

11.
The origin of the Anti‐Atlas relief is one of the currently debated issues of Moroccan geology. To constrain the post‐Variscan evolution of the Central Anti‐Atlas, we collected nine samples from the Precambrian basement of the Bou Azzer‐El Graara inlier for zircon and apatite fission‐track thermochronology. Zircon ages cluster between 340 ± 20 and 306 ± 20 Ma, whereas apatite ages range from 171 ± 7 Ma to 133 ± 5 Ma. Zircon ages reflect the thermal effect of the Variscan orogeny (tectonic thickening of the ca. 7 km‐thick Paleozoic series), likely enhanced by fluid advection. Apatite ages record a complex Mesozoic–Cenozoic exhumation history. Track length modelling yields evidence that, (i) the Precambrian basement was still buried at ca. 5 km depth by Permian times, (ii) the Central Anti‐Atlas was subjected to (erosional) exhumation during the Triassic‐Early Cretaceous, then buried beneath ca. 1.5 km‐thick Cretaceous‐Paleogene deposits, (iii) final exhumation took place during the Neogene, contemporaneously with that of the High Atlas.  相似文献   

12.
Multi-method thermochronology applied to the Peake and Denison Inliers (northern South Australia) reveals multiple low-temperature thermal events. Apatite fission track (AFT) data suggest two main time periods of basement cooling and/or reheating into AFT closure temperatures (~60–120°C); at ca 470–440 Ma and ca 340–300 Ma. We interpret the Ordovician pulse of rapid basement cooling as a result of post-orogenic cooling after the Delamerian Orogeny, followed by deformation related to the start of the Alice Springs Orogeny and orocline formation relating to the Benambran Orogeny. This is supported by a titanite U/Pb age of 479 ± 7 Ma. Our thermal history models indicate that subsequent denudation and sedimentary burial during the Devonian brought the basement rocks back to zircon U–Th–Sm/He (ZHe) closure temperatures (~200–150°C). This period was followed by a renewal of rapid cooling during the Carboniferous, likely as the result of the final pulses of the Alice Springs Orogeny, which exhumed the inlier to ambient surface temperatures. This thermal event is supported by the presence of the Mount Margaret erosion surface, which indicates that the inlier was exposed at the surface during the early Permian. During the Late Triassic–Early Jurassic, the inlier was subjected to minor reheating to AFT closure temperatures; however, the exact timing cannot be deduced from our dataset. Cretaceous apatite U–Th–Sm/He (AHe) ages coupled with the presence of contemporaneous coarse-grained terrigenous rocks suggest a temporally thermal perturbation related with shallow burial during this time, before late Cretaceous exhumation cooled the inliers back to ambient surface temperatures.  相似文献   

13.
The Qaidam Basin is the one of the three major petroliferous basins in northeastern Tibetan Plateau, which has experienced multiphase superimposition and transformation. The study of thermal history not only plays an important role on revealing the tectonic origin of the Qaidam Basin and the forming mechanism and uplift history of the Tibetan Plateau,but also can provide scientific evidence for the assessment of oil and gas resources. This work used balanced cross-section technique and apatite fission track ages with modeling of fission track length distribution to infer that the eastern Qaidam Basin has experienced significant tectonic movement in the Early Jurassic movement(~200 Ma), which caused the carboniferous uplift and denudation, the geological movement in the Late Cretaceous, characterized by early stretching and late northeast-southwest extrusion; the Himalayan movement in multi-stage development in eastern Qaidam Basin, which can be divided into the early Himalayan movement(41.1–33.6 Ma) and the late Himalayan movement(9.6–7.1 Ma, 2.9–1.8 Ma), and large-scale orogeny caused pre-existing faults reactivated in late Himalayan movement. On the basis of burial history reconstruction, the thermal history of eastern Qaidam Basin was restored. The result shows that the thermal history in eastern Qaidam Basin shows slow cooling characteristics; the paleo-geothermal gradient of eastern Qaidam Basin was 38–41.5℃/km, with an average value of 39.0℃/km in the Late Paleozoic, 29–35.2℃/km, with an average value of 33.0℃/km in the Early Paleogene; the geothermal gradient of the Qaidam Basin increased in the Late Paleogene, which was similar to the present geothermal gradient in the Late Neogene. The characteristics of the tectono-thermal evolution since Paleozoic in the eastern Qaidam Basin are mainly controlled by magmatic thermal events in the study area.  相似文献   

