首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
 This paper describes the origins and distribution of saline groundwaters in the coastal area of Rhodope, Greece. The aquifer system includes two aquifers within coarse-grained alluvial sediments in the coastal part of the study area. Two major water-quality groups occur in the study area, namely Ca2+-rich saline groundwater and Ca2+-poor, almost fresh groundwater. The main process controlling the groundwater chemistry is the exchange of calcium and sodium between the aquifer matrix and intruding seawater. The natural salt water in the study area is probably residual water that infiltrated the aquifer system during repeated marine transgressions in late Pleistocene time. Seawater intrusion into the coastal aquifer system occurs as a result of overpumping in two seawater wedges separated vertically by a low-permeability layer. The rate of intrusion averages 0.8 m/d and is less than expected due to a decline of the aquifer's permeability at the interface with the seawater. The application of several hydrochemical techniques (Piper and Durov diagrams; Na+/Cl, Ca2+/Cl, Mg2+/Cl, and Br/Cl molar ratios; Ca2+/Mg2+ weight ratio; and chloride concentrations), combined with field observations, may lead to a better explanation of the origin of the saline groundwater. Received, May 1997 / Revised, May 1998, December 1998 / Accepted, February 1999  相似文献   

2.
Seawater intrusion into the shallow aquifer in the Syrian coast, north of Latakia (Damsarkho, Ras Ibn Hani) and south of Tartous (Al Hamidieh, Ein Zarka) was studied using hydrochemical and isotopic techniques. The electrical conductivity (EC) distribution map north of Latakia revealed that mixing in this area is the consequence of a frontal intrusion of seawater within the fresh groundwater aquifer which, in turn, results from intensive pumping since the 1960s which has lowered the water table inland below sea level. In Ein Zarka, south of Tartous, in contrast, the EC distribution revealed that seawater intrusion is due to local up-coning as a result of intensive pumping. The deuterium and oxygen-18 relationship is that of a mixing line with a slope of 5.55, indicating an intrusion between freshwater and seawater. In addition, the relationship between oxygen-18 and chloride reveals that the mixing has a dominant role compared to evaporation process. The mixing ratios are estimated to be between 6 and 10% north of Latakia, while they do not exceed 3% south of Tartous. A tritium model was applied to compute the “mean transit time”, which is estimated to be around 10 years, on average, to reach the equilibrium that existed originally between the fresh groundwater and seawater, provided that severe pumping is completely halted and the aquifer is naturally recharged by rainfall and deep percolation of irrigation water, thereby allowing the restoration of the hydraulic gradient. This paper is dedicated to the memory of Dr. Y. Yurtsever.  相似文献   

3.
The evaluation of the long-term effects of seawater intrusion into the aquifers due to negative water balance and nitrate pollution of drinking-water quality due to human activities requires detailed knowledge of both the transport of the chemical constituents and the geochemical processes within aquifers. Hydrogeological and hydrochemical studies in the unconfined aquifer of Malia have provided the necessary data to define the areas at increased risk from these phenomena. The solution of the second Fick's low under given boundary conditions gave an estimate of the propagation of groundwater pollution by NO3 . Additionally, in order to simulate the ion concentration changes during a period, for example a period of positive water balance or refreshening, groundwater transport and cation exchange reactions were modelled using the code PHREEQM. Received: 25 July 1997 · Accepted: 4 November 1997  相似文献   

4.
The present study concerns the application of a numerical approach to describe the influence of anthropogenic modifications in surface flows (operation of a projected reservoir) on the freshwater-seawater relationships in a downstream coastal aquifer which has seasonal seawater intrusion problems (River Verde alluvial aquifer, Almuñécar, southern Spain). A steady-state finite element solution to the partial differential equation governing the regional motion of a phreatic surface and the resulting sharp interface between fresh water and salt water was used to predict the regional behavior of the River Verde aquifer under actual surface flow conditions. The present model approximates, with simple triangular elements, the regional behavior of a coastal aquifer under appropriate sinks, sources, Neumann and open boundary conditions. A steady-state solution to this numerical approach has been shown to precisely calculate freshwater heads, saltwater thicknesses, and freshwater discharges along steeply sloping coasts. Hence, the adequate treatment and interpretation of the hydrogeological data which are available for the River Verde aquifer have been of main concern in satisfactorily applying the proposed numerical model. Present simulated conditions consider steady-state yearly averaged amounts of external supplies of fresh water in order to determine the influences of the projected Otívar reservoir on the further behavior of the River Verde coastal aquifer. When recharges occur at the coastline, essentially because of freshwater deficits due to groundwater overexploitation, a hypothesis of mixing for the freshwater-saltwater transition zone is made in order to still allow the model to continue calculating groundwater heads under the sea level, and, as a consequence, the resulting seawater intrusion and recharges of saltwater from the sea. Simulations show that a considerable advance in seawater intrusion would be expected in the coastal aquifer if current rates of groundwater pumping continue and a significant part of the runoff from the River Verde is channeled from the Otívar reservoir for irrigation purposes.  相似文献   

