首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
 The Ganga Plain is one of the most densely populated regions and one of the largest groundwater repositories of the Earth. For several decades, the drainage basin of the Ganga Plain has been used for the disposal of domestic and industrial wastes which has adversely affected the quality of water, sediments and agricultural soils of the plain. The concentrations of Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, Zn and organic carbon were determined in river sediments and soils of the Ganga Plain in the Kanpur-Unnao industrial region in 1994 and 1995 (pre-monsoon period of April–May). High contents (maximum values) of C-org (12.0 wt. %), Cr (3.40 wt. %), Sn (1.92 wt. %), Zn (4000 mg/kg), Pb (646 mg/kg), Cu (408 mg/kg), Ni (502 mg/kg) and Cd (9.8 mg/kg) in sediments (<20 μm fraction); and C-org (5.9 wt. %), Cr (2.16 wt. %), Sn (1.21 wt %), Zn (975 mg/kg) and Ni (482 mg/kg) in soils (<20 μm) in the pre-monsoon period of 1994 were found. From 1994 to 1995 the contents of Fe and Sn in sediments increase whereas those of C-org, Cd, Cu, Ni and Zn decrease. Considering the analytical errors, Al, Co, Cr, Mn and Pb do not show any change in their concentrations. In soils, the contents of Cd, Fe and Sn increase whereas those of Ni decrease from 1994 to 1995. Aluminium, Co, Cr, Cu, Mn, Pb and Zn do not show any change in their concentrations from 1994 to 1995. About 90% of the contents of Cd, Cr and Sn; 50–75% of C-org, Cu and Zn; and 25% of Co, Ni and Pb in sediments are derived from the anthropogenic input in relation to the natural background values, whereas in soils this is the case for about 90% of Cr and Sn; about 75% of Cd; and about 25% of C-org, Cu, Ni and Zn. The sediments of the study area show enrichment factors of 23.6 for Cr, 14.7 for Cd, 12.2 for Sn, 3.6 for C-org, 3.2 for Zn, 2.6 for Cu and 1.6 for Ni. The soils are enriched with factors of 10.7 for Cr, 9.0 for Sn, 3.6 for Cd, 1.8 for Ni and 1.5 for Cu and Zn, respectively. Received: 3 March 1998 · Accepted: 15 June 1998  相似文献   

2.
This paper reports a geochemical study of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan province (P. R. China). Trace metals Ba, Bi, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Sn, Sb, Pb, Tl, Th, U, Zr, Hf, Nb and Ta were analyzed using ICP-MS, and Pb isotopes of the bulk sediments were measured by MC-ICP-MS. The results show that trace metals Cd, Bi, Sn, Sc, Cr, Mn, Co, Ni, Cu, Zn, Sb, Pb and Tl are enriched in the sediments. Among these metals, Cd, Bi and Sn are extremely highly enriched (EF values >40), metals Zn, Sn, Sb and Pb significantly highly (5 < EF < 20), and metals Sc, Cr, Mn, Co, Ni, Cu and Tl moderately highly (2 < EF < 5) enriched in the river sediments. All these metals, however, are moderately enriched in the lake sediments. Geochemical results of trace metals Th, Sc, Co, Cr, Zr, Hf and La, and Pb isotopes suggest that metals in the river sediments are of multi-sources, including both natural and anthropogenic sources. Metals of the natural sources might be contributed mostly from weathering of the Indosinian granites (GR) and Palaeozoic sandstones (PL), and metals of anthropogenic sources were contributed from Pb–Zn ore deposits distributed in upper river areas. Metals in the lake sediments consist of the anthropogenic proportions, which were contributed from automobile exhausts and coal dusts. Thus, heavy-metal contamination for the river sediments is attributed to the exploitation and utilization (e.g., mining, smelting, and refining) of Pb–Zn ore mineral resources in the upper river areas, and this for the lake sediments was caused by automobile exhausts and coal combustion. Metals Bi, Cd, Pb, Sn and Sb have anthropogenic proportion of higher than 90%, with natural contribution less than 10%. Metals Mn and Zn consist of anthropogenic proportion of 60–85%, with natural proportion higher than 15%. Metals Sc, Cr, Co, Cu, Tl, Th, U and Ta have anthropogenic proportion of 30–70%, with natural contribution higher than 30%. Metals Ba, V and Mo might be contributed mostly from natural process.  相似文献   

