首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesozoic and Cenozoic ore deposits in the Chilean Andes between La Serena (~30°S) and Santiago (~34°S) include polymetallic vein, low- and high-sulfidation epithermal vein, skarn, porphyry copper-molybdenum and porphyry copper-gold. These deposits are associated with volcanic and plutonic complexes emplaced in eastward-migrating longitudinal arcs which formed during subduction along the continental margin of South America since the Middle Jurassic. Stratabound, but epigenetic, volcanic rock- and sedimentary rock-hosted manto deposits contain additional copper resources. Lead isotopic compositions in ore minerals from 29 deposits vary with age and geographic location, and hence with basement and host rocks. Lead in most ore deposits is derived from temporally related igneous rocks, except for the manto deposits whose lead is derived from host volcanic and sedimentary rock sequences. Lead in the ore deposits is dominated by two crustal sources. Low 207Pb/204Pb characterizes one source whereas high 207Pb/204Pb characterizes the second source. Lead isotopic compositions of Jurassic and Miocene ore minerals (206Pb/204Pb>18.50; 207Pb/204Pb>15.61) lie along the average crustal growth curve. By contrast, most Cretaceous deposits have ore minerals with lower 206Pb/204Pb (<18.39) and 207Pb/204Pb (<15.58) than Jurassic ore minerals. The shift in lead isotopic composition to lower lead isotopic values precludes derivation of lead from a source of similar composition to those in the Jurassic or Tertiary deposits. For Cretaceous deposits, polymetallic and low-sulfidation epithermal veins and a skarn have lower 206Pb/204Pb than a porphyry copper-gold system and peripheral gold veins at Andacollo (18.43-18.50). Late Cretaceous veins from the Bellavista deposit have the lowest 206Pb/204Pb (18.33) of all deposits. Ore minerals in Miocene and Pliocene porphyry copper-molybdenum deposits have higher 206Pb/204Pb (18.58-18.67) than Cretaceous deposits, consistent with their age being younger. The Miocene and Pliocene ore minerals also have higher 207Pb/204Pb (15.58-15.66) than Cretaceous ore minerals, thereby requiring an additional input from the high-207Pb/204Pb source into the younger deposits. Miocene auriferous deposits in the north have similar 206Pb/204Pb values as the Miocene and Pliocene porphyry copper-molybdenum deposits in the south, but they are distinguished by higher and variable 207Pb/204Pb (15.61-15.66) and 208Pb/204Pb (38.54-39.01), which are arrayed along steep mixing trends. These ore minerals have the largest input of high-207Pb/204Pb material in the deposits studied. By contrast, lead in the epigenetic manto deposits appears to be derived from the host volcanic or sedimentary rock-dominated sequences, and locally exhibits large-scale isotopic heterogeneity within a deposit. Overall, the lead isotopic compositions of ore minerals mimic the values and variations established in age-equivalent rock sequences. The low-207Pb/204Pb material in the deposits is derived from Cretaceous igneous rocks or their sources as they evolved with time; low 207Pb/204Pb characterizes these rocks. By contrast, high-207Pb/204Pb material is likely derived from Carboniferous to Triassic igneous rocks or their sources, as this lead isotopic characteristic dominates these rocks.  相似文献   

2.