5.
将改进后的遗传算法GA(添加了小生境、Pareto解集过滤器等模块)与变密度地下水流及溶质运移模拟程序SEAWAT-2000相耦合,新开发了变密度地下水多目标模拟优化程序MOSWTGA。将MOSWTGA应用于求解大连周水子地区以控制抽水井所在含水层不发生海水入侵为约束的地下水开采多目标优化管理模型,得到地下水最大开采量与海水入侵面积之间一系列Pareto近似最优解。研究成果不仅为实行合理的地下水资源配置提供了科学的实用模型,同时也为解决多个优化目标下的变密度地下水优化管理问题提供高效可靠的模拟优化工具,具有重要的潜在环境经济效益。  相似文献   

6.
The Batinah coastal plain in northern Oman has experienced a severe deterioration of groundwater quality due to seawater intrusion as a result of excessive groundwater abstraction for agricultural irrigation. Upgrading all farms to fully automated irrigation technology based on soil moisture sensors may significantly reduce the water demand and lead to recovering groundwater levels. This study compares the effects of smart irrigation technology, recharge dams, and a combination of both on seawater intrusion in the coastal aquifer of the Batinah. A groundwater flow and transport model is used to simulate the effect of reduced pumping rates on seawater intrusion for various intervention scenarios over a simulation period of 30 years, and an economic analysis based on cost-benefit analysis is conducted to estimate the potential benefits. Results indicate that a combination of smart irrigation and recharge dams may prevent further deterioration of groundwater quality over the next 30 years. In conjunction with increased efficiency, this combination also generates the highest gross profit. This outcome shows that the problem of seawater intrusion needs to be tackled by a comprehensive, integrated intervention strategy.  相似文献   

7.
Environmental problems of groundwater contamination in the Gaza Strip are summarized in this paper. The Gaza Strip is a very narrow and highly populated area along the coast of the Mediterranean Sea (360 km2). Human activities greatly threaten the groundwater resources in the area, while the unconfined nature of some parts of the coastal main aquifer favors groundwater contamination. Recent investigations show contamination of the aquifer with organic substances from detergents, agrochemicals, sewage (cesspools), and waste degradation. These effects enhance each other because there is no recycling industry, sewage system, or any type of environmental protection management at present. Inorganic contamination results from overpumping, which increases the salinity of the groundwater. Seawater intrusion also increases the salinity of the groundwater that are used for drinking and agricultural purposes. Consequently, at present about 80 percent of the groundwater in the Gaza Strip is unfit for both human and animal consumption. Solutions are very urgently needed for these problems in order to prevent the spread of dangerous diseases.  相似文献   

8.
The Wadi Watir delta, in the arid Sinai Peninsula, Egypt, contains an alluvial aquifer underlain by impermeable Precambrian basement rock. The scarcity of rainfall during the last decade, combined with high pumping rates, resulted in degradation of water quality in the main supply wells along the mountain front, which has resulted in reduced groundwater pumping. Additionally, seawater intrusion along the coast has increased salinity in some wells. A three-dimensional (3D) groundwater flow model (MODFLOW) was calibrated using groundwater-level changes and pumping rates from 1982 to 2009; the groundwater recharge rate was estimated to be 1.58?×?106 m3/year. A variable-density flow model (SEAWAT) was used to evaluate seawater intrusion for different pumping rates and well-field locations. Water chemistry and stable isotope data were used to calculate seawater mixing with groundwater along the coast. Geochemical modeling (NETPATH) determined the sources and mixing of different groundwaters from the mountainous recharge areas and within the delta aquifers; results showed that the groundwater salinity is controlled by dissolution of minerals and salts in the aquifers along flow paths and mixing of chemically different waters, including upwelling of saline groundwater and seawater intrusion. Future groundwater pumping must be closely monitored to limit these effects.  相似文献   