3.
 The Yamuna River sediments, collected from Delhi and Agra urban centres, were analysed for concentration and distribution of nine heavy metals by means of atomic adsorption spectrometry. Total metal contents varied in the following ranges (in mg/kg): Cr (157–817), Mn (515–1015), Fe (28,700–45,300), Co(11.7–28.4), Ni (40–538), Cu (40–1204), Zn (107–1974), Pb (22–856) and Cd (0.50–114.8). The degree of metal enrichment was compared with the average shale concentration and shows exceptionally high values for Cr, Ni, Cu, Zn, Pb and Cd in both urban centres. In the total heavy metal concentration, anthropogenic input contains 70% Cr, 74% Cu, 59% Zn, 46% Pb, 90% Cd in Delhi and 61% Cr, 23% Ni, 71% Cu, 72% Zn, 63% Pb, 94% Cd in Agra. A significant correlation was observed between increasing Cr, Ni, Zn, and Cu concentrations with increasing total sediment carbon and total sediment sulfur content. Based on the Müller's geoaccumulation index, the quality of the river sediments can be regarded as being moderately polluted to very highly polluted with Cr, Ni, Cu, Zn, Pb and Cd in the Delhi and Agra urban centres. The present sediment analysis, therefore, plays an important role in environmental measures for the Yamuna River and the planning of these city centres. Received: 21 June 1999 · Accepted: 1 October 1999  相似文献   

4.
Urban roadside soils are important environmental media for assessing heavy metal concentrations in urban environment. However, among other things, heavy metal concentrations are controlled by soil particle grain size fractions. In this study, two roadside sites were chosen within the city of Xuzhou (China) to reflect differences in land use. Bulk soil samples were collected and then divided by particle diameter into five physical size fractions, 500–250, 250–125, 125–74, 74–45, < 45 μm. Concentrations of metals (Ti, Cr, Al, Ga, Pb, Ba, Cd, Co, Cu, Mn, Ni, V, Zn, Mo, As, Sb, Se, Hg, Bi, Ag) were determined for each individual fraction. These metals could be roughly classified into two groups: anthropogenic element (Pb, Ba, Cd, Cu, Zn, Mo, As, Sb, Se, Hg, Bi, Ag) and lithophile element (Ti, Cr, Al, Ga, Co, Mn, Ni, V) in terms of values of enrichment factor. As expected, higher concentrations of anthropogenic heavy metals (Cu, Zn, Mo, As, Hg, Bi, Ag) are observed in the finest particle grain size fraction (i.e. < 45 μm). However, heavy metals Se, Sb and Ba behave independently of selected grain size fractions. From the viewpoint of mass loading, more than 30% of the concentrations for all anthropogenic heavy metals are contributed by the particle grain size fractions of 45–74 μm at site 1 and more than 70% of the concentrations for all heavy metals are contributed by the particle grain size fractions of 45–74 and 74–125 μm at site 2. These results are important for transport of soil-bound heavy metals and pollution control by various remedial options.  相似文献   