14.
Apatite fission track thermochronology reveals that uplift and erosion occurred during the mid‐Cretaceous within the Bathurst Batholith region of the eastern highlands, New South Wales. Apatite fission track ages from samples from the eastern flank of the highlands range between ca 73 and 139 Ma. The mean lengths of confined fission tracks for these samples are > 13 μm with standard deviations of the track length distributions between 1 and 2 μm. These data suggest that rocks exposed along the eastern flank of the highlands were nearly reset as the result of being subjected to palaeotemperatures in the range of approximately 100–110°C, prior to being cooled relatively quickly through to temperatures < 50°C in the mid‐Cretaceous at ca 90 Ma. In contrast, samples from the western flank of the highlands yield apparent apatite ages as old as 235 Ma and mean track lengths < 12.5 μm, with standard deviations between 1.8 and 3 μm. These old apatite ages and relatively short track lengths suggest that the rocks were exposed to maximum palaeotemperatures between approximately 80° and 100°C prior to the regional cooling episode. This cooling is interpreted to be the result of kilometre‐scale uplift and erosion of the eastern highlands in the mid‐Cretaceous, and the similarity in timing of uplift and erosion within the highlands and initial extension along the eastern Australian passive margin prior to breakup (ca 95 Ma) strongly suggests these two occurrences are related.  相似文献   

15.
《地学前缘(英文版)》2019,10(6):2153-2166
The Junggar Alatau forms the northern extent of the Tian Shan within the Central Asian Orogenic Belt(CAOB) at the border of SE Kazakhstan and NW China.This study presents the Palaeozoic-Mesozoic post-collisional thermo-tectonic history of this frontier locality using an integrated approach based on three apatite geo-/thermochronometers:apatite U-Pb,fission track and(U-Th)/He.The apatite U-Pb dates record Carboniferous-Permian post-magmatic cooling ages for the sampled granitoids,reflecting the progressive closure of the Palaeo-Asian Ocean.The apatite fission track(AFT) data record(partial)preservation of the late Palaeozoic cooling ages,supplemented by limited evidence for Late Triassic(~230-210 Ma) cooling and a more prominent record of(late) Early Cretaceous(~150-110 Ma) cooling.The apatite(U-Th)/He age results are consistent with the(late) Early Cretaceous AFT data,revealing a period of fast cooling at that time in resulting thermal history models.This Cretaceous rapid cooling signal is only observed for samples taken along the major NW-SE orientated shear zone that dissects the study area(the Central Kazakhstan Fault Zone),while Permian and Triassic cooling signals are preserved in low-relief areas,distal to this structure.This distinct geographical trend with respect to the shear zone,suggests that fault reactivation triggered the Cretaceous rapid cooling,which can be linked to a phase of slab-rollback and associated extension in the distant Tethys Ocean.Similar conclusions were drawn for thermochronology studies along other major NW-SE orientated shear zones in the Central Asian Orogenic Belt,suggesting a regional phase of Cretaceous exhumation in response to fault reactivation at that time.  相似文献   

16.
The long‐term survival of regolith and landscape features of Mesozoic origins in southeastern Australia is supported by the sedimentary record, pre‐volcanic remnants, oxygen‐isotope signatures of secondary minerals, and the associated geomorphological context. The recognition of these ancient landscape remnants reflects the establishment of a major paradigm in Australian landscape studies after early interpretations emphasised a predominantly Late Cenozoic landscape history. The Mesozoic regolith and landscape remnants constrain interpretations of the evolution of the highlands in this region, indicating that Late Mesozoic and Cenozoic denudation did not extend beyond the complete removal of Mesozoic landscape features. Apatite fission track thermochronology interpretations invoke kilometre‐scale denudation levels across the southeastern highlands during the mid‐Cretaceous, which at first may appear contradictory to the geomorphological evidence of restricted denudation. Rather than necessarily being mutually exclusive interpretations, possible scenarios allowing for the preservation of Mesozoic palaeosurfaces along with kilometre‐scale denudation in the mid‐Cretaceous include: (i) exhumation of palaeosurfaces from beneath a thick sedimentary cover; (ii) truncation of formerly more extensive weathering profiles; and (iii) local‐scale variations in denudation. Local‐scale variations in denudation may not have been detected in previous studies due to dangers associated with overextending regional extrapolations and interpretations, as well as a tendency for the field basis of the different denudation models to emphasise different parts of the landscape. Field studies from areas where there has been localised deep incision into Mesozoic landscape remnants highlight the problem. Geomorphological studies have tended to emphasise areas of relative stability, featuring the preservation of regolith materials and the associated long‐term landscape record. In contrast, apatite fission track thermochronology interpretations may tend to emphasise a regional thermal history related to maximum denudation. Local variations in denudation leading to the preservation of Mesozoic palaeosurfaces have mainly been facilitated by localised lithological and structural controls on stream base‐levels and knickpoints, tectonic setting, and sedimentary and volcanic burial. When palaeolandscape interpretations are considered at the local scale, arguments proposing long‐term stability based on palaeolandscape remnants and apatite fission track thermochronology interpretations of large‐scale denudation may therefore not necessarily be contradictory.  相似文献   