9.
 A strong geochemical gradient was observed in the thick overburden aquifer of the Asa drainage basin. Different types of groundwater occur at different (downslope) locations and groundwater table depths. The following sequence was noticed with increasing distance downslope or with increasing groundwater table depth: 1. Ca–Mg–HCO3 water at about 390-m groundwater table elevations or upslope locations. 2. Ca–Mg–HCO3–Cl water at middle-slope locations or groundwater table elevations of about 350 m above sea level; 3. Ca–Mg–SO4–Cl water at downslope locations or groundwater table elevations of about 300 m above sea level. In this basin, changes in the type of water are expected at about every 40–50 m depth from the surface. Statistical analysis via the determination of the correlation coefficient (r) and regression analysis shows that about 80–99% of the variation in groundwater chemistry is accounted for by the topography, using the model presented in this paper. The rate of change in the sequence will depend on the permeability of the aquifer, which determines the rate of groundwater flow and the residence time, and the nature of recharge. Received: 4 February 1997 · Accepted: 22 July 1997  相似文献   

10.
The aquifer of Mar del Plata is unconfined and composed of silt and fine sand. The sand fraction is mainly quartz, potassium feldspars, chalcedony, and gypsum. Volcanic-glass shards (40–60%) dominate the silt fraction, and the clays are of the smectite and illite groups. Calcium carbonate, in caliche form, constitutes about 10–20% of the sediment. Groundwater flow is from west to east, and discharge is in the Atlantic Ocean. Because of overexploitation, the flow direction was reversed in a coastal belt about 3.5 km wide, and this has resulted in seawater intrusion. The groundwater is the CaHCO3 type in the recharge zone, and becomes NaHCO3 type towards the discharge area. Salinization by marine intrusion and seawater/fresh-water mixing produces an increase in the major-ion concentrations of the groundwater. The calcium content of the groundwater is higher and the sodium content is lower than those that would be expected if the mixing is considered as just the addition of seawater and fresh water in determined proportions without reactive processes taking place. Hydrogeochemical modeling was applied to the study of hydrogeochemical processes, mainly cation exchange, using the codes NETPATH and PHREEQM. Calcite and gypsum equilibrium, together with cation exchange, are the main hydrogeochemical processes. Cation-exchange capacity of the solid phase was determined by empirical calculations and experimental methods. The affinity order for the groundwater in contact with the aquifer matrix is Ca>Mg>Na in the regional-flow system, but the order is reversed in the salinization process. Reactive transport modeling using the code PHREEQM is useful for analyzing cation exchange in a marine-intrusion process. Electronic Publication  相似文献   

11.
Seawater intrusion is a major problem to freshwater resources especially in coastal areas where fresh groundwater is surrounded and could be easily influenced by seawater. This study presents the development of a conceptual and numerical model for the coastal aquifer of Karareis region (Karaburun Peninsula) in the western part of Turkey. The study also presents the interpretation and the analysis of the time series data of groundwater levels recorded by data loggers. The SEAWAT model is used in this study to solve the density-dependent flow field and seawater intrusion in the coastal aquifer that is under excessive pumping particularly during summer months. The model was calibrated using the average values of a 1-year dataset and further verified by the average values of another year. Five potential scenarios were analyzed to understand the effects of pumping and climate change on groundwater levels and the extent of seawater intrusion in the next 10 years. The result of the analysis demonstrated high levels of electrical conductivity and chloride along the coastal part of the study area. As a result of the numerical model, seawater intrusion is simulated to move about 420 m toward the land in the next 10 years under “increased pumping” scenario, while a slight change in water level and TDS concentrations was observed in “climate change” scenario. Results also revealed that a reduction in the pumping rate from Karareis wells will be necessary to protect fresh groundwater from contamination by seawater.  相似文献   

12.
A numerical assessment of seawater intrusion in Gaza, Palestine, has been achieved applying a 3-D variable density groundwater flow model. A two-stage finite difference simulation algorithm was used in steady state and transient models. SEAWAT computer code was used for simulating the spatial and temporal evolution of hydraulic heads and solute concentrations of groundwater. A regular finite difference grid with a 400 m2 cell in the horizontal plane, in addition to a 12-layer model were chosen. The model has been calibrated under steady state and transient conditions. Simulation results indicate that the proposed schemes successfully simulate the intrusion mechanism. Two pumpage schemes were designed to use the calibrated model for prediction of future changes in water levels and solute concentrations in the groundwater for a planning period of 17 years. The results show that seawater intrusion would worsen in the aquifer if the current rates of groundwater pumpage continue. The alternative, to eliminate pumpage in the intruded area, to moderate pumpage rates from water supply wells far from the seashore and to increase the aquifer replenishment by encouraging the implementation of suitable solutions like artificial recharge, may limit significantly seawater intrusion and reduce the current rate of decline of the water levels.  相似文献   