The lead isotope compositions of galena and the fluid-inclusion systematics of nine barite-bearing polymetallic (Au, Ag, Pb, Zn) deposits of the central Argentinian Patagonia (Chubut and Rio Negro provinces) have been investigated to constrain the compositions and sources of the mineralizing fluids. Most of the deposits occur as veins, with less common wall-rock disseminations and/or stockworks, and are low-sulfidation epithermal deposits hosted in Jurassic volcanic rocks. Fluid-inclusion homogenization temperatures (Th) from quartz and sphalerite from the deposits fall within the range of 100-300 °C, with the highest measured average temperatures for the most eastern deposits (Mina Angela - 298 °C; Cañadón Bagual - 343 °C). The salinities of the hydrothermal fluids at all deposits were low to moderate (⢪.4 equiv. wt% NaCl). Three groups of ore deposits can be defined on the basis of 206Pb/204Pb ratios for galena and these show a general decrease from west to east (from 18.506 to 18.000). The central Argentinian Patagonia deposits have distinctly less radiogenic lead isotope compositions than similar deposits from Peru and Chile, except for the porphyry copper deposits of central and southern Peru. Galena from the Mina Angela deposit is characterized by very low radiogenic lead isotope compositions (18.000<206Pb/204Pb<18.037 and 38.03<208Pb/204Pb<38.09) and reflects interaction with Precambrian basement. The geographic trend in lead isotope compositions of both galena and whole rocks indicates a crustal contribution which increases eastwards, also reflected in the strontium-neodymium isotope systematics of the host lavas. Finally, due to the lack of precise age determinations for the central Patagonian polymetallic deposits, a potential link with Andean porphyry copper systems remains an open question.  相似文献   

3.
The Inner Carpathians comprise several distinct Neogene late-stage orogenic Pb–Zn–Cu–Ag–Au ore districts. The mineral deposits in these districts are closely related to volcanic and subvolcanic rocks, and represent mainly porphyry and epithermal vein deposits, which formed within short periods of time in each district. Here, we discuss possible geodynamic and structural controls that suggest why some of the Neogene volcanic districts within the Carpathians comprise abundant mineralization, while others are barren. The Neogene period has been characterized by an overall geodynamic regime of subduction, where primary roll-back of the subducted slab and secondary phenomena, like slab break-off and the development of slab windows, could have contributed to the evolution, location and type of volcanic activity. Structural features developing in the overlying lithosphere and visible in the Carpathian crust, such as transtensional wrench corridors, block rotation and relay structures due to extrusion tectonics, have probably acted in focusing hydrothermal activity. As a result of particular events in the geodynamic evolution and the development of specific structural features, mineralization formed during fluid channelling within transtensional wrench settings and during periods of extension related to block rotation.In the Slovakian ore district of the Western Carpathians, Neogene volcanism and associated mineralization were localized by sinistral, NE-trending wrench corridors, which formed part of the extruding Alcapa block. The Baia Mare ore district, in the Eastern Carpathians, reflects a transtensional wrench setting on distributed oversteps close to the termination of the Dragos Voda fault. There, mineralization was spatially controlled by the transtensional Dragos Voda master fault and associated cross-fault systems. The Golden Quadrangle Cu–Au ore district of the Southern Apuseni Mountains reflects an unusual rotated transtensional/extensional setting close to the termination of a graben system. There, fluid flow was probably localized by fault propagation at the inner tip of the graben system.The spatial and temporal evolution of the magmatism and its changing geochemical signature from (N)W to (S)E strongly suggests a link with the contemporaneous northeastward roll-back of the subducted slab and a progressive southeastward detachment during accelerating roll-back. This geodynamic evolution is further supported by the present-day overall and detailed mantle lithospheric density images, the present-day heat flow patterns, the crustal architecture and its interpreted evolution, and the spatial and temporal evolution of depocentres around the Carpathian arc. In contrast to all these features, the mineral deposits in the West Carpathians, East Carpathians and Apuseni Mountains are too synchronous with respect to their individual volcanic history and contrast too much with younger volcanics of similar style, but barren, in southeastern parts of the Carpathians to simply link them directly to the slab evolution. In all three districts, the presence of magmatic fluids released from shallow plutons and their mixing with meteoric water were critical for mineralization, requiring transtensional or extensional local regimes at the time of mineralization, possibly following initial compressional regimes.These three systems show that mineralization was probably controlled by the superposition of favourable mantle lithospheric conditions and partly independent, evolving upper crustal deformation conditions.In the 13 to 11 Ma period the dominant mineralization formed all across the Carpathians, and was superimposed on structurally favourable crustal areas with, at that time, volcanic–hydrothermal activity. The period may reflect the moment when the (upper part of the) crust failed under lithospheric extension imposed by the slab evolution. This crustal failure would have fragmented the overriding plate, possibly breaking up the thermal lid, to provoke intensive fluid flow in specific areas, and allowed subsequent accelerated tectonic development, block rotation and extrusion of a “family of sub-blocks” that are arbitrarily regarded as the Tisia–Dacia or Alcapa blocks, even though they have lost their internal entity.  相似文献   

4.
