首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
计算机能力的提升和历史拟合方面的最新进展促进了对先前建立的储层模型的重新检验。为了节省工程师和CPU的时间,我们开发了4种独特的算法,来允许无需重新进行储层研究而重建现有模型。这些算法涉及的技术包括:优化、松弛、Wiener滤波或序贯重构。基本上,它们被用来确定一个随机函数和一系列随机数。给定一个随机函数,一族随机数将产生一个实现,这个实现和现有的储层模型十分接近。一旦随机数已知,现有的储层模型将被提交到一个历史拟合过程中,以此来改进数据拟合度或者考虑新收集到的数据。我们关注的是先前建立的相储层模型。虽然我们对模型模拟的方式一无所知,但是我们可以确定一系列随机数,再用多点统计模拟方法来建造一个和现有储层模型十分接近的实现。然后运行一种新的历史拟合程序来更新现有的储层模型,使其拟合两口新生产井的流量数据。  相似文献   

2.
3.
Geostatistically based history-matching methods make it possible to devise history-matching strategies that will honor geologic knowledge about the reservoir. However, the performance of these methods is known to be impeded by slow convergence rates resulting from the stochastic nature of the algorithm. It is the purpose of this paper to introduce a method that integrates qualitative gradient information into the probability perturbation method to improve convergence. The potential of the proposed method is demonstrated on a synthetic history-matching example. The results indicate that inclusion of qualitative gradient information improves the performance of the probability perturbation method.  相似文献   

4.
Reservoir simulation models are used both in the development of new fields and in developed fields where production forecasts are needed for investment decisions. When simulating a reservoir, one must account for the physical and chemical processes taking place in the subsurface. Rock and fluid properties are crucial when describing the flow in porous media. In this paper, the authors are concerned with estimating the permeability field of a reservoir. The problem of estimating model parameters such as permeability is often referred to as a history-matching problem in reservoir engineering. Currently, one of the most widely used methodologies which address the history-matching problem is the ensemble Kalman filter (EnKF). EnKF is a Monte Carlo implementation of the Bayesian update problem. Nevertheless, the EnKF methodology has certain limitations that encourage the search for an alternative method.For this reason, a new approach based on graphical models is proposed and studied. In particular, the graphical model chosen for this purpose is a dynamic non-parametric Bayesian network (NPBN). This is the first attempt to approach a history-matching problem in reservoir simulation using a NPBN-based method. A two-phase, two-dimensional flow model was implemented for a synthetic reservoir simulation exercise, and initial results are shown. The methods’ performances are evaluated and compared. This paper features a completely novel approach to history matching and constitutes only the first part (part I) of a more detailed investigation. For these reasons (novelty and incompleteness), many questions are left open and a number of recommendations are formulated, to be investigated in part II of the same paper.  相似文献   

5.
The prediction of fluid flows within hydrocarbon reservoirs requires the characterization of petrophysical properties. Such characterization is performed on the basis of geostatistics and history-matching; in short, a reservoir model is first randomly drawn, and then sequentially adjusted until it reproduces the available dynamic data. Two main concerns typical of the problem under consideration are the heterogeneity of rocks occurring at all scales and the use of data of distinct resolution levels. Therefore, referring to sequential Gaussian simulation, this paper proposes a new stochastic simulation method able to handle several scales for both continuous or discrete random fields. This method adds flexibility to history-matching as it boils down to the multiscale parameterization of reservoir models. In other words, reservoir models can be updated at either coarse or fine scales, or both. Parameterization adapts to the available data; the coarser the scale targeted, the smaller the number of unknown parameters, and the more efficient the history-matching process. This paper focuses on the use of variational optimization techniques driven by the gradual deformation method to vary reservoir models. Other data assimilation methods and perturbation processes could have been envisioned as well. Last, a numerical application case is presented in order to highlight the advantages of the proposed method for conditioning permeability models to dynamic data. For simplicity, we focus on two-scale processes. The coarse scale describes the variations in the trend while the fine scale characterizes local variations around the trend. The relationships between data resolution and parameterization are investigated.  相似文献   

6.
A method for multiscale parameter estimation with application to reservoir history matching is presented. Starting from a given fine-scale model, coarser models are generated using a global upscaling technique where the coarse models are tuned to match the solution of the fine model. Conditioning to dynamic data is done by history-matching the coarse model. Using consistently the same resolution both for the forward and inverse problems, this model is successively refined using a combination of downscaling and history matching until model-matching dynamic data are obtained at the finest scale. Large-scale corrections are obtained using fast models, which, combined with a downscaling procedure, provide a better initial model for the final adjustment on the fine scale. The result is thus a series of models with different resolution, all matching history as good as possible with this grid. Numerical examples show that this method may significantly reduce the computational effort and/or improve the quality of the solution when achieving a fine-scale match as compared to history-matching directly on the fine scale.  相似文献   