13.
An artificial water canal opening is planned between the Agean Sea and the historical Ephesus site for the sake of tourism in the Selçuk sub-basin. In order to predict the effects of the planned canal on freshwater–seawater interface and related contamination in the aquifer, 3-D numerical density dependent flow and solute transport simulations were carried out. The simulations included the pre-pumping and pumping periods without a canal and the prediction period in the presence of the canal. Chloride concentration comparisons of the results obtained from the pre-pumping period and the pumping period indicate that the freshwater-seawater interface in the aquifer has progressed inland due to artificial discharge in the sub-basin. Drawdown during the pumping period is about 15 cm. The planned canal opening could further lower the groundwater levels in the area and would change the groundwater flow directions in the first 4 years. Then the levels and flow directions will nearly recover. However, the canal opening could cause further seawater intrusion into the aquifer to the extent that groundwater would be unfit to use for irrigation after the seventh year of the canal opening in the irrigation cooperative II wells area and would be unfit to use for drinking purposes after the tenth year in the municipality wells area located at the south of the cooperative II wells. On the other hand, the cooperative I wells would not be effected by the opening of the canal.  相似文献   

14.
 The coastal aquifer of Oropesa is affected by salinization processes undoubtedly associated with intense groundwater exploitation for agriculture supply. The aquifer corresponds geologically to a tectonic depression with Plioquaternary fill. Hydrogeologically, this aquifer is detrital, with intergranular porosity, which receives substantial recharge from adjacent Mesozoic aquifers. Contact with the sea, in addition to the presence of cultivated soil requiring extreme exploitation of groundwater, frequently give rise to processes of seawater intrusion. The present research is an attempt to understand the saltwater intrusion in this aquifer, using hydrochemical analyses of the behavior of certain minor ions that could help in the characterization process. In the case of the Oropesa sector, groundwater salinization does not appear to be attributable solely to the intrusion of seawater, but there are also anomalies related largely to the geology of the sector and its surroundings, the type of recharge, the hydrodynamic conditions in the specific area, etc. Received: 23 January 1995 · Accepted: 12 September 1995  相似文献   

15.
The current study introduces the geological subsurface cross-sections in the southern part of the Gaza Strip to show the structure of the aquifer in the area. The cross-sections give evidence of four subaquifers of the coastal aquifer in the southern part of the Gaza Strip. These cross-sections give the natural reasons for the deterioration of the groundwater in the study area. The results show presence of clay lenses that prevent the replenishment processes of the aquifer of fresh water from the rainfall and returns flow from agricultural activities. Lithological formation was evident as one of the natural causes which accelerate destroying process of the coastal aquifer. The results also show that the structure of the aquifer causes the increase of the groundwater salinity in the Gaza Strip. The cross-sections had shown the shortage of storage capacity of high quantities of fresh water in the coastal aquifer in these areas. The role of lithological formation was evident as one of the natural causes to accelerate the process of destroying the coastal aquifer.  相似文献   

16.
A modeling study of seawater intrusion in Alabama Gulf Coast,USA   总被引:4,自引:0,他引:4  
A numerical model of variable-density groundwater flow and miscible salt transport is developed to investigate the extent of seawater intrusion in the Gulf coast aquifers of Alabama, USA. The SEAWAT code is used to solve the density-dependent groundwater flow and solute transport governing equations. The numerical model is calibrated against the observed hydraulic heads measured in 1996 by adjusting the zonation and values of hydraulic conductivity and recharge rate. Using the calibrated model and assuming all the hydrogeologic conditions remain the same as those in 1996, a predictive 40-year simulation run indicates that further seawater intrusion into the coastal aquifers can occur in the study area. Moreover, the predicted intrusion may be more significant in the deeper aquifer than the shallower ones. As the population continues to grow and the demand for groundwater pumping intensifies beyond the 1996 level, it can be expected that the actual extent of seawater intrusion in the future would be more severe than the model prediction. Better strategies for groundwater development and management will be necessary to protect the freshwater aquifers from contamination by seawater intrusion.
Jin LinEmail:
  相似文献   