17.
山西沁水盆地热史演化特征   总被引:4,自引:0,他引:4  
沁水盆地是华北克拉通内的构造盆地,是天然气勘探的潜在重要区域,盆地的热史研究是天然气储层评价的重要基础。重点应用磷灰石裂变径迹的分析与模拟,配合镜质体反射率的分析与模拟以及区域构造地质背景分析,恢复了沁水盆地的古地温梯度和地热演化模型:早古生代地温梯度稳定,为3℃/100 m,晚二叠世至三叠纪地温梯度较前期略有降低,约为2.5~3.0℃/100 m;早、中侏罗世地温梯度开始上升,约为3.0~4.0℃/100 m;晚侏罗世—早白垩世地温梯度大幅度上升,为4.5~6.5℃/100 m;晚白垩世至古近纪早、中期为高地温场的延续时期,地温梯度为5.5~6.5℃/100 m;古近纪晚期—新近纪早期地温梯度大幅度降低,从6.0℃/100 m骤降至4.2℃/100 m左右;中新世以来地温场逐渐趋于稳定,地温梯度由4℃/100 m演变到接近现代地温场的3℃/100 m左右。  相似文献   

18.
The Lüliang Mountains, located in the North China Craton, is a relatively stable block, but it has experienced uplift and denudation since the late Mesozoic. We hence aim to explore its time and rate of the exhumation by the fission-track method. The results show that, no matter what type rocks are, the pooled ages of zircon and apatite fission-track range from 60.0 to 93.7 Ma and 28.6 to 43.3 Ma, respectively; all of the apatite fission-track length distributions are unimodal and yield a mean length of ~13?μm; and the thermal history modeling results based on apatite fission-track data indicate that the time-temperature paths exhibit similar patterns and the cooling has been accelerated for each sample since the Pliocene (c.5 Ma). Therefore, we can conclude that a successive cooling, probably involving two slow (during c.75-35 Ma and 35-5 Ma) and one rapid (during c.5 Ma-0 Ma) cooling, has occurred through the exhumation of the Lüliang Mountains since the late Cretaceous. The maximum exhumation is more than 5 km under a steady-state geothermal gradient of 35°C/km. Combined with the tectonic setting, this exhumation may be the resultant effect from the surrounding plate interactions, and it has been accelerated since c.5 Ma predominantly due to the India-Eurasia collision.  相似文献   

19.
The apatite fission track dating of samples from the Dabashan(i.e., the Langshan in the northeastern Alxa Block) by the laser ablation method and their thermal history modeling of AFT ages are conducted in this study. The obtained results and lines of geological evidence in the study region indicate that the Langshan has experienced complicated tectonic-thermal events during the the Late Cretaceous-Cenozoic. Firstly, it experienced a tectonic-thermal event in the Late Cretaceous(~90–70 Ma). The event had little relation with the oblique subduction of the Izanagi Plate along the eastern Eurasian Plate, but was related to the Neo-Tethys subduction and compression between the Lhasa Block and Qiangtang Block. Secondly, it underwent the dextral slip faulting in the Eocene(~50–45 Ma). The strike slip fault may develop in the same tectonic setting as sinistral slip faults in southern Mongolia and thrusts in West Qinling to the southwest Ordos Block in the same period, which is the remote far-field response to the India-Eurasia collision. Thirdly, the tectonic thermal event existed in the late Cenozoic(since ~10 Ma), thermal modeling shows that several samples began their denudation from upper region of partial annealing zone(PAZ), and the denudation may have a great relationship with the growth of Qinghai-Tibetan Plateau to the northeast. In addition, the AFT ages of Langshan indicate that the main body of the Langshan may be an upper part of fossil PAZ of the Late Cretaceous(~70 Ma). The fossil PAZ were destroyed and deformed by tectonic events repeatedly in the Cenozoic along with the denudation.  相似文献   

20.
裂变径迹测年技术用于确定伸展山脉的隆升时间, 进而可以研究伸展构造的演化规律。 对采自鲁西隆起中部莲花山的 9 个样品进行了磷灰石/锆石裂变径迹分析, 结合已有数据分析鲁西隆起的抬升史。 结果表明莲花山晚白垩世以来经历了两期抬升剥露过程, 一次是在晚白垩世—古新世初期 86~60 Ma, 抬升速率为 0.019 mm/yr, 另一次是在中始新世 44~38 Ma, 抬升速率为 0.10 mm/yr。 因此, 莲花山晚白垩世以来经历了加速抬升剥露过程。 综合研究认为, 鲁西隆起山脉晚白垩世以来具有自南而北、由东向西的差异抬升规律, 且最早可能始于早白垩世。 这种迁移规律受控于早白垩世以来太平洋板块俯冲方向和速度, 以及郯庐断裂带的走滑性质和强度的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号