7.
The history-matching inverse problem from petroleum engineering is analysed using the Imperial College fault model. This fault model produces a challenging inverse problem and is designed to show some of the problems which can occur whilst performing history-matching calculations on complicated geologies. It is shown that there can be multiple distinct geologies which match the history data. Furthermore, it is shown that the maximum-a-posteriori estimate does not correspond to the true geology in some cases. Both of these statements are corroborated via numerical examples where the parameter spaces are ?, ?3, ?7 and ?13. In addition, it is shown that the number of matches which agree with the data increases with dimension for these examples. It is also shown that the different matches can result in different reservoir management decision which, if incorrectly taken, would incur substantial financial penalties. All of these analyses are performed in a systematic manner, where it is shown that the standard algorithms can give a misleading answer. The history-matching problem is written as a minimisation problem, and it is shown that knowledge of all of the local minima is required. This presents significant computational issues as the resulting objective function is highly nonlinear, expensive to evaluate and multimodal. Previously used algorithms have been proved to be inadequate. Parallel tempering is a method which, if run for long enough, can find all the local minima. However, as the objective is expensive, a number of algorithm modifications had to be used to ensure convergence within a reasonable time. This new information is outlined in the paper. The algorithm as implemented produced results and new insights into this problem which were not suspected before. The results produced by this algorithm for the multimodal history-matching problem are superior to all other results of which we are aware. However, a considered amount of computation time was used within this paper, so this result does not infer that the algorithm cannot be improved upon. This algorithm not only produces good results but can be applied to all other history-matching problems. We have shown that this method provides a robust route of finding multiple local optima/solutions to the inverse problem, which is of considerable benefit to the petroleum industry. Furthermore, it is an entirely parallel algorithm which is becoming computationally feasible for other history-matching problems.  相似文献   

8.
9.
Optimizing reservoir operation rule is considered as a complex engineering problem which requires an efficient algorithm to solve. During the past decade, several optimization algorithms have been applied to solve complex engineering problems, which water resource decision-makers can employ to optimize reservoir operation. This study investigates one of the new optimization algorithms, namely, Bat Algorithm (BA). The BA is incorporated with different rule curves, including first-, second-, and third-order rule curves. Two case studies, Aydoughmoush dam and Karoun 4 dam in Iran, are considered to evaluate the performance of the algorithm. The main purpose of the Aydoughmoush dam is to supply water for irrigation. Hence, the objective function for the optimization model is to minimize irrigation deficit. On the other hand, Karoun 4 dam is designed for hydropower generation. Three different evaluation indices, namely, reliability, resilience, and vulnerability were considered to examine the performance of the algorithm. Results showed that the bat algorithm with third-order rule curve converged to the minimum objective function for both case studies and achieved the highest values of reliability index and resiliency index and the lowest value of the vulnerability index. Hence, the bat algorithm with third-order rule curve can be considered as an appropriate optimization model for reservoir operation.  相似文献   

10.
This paper proposes a novel history-matching method where reservoir structure is inverted from dynamic fluid flow response. The proposed workflow consists of searching for models that match production history from a large set of prior structural model realizations. This prior set represents the reservoir structural uncertainty because of interpretation uncertainty on seismic sections. To make such a search effective, we introduce a parameter space defined with a “similarity distance” for accommodating this large set of realizations. The inverse solutions are found using a stochastic search method. Realistic reservoir examples are presented to prove the applicability of the proposed method.  相似文献   

11.
Performing a line search method in the direction given by the simplex gradient is a well-known method in the mathematical optimization community. For reservoir engineering optimization problems, both a modification of the simultaneous perturbation stochastic approximation (SPSA) and ensemble-based optimization (EnOpt) have recently been applied for estimating optimal well controls in the production optimization step of closed-loop reservoir management. The modified SPSA algorithm has also been applied to assisted history-matching problems. A recent comparison of the performance of EnOpt and a SPSA-type algorithm (G-SPSA) for a set of production optimization test problems showed that the two algorithms resulted in similar estimates of the optimal net-present-value and required roughly the same amount of computational time to achieve these estimates. Here, we show that, theoretically, this result is not surprising. In fact, we show that both the simplex, preconditioned simplex, and EnOpt algorithms can be derived directly from a modified SPSA-type algorithm where the preconditioned simplex algorithm is presented for the first time in this paper. We also show that the expectation of all these preconditioned stochastic gradients is a first-order approximation of the preconditioning covariance matrix times the true gradient or a covariance matrix squared times the true gradient.  相似文献   