17.
Aquifers consisting of unconsolidated sediments in the coastal area near Zhanjiang in southern China are grouped into the shallow, middle-deep and deep aquifer systems. Groundwater exploitation began in the 1950s in this district and has increased from year to year since 1980. Measurements of groundwater levels and monitoring data of groundwater chemistry at some 60 wells since 1981 are examined to analyze the evolution of hydrodynamics and hydrochemistry in the coastal aquifers. The results indicate that groundwater levels in the middle-deep and deep aquifer systems have fallen continuously and the extents of the depression cones in water levels have increased in the past two decades, even though the water levels recovered to some degree during the period of 1997–2001. In 2004, the lowest water levels in the middle-deep and deep aquifer systems were 23.58 and 21.84 m below sea level, respectively. The groundwater has TDS ranging from 40 to 550 mg/L, and is of low pH, commonly varies between 4 and 7. Concentrations of total iron and manganese exceed the concentration limits of the drinking water standards. The hardness is in the range of 10–250 mg/L. Chloride contents of the groundwater range from 10 to 60 mg/L. The chloride and TDS do not show systematically increasing trends. Although the water levels in the exploitation center near the coast are significantly lower than the sea level and the depression cones of water levels in the middle-deep and deep aquifer systems have expanded to the sea, sea water intrusion has not been observed until recently. This phenomenon is quite unique in the coastal area near Zhanjiang.  相似文献   

18.
Groundwater sustainability assessment in coastal aquifers   总被引:1,自引:0,他引:1  
The present work investigates the response of shallow, coastal unconfined aquifers to anticipated overdraft conditions and climate change effect using numerical simulation. The groundwater flow model MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and specific yield estimated from the existing database range from 10 to 810 m 2/day and 0.08% to 10.92% respectively. After successful calibration with Nash–Sutcliffe efficiency greater than 0.80, the values of horizontal hydraulic conductivity and specific yield of the unconfined aquifer were set in the range 1.85–61.90 m/day and 0.006–0.24 respectively. After validating the model, it is applied for forecasting the aquifer’s response to anticipated future scenarios of groundwater draft, recharge rate and sea level rise. The findings of the study illustrate that saltwater intrusion is intensified in the area adjoining the tidal rivers, rather than that due to the sea alone. Of all the scenarios simulated, the immense negative impact on groundwater quality emerges due to overdraft conditions and reduced recharge with the areal extent of seawater intrusion exceeding about 67% (TDS >1 kg/m 3). The study also arrives at the conclusion that, regional sea level rise of 1 mm/year has no impact on the groundwater dynamics of the aquifer.  相似文献   

19.
Numerical simulation of sea water intrusion near Beihai, China   总被引:6,自引:0,他引:6  
 A leaky aquifer system occurs in the coastal plain near Beihai, China. Seawater intrusion into the confined aquifer took place along the northern coast. Chloride concentrations at some observation wells increased steadily from 1988 and were at their peak in 1993. A quasi-three-dimensional element model has been developed to simulate the spatial and temporal evolution of hydraulic heads and chloride concentrations of the groundwater near the northern coast. The simulation model was based on the transition zone approach, which requires simultaneous solution of the governing water flow and solute transport equations. An irregular grid of a quadrangle was used to discretize the flow domain. Various aquifer parameters were verified with the numerical model in order to obtain satisfactory matches between computed values and observed data from an investigation. Three pumpage schemes were designed to use the calibrated model for prediction of future changes in water levels and chloride concentrations in groundwater in the study area. Results show that seawater intrusion would worsen in the confined aquifer if the current rates of groundwater pumpage continue. The alternative, to eliminate pumpage in the intruded area and to moderate pumpage rates from water supply wells far from the seashore, may limit seawater intrusion significantly and is considered attractive in the area. Received: 27 September 1999 · Accepted: 27 December 1999  相似文献   

20.
Small islands groundwater are often exposed to heavy pumpings as a result of high demand for freshwater consumption. Intensive exploitation of groundwater from Manukan Island’s aquifer has disturbed the natural equilibrium between fresh and saline water, and has resulted increase the groundwater salinity and leap to the hydrochemical complexities of freshwater–seawater contact. An attempt was made to identify the hydrochemical processes that accompany current intrusion of seawater using ionic changes and saturation indices. It was observed that the mixing between freshwater–seawater created diversity in geochemical processes of the Manukan Island’s aquifer and altered the freshwater and seawater mixture away from the theoretical composition line. This explained the most visible processes taking place during the displacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号