5.
Road dust collected from India’s richest and oldest coal mining belt of Dhanbad and Bokaro regions was analysed for particle size characteristics and elemental composition. The particle size distribution pattern shows dominance of 500–250 μm and 250–125 μm size fractions, constituting 45–58% of the mass size spectrum. Si is the most dominant element and its concentration varied between 29.3 and 36.4% with the average value 34.3%. Fe, Ti and Mn are the dominant heavy metals followed by Zn, Cr, Pb, Cu, Ni and Co. No significant differences concentration of metals between sampling sites was apparent; however, some sites tend to accommodate relatively higher metals due to its proximity to industrial and mining sites. In general, finer fraction (<63 μm) tend to contain 1–3 times higher metals as compared with the bulk composition. Except Pb and Mn all the measured metals are generally lie below grade zero, suggesting that there is no pollution threat with respect to these metals in roadway dust from the studied sites. Geochemical speciation study shows that the lithogenic phase is the major sink for heavy metals. Fe–Mn oxide and organic are the major non-lithogenic phases and Pb and Zn are the major elements of the non-lithogenic phase.  相似文献   

6.
Nador lagoon sediments (East Morocco) are contaminated by industrial iron mine tailings, urban dumps and untreated wastewaters from surrounding cities. The lagoon is an ecosystem of biological, scientific and socio-economic interests but its balance is threatened by pollution already marked by biodiversity changes and a modification of foraminifera and ostracods shell structures. The aim of the study is to assess the heavy metal contamination level and mobility by identifying the trapping phases. The study includes analyses by ICP-AES and ICP-MS, of, respectively, major (Si, Al, Mg, Ca, Fe, Mn, Ti, Na, K, P) and trace elements (Sr, Ba, V, Ni, Co, Cr, Zn, Cu, As, Pb, Cd) in sediments and suspended matter, heavy metals enrichment factors calculations and sequential extractions. Results show that sediments contain Zn, Cu, Pb, V, Cr, Co, As, Ni with minimum and maximum concentrations, respectively, of 4–1190 μg/g, 4–466 μg/g, 11–297 μg/g, 11–194 μg/g, 9–139 μg/g, 1–120 μg/g, 4–76 μg/g, 2–62 μg/g. High concentrations in Zn are also present in suspended matter. The enrichment factors show contamination in Zn, Pb and As firstly induced by the mining industry and secondly by unauthorized dumps and untreated wastewaters. Cr and Ni are bound to clays, whereas V, Co, Cu and Zn are related to oxides. Thus, the risk in metal mobility is for the latter elements and lies in the oxidation–reduction-changing conditions of sediments.  相似文献   

7.
 The concentrations of various metals (Cr, Cu, Co, Fe, Mn, Ni, Pb, Zn, and Cd) were determined in recently deposited surface sediments of the Gomati River in the Lucknow urban area. Markedly elevated concentrations (milligrams per kilogram) of some of the metals, Cd (0.26–3.62), Cu (33–147), Ni (45–86), Pb (25–77), and Zn (90–389) were observed. Profiles of these metals across the Lucknow urban stretch show a progressive downstream increase due to additions from 4 major drainage networks discharging the urban effluents into the river. The degree of metal contamination is compared with the local background and global standards. The geoaccumulation index order for the river sediments is Cd>Zn>Cu>Cr>Pb. Significant correlations were observed between Cr and Zn, Cr and Cu, Cu and Zn and total sediment carbon with Cr and Zn. This study reveals that the urbanization process is associated with higher concentrations of heavy metals such as Cd, Cu, Cr, Pb, and Zn in the Gomati River sediments. To keep the river clean for the future, it is strongly recommended that urban effluents should not be overlooked before their discharge into the river. Received: 16 February 1996 · Accepted: 29 February 1996  相似文献   