12.
We present a method to determine lower and upper bounds to the predicted production or any other economic objective from history-matched reservoir models. The method consists of two steps: 1) performing a traditional computer-assisted history match of a reservoir model with the objective to minimize the mismatch between predicted and observed production data through adjusting the grid block permeability values of the model. 2) performing two optimization exercises to minimize and maximize an economic objective over the remaining field life, for a fixed production strategy, by manipulating the same grid block permeabilities, however without significantly changing the mismatch obtained under step 1. This is accomplished through a hierarchical optimization procedure that limits the solution space of a secondary optimization problem to the (approximate) null space of the primary optimization problem. We applied this procedure to two different reservoir models. We performed a history match based on synthetic data, starting from a uniform prior and using a gradient-based minimization procedure. After history matching, minimization and maximization of the net present value (NPV), using a fixed control strategy, were executed as secondary optimization problems by changing the model parameters while staying close to the null space of the primary optimization problem. In other words, we optimized the secondary objective functions, while requiring that optimality of the primary objective (a good history match) was preserved. This method therefore provides a way to quantify the economic consequences of the well-known problem that history matching is a strongly ill-posed problem. We also investigated how this method can be used as a means to assess the cost-effectiveness of acquiring different data types to reduce the uncertainty in the expected NPV.  相似文献   

13.
位移反分析的粒子群优化-高斯过程协同优化方法   总被引:2,自引:0,他引:2  
针对采用随机全局优化技术进行岩土工程位移反分析存在数值计算量大、效率低的问题,将粒子群优化算法与高斯过程机器学习技术相结合,提出了位移反分析的粒子群优化-高斯过程协同优化方法。该方法利用全局寻优性能优异的粒子群优化算法进行寻优的基础上,采用高斯过程机器学习模型不断地总结历史经验,预测包含全局最优解的最有前景区域,通过提高粒子群搜索效率并降低适应度评价次数,进而有效地降低位移反分析过程中的数值计算工作量。多种测试函数的数学验证和工程算例的研究结果表明该方法是可行的,与传统方法相比较,可显著地降低位移反分析的计算耗时。  相似文献   

14.
In the past years, many applications of history-matching methods in general and ensemble Kalman filter in particular have been proposed, especially in order to estimate fields that provide uncertainty in the stochastic process defined by the dynamical system of hydrocarbon recovery. Such fields can be permeability fields or porosity fields, but can also fields defined by the rock type (facies fields). The estimation of the boundaries of the geologic facies with ensemble Kalman filter (EnKF) was made, in different papers, with the aid of Gaussian random fields, which were truncated using various schemes and introduced in a history-matching process. In this paper, we estimate, in the frame of the EnKF process, the locations of three facies types that occur into a reservoir domain, with the property that each two could have a contact. The geological simulation model is a form of the general truncated plurigaussian method. The difference with other approaches consists in how the truncation scheme is introduced and in the observation operator of the facies types at the well locations. The projection from the continuous space of the Gaussian fields into the discrete space of the facies fields is realized through in an intermediary space (space with probabilities). This space connects the observation operator of the facies types at the well locations with the geological simulation model. We will test the model using a 2D reservoir which is connected with the EnKF method as a data assimilation technique. We will use different geostatistical properties for the Gaussian fields and different levels of the uncertainty introduced in the model parameters and also in the construction of the Gaussian fields.  相似文献   

15.
A cluster analysis methodology is developed to recover facies realizations from observed reservoir attributes. A maximum likelihood estimator allows us for identifying the most probable underlying facies using a spatial clustering algorithm. In seismic characterization, this algorithm can yield relevant geological models for subsequent history-matching studies. In history-matching procedures, it provides informative facies maps as well as starting points for further studies.  相似文献   