8.
The concentration of heavy metals such as Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn, Zr were studied in soils of Balanagar industrial area, Hyderabad to understand heavy metal contamination due to industrialization and urbanization. This area is affected by the industrial activities like steel, petrochemicals, automobiles, refineries, and battery manufacturing generating hazardous wastes. The assessment of the contamination of the soils was based on the geoaccumulation index, enrichment factor (EF), contamination factor, and degree of contamination. Soil samples were collected from Balanagar industrial area from top 10–50 cm layer of soil. The samples were analyzed using X-ray fluorescence spectrometer for heavy metals. The data revealed that the soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Cr (82.2–2,264 mg/kg), Cu (31.3–1,040 mg/kg), Ni (34.3–289.4 mg/kg), Pb (57.5–1,274 mg/kg), Zn (67.5–5819.5 mg/kg), Co (8.6–54.8 mg/kg), and V (66.6–297 mg/kg). The concentration of above-mentioned other elements was similar to the levels in the earth’s crust pointed to metal depletion in the soil as the EF was <1. Some heavy metals showed high EF in the soil samples indicating that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may results in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   

9.
This study investigated physico-chemical characteristics of the water column and chemistry of suspended particulate material (SPM) under quiescent, high-wind and high-wind/heavy-rainfall conditions in Homebush Bay, a highly contaminated embayment of Port Jackson (Australia) to distinguish source and possible adverse effects to benthic and pelagic animals. Mean concentrations in surficial sediment were <1, 14, 181, 141, 37, 290 and 685 μg g−1 for Cd, Co, Cr, Cu, Ni, Pb and Zn, respectively. Sediment chemistry indicated these metals had multiple sources, i.e. the estuary, stormwater and industry. Mean total suspended solids (TSS) were 7, 17 and 20 mg L−1 during quiescent, high-rainfall and heavy rainfall/high wind conditions, respectively, whereas SPM Cd, Co, Cr, Cu, Ni, Pb and Zn concentrations varied between 13–25, 166–259, 127–198, 38–82, 236–305 and 605–865 μg g−1, respectively under these conditions. TSS and total water metal concentrations were lowest during quiescent conditions. High TSS and metal loads in surface water characterised high-rainfall events. Wind-induced resuspension contributed the greatest mass of SPM and metals to the water column. Benthic animals may be adversely affected by Pb and Zn in sediment. Total water Cu and Zn concentrations may pose a risk to filter-feeding animals in the water column due to resuspension of contaminated sediment.  相似文献   

10.
Heavy metals in soils are of great environmental concern, in order to evaluate heavy metal contents and their relationships in the surface soil of industrial area of Baoji city, and also to investigate their influence on the soils. Soil samples were collected from 50 sites, and the concentration of Pb, Zn, Cu, Cr, Ni heavy metals and the contents of characteristics in soil from industrial area of Baoji city were determined with X-ray fluorescence method. The concentrations of Pb, Zn, Cu, Cr and Ni in the investigated soils reached the amount of 2,682.00–76,979.42, 169.30–8,288.58, 62.24–242.36, 91.96–110.54 and 36.14–179.28 mg kg−1, respectively. The major element Pb contents of the topsoils were determined. to highlight the influence of ‘anthropic’ features on the heavy metal concentrations and their distributions. To compare, all values of elements were much higher than those of unpolluted soils in the middle of Shaanxi province that average 16.0–26.5, 67.1–120.0, 17.8–57.0, 46.9–65.6 and 24.7–34.6 mg kg−1 for Pb, Zn, Cu, Cr and Ni, respectively. An ensemble of basic and relativity analysis was performed to reduce the precipitate of Pb in soil was extremely high and greatly relativity with other elements. Meanwhile, Pb, Zn, Cu, Cr, Ni heavy metals were typical elements of anthropic activities sources, so it was easy to infer to the tracers of anthropic pollutions from the factorial analysis, which was coming from the storage battery manufactory pollutions. The pollutant distributions were constructed for the urban area which identified storage battery manufactory soot precipitate as the main source of diffuse pollution and also showed the contribution of the topsoils of industrial area of Baoji city as the source point of pollution. Consequently, the impact of heavy metals on soil was proposed and discussed. These results highlight the need for instituting a systematic and continuous monitoring of heavy metals and other forms of pollutants in Baoji city to ensure that pollution does not become a serious problem in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号