16.
In this study, we introduce the application of data mining to petroleum exploration and development to obtain high-performance predictive models and optimal classifications of geology, reservoirs, reservoir beds, and fluid properties. Data mining is a practical method for finding characteristics of, and inherent laws in massive multi-dimensional data. The data mining method is primarily composed of three loops, which are feature selection, model parameter optimization, and model performance evaluation. The method’s key techniques involve applying genetic algorithms to carry out feature selection and parameter optimization and using repeated cross-validation methods to obtain unbiased estimation of generalization accuracy. The optimal model is finally selected from the various algorithms tested. In this paper, the evaluation of water-flooded layers and the classification of conglomerate reservoirs in Karamay oil field are selected as case studies to analyze comprehensively two important functions in data mining, namely predictive modeling and cluster analysis. For the evaluation of water-flooded layers, six feature subset schemes and five distinct types of data mining methods (decision trees, artificial neural networks, support vector machines, Bayesian networks, and ensemble learning) are analyzed and compared. The results clearly demonstrate that decision trees are superior to the other methods in terms of predictive model accuracy and interpretability. Therefore, a decision tree-based model is selected as the final model for identifying water-flooded layers in the conglomerate reservoir. For the reservoir classification, the reservoir classification standards from four types of clustering algorithms, such as those based on division, level, model, and density, are comparatively analyzed. The results clearly indicate that the clustering derived from applying the standard K-means algorithm, which is based on division, provides the best fit to the geological characteristics of the actual reservoir and the greatest accuracy of reservoir classification. Moreover, the internal measurement parameters of this algorithm, such as compactness, efficiency, and resolution, are all better than those of the other three algorithms. Compared with traditional methods from exploration geophysics, the data mining method has obvious advantages in solving problems involving calculation of reservoir parameters and reservoir classification using different specialized field data. Hence, the effective application of data mining methods can provide better services for petroleum exploration and development.  相似文献   

17.
In this paper, a new methodology is developed for optimization of water and waste load allocation in reservoir–river systems considering the existing uncertainties in reservoir inflow, waste loads and water demands. A stochastic dynamic programming (SDP) model is used to optimize reservoir operation considering the inflow uncertainty, and another model called PSO-SA is developed and linked with the SDP model for optimizing water and waste load allocation in downstream river. In the PSO-SA model, a particle swarm optimization technique with a dynamic penalty function for handling the constraints is used to optimize water and waste load allocation policies. Also, a simulated annealing technique is utilized for determining the upper and lower bounds of constraints and objective function considering the existing uncertainties. As the proposed water and waste load allocation model has a considerable run-time, some powerful soft computing techniques, namely, Regression tree Induction (named M5P), fuzzy K-nearest neighbor, Bayesian network, support vector regression and an adaptive neuro-fuzzy inference system, are trained and validated using the results of the proposed methodology to develop real-time water and waste load allocation rules. To examine the efficiency and applicability of the methodology, it is applied to the Dez reservoir–river system in the south-western part of Iran.  相似文献   

18.
In a recent paper, we developed a physics-based data-driven model referred to as INSIM-FT and showed that it can be used for history matching and future reservoir performance predictions even when no prior geological model is available. The model requires no prior knowledge of petrophysical properties. In this work, we explore the possibility of using INSIM-FT in place of a reservoir simulation model when estimating the well controls that optimize water flooding performance where we use the net present value (NPV) of life-cycle production as our cost (objective) function. The well controls are either the flowing bottom-hole pressure (BHP) or total liquid rates at injectors and producers on the time intervals which represent the prescribed control steps. The optimal well controls that maximize NPV are estimated with an ensemble-based optimization algorithm using the history-matched INSIM-FT model as the forward model. We compare the optimal NPV obtained using INSIM-FT as the forward model with the estimate of the optimal NPV obtained using the correct full-scale reservoir simulation model when performing waterflooding optimization.  相似文献   

19.
This paper reports the results of an investigation on the use of a deterministic analysis scheme combined with the method ensemble smoother with multiple data assimilation (ES-MDA) for the problem of assimilating a large number of correlated data points. This is the typical case when history-matching time-lapse seismic data in petroleum reservoir models. The motivation for the use of the deterministic analysis is twofold. First, it tends to result in a smaller underestimation of the ensemble variance after data assimilation. This is particularly important for problems with a large number of measurements. Second, the deterministic analysis avoids the factorization of a large covariance matrix required in the standard implementation of ES-MDA with the perturbed observations scheme. The deterministic analysis is tested in a synthetic history-matching problem to assimilate production and seismic data.  相似文献   

20.
UCODE反演程序的原理及应用   总被引:2,自引:0,他引:2       下载免费PDF全文
夏强  万力  王旭升  E.Poeter 《地学前缘》2010,17(6):147-151
对地下水模型进行反演是模拟过程中的一个必要步骤,使用反演程序自动校正模型可快速确定最佳拟合的参数值,分析参数对模拟结果的敏感性,比人工试算-调整法更为优越。UCODE是一款被广泛应用的地下水模型反演程序,它使用高斯牛顿法进行参数优化,反演结果对参数初值有一定的依赖性。通过建立假想的非稳定流模型,进行6组数值试验,验证了UCODE程序的实用性。尽管参数的初始取值会影响反演的进程,但只要取值适当,UCODE就能实现优化参数的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号