Important copper-gold (± molybdenum) porphyry deposits occur in the northwest region of Argentina, part of the Central Andes. This paper provides new isotope information on two of these deposits, Bajo de la Alumbrera and Agua Rica, the latter having an epithermal overprint event. The two deposits are genetically associated with the Miocene Farallón Negro Volcanic Complex. Whole rock and sulfide samples were analyzed for Pb, Sr and Nd isotopes to characterize the sources of magma and mineralization of both deposits. Sr and εNd data made it possible to divide the samples into three distinct groups. Most samples are slightly differentiated, have OIB (Ocean Island Basalts) isotope characteristics, and show some Nd fractionation. Lead isotope also shows distinct groups with an enrichment trend in radiogenic lead. In both deposits, the sulfides are more radiogenic than the host rocks, but are clearly related to them because all plot on a single trend. A crustal contribution to the deposits is suggested on the basis of lead isotope signatures. The similarity on the Pb isotope signatures suggests the same magmatic fluid source, although at Agua Rica the crustal component is more evident than at Bajo de la Alumbrera, possibly because of the assimilation of Paleozoic country rocks at Agua Rica.  相似文献   

5.
《Ore Geology Reviews》2006,28(1-4):13-44
The Inner Carpathians comprise several distinct Neogene late-stage orogenic Pb–Zn–Cu–Ag–Au ore districts. The mineral deposits in these districts are closely related to volcanic and subvolcanic rocks, and represent mainly porphyry and epithermal vein deposits, which formed within short periods of time in each district. Here, we discuss possible geodynamic and structural controls that suggest why some of the Neogene volcanic districts within the Carpathians comprise abundant mineralization, while others are barren. The Neogene period has been characterized by an overall geodynamic regime of subduction, where primary roll-back of the subducted slab and secondary phenomena, like slab break-off and the development of slab windows, could have contributed to the evolution, location and type of volcanic activity. Structural features developing in the overlying lithosphere and visible in the Carpathian crust, such as transtensional wrench corridors, block rotation and relay structures due to extrusion tectonics, have probably acted in focusing hydrothermal activity. As a result of particular events in the geodynamic evolution and the development of specific structural features, mineralization formed during fluid channelling within transtensional wrench settings and during periods of extension related to block rotation.In the Slovakian ore district of the Western Carpathians, Neogene volcanism and associated mineralization were localized by sinistral, NE-trending wrench corridors, which formed part of the extruding Alcapa block. The Baia Mare ore district, in the Eastern Carpathians, reflects a transtensional wrench setting on distributed oversteps close to the termination of the Dragos Voda fault. There, mineralization was spatially controlled by the transtensional Dragos Voda master fault and associated cross-fault systems. The Golden Quadrangle Cu–Au ore district of the Southern Apuseni Mountains reflects an unusual rotated transtensional/extensional setting close to the termination of a graben system. There, fluid flow was probably localized by fault propagation at the inner tip of the graben system.The spatial and temporal evolution of the magmatism and its changing geochemical signature from (N)W to (S)E strongly suggests a link with the contemporaneous northeastward roll-back of the subducted slab and a progressive southeastward detachment during accelerating roll-back. This geodynamic evolution is further supported by the present-day overall and detailed mantle lithospheric density images, the present-day heat flow patterns, the crustal architecture and its interpreted evolution, and the spatial and temporal evolution of depocentres around the Carpathian arc. In contrast to all these features, the mineral deposits in the West Carpathians, East Carpathians and Apuseni Mountains are too synchronous with respect to their individual volcanic history and contrast too much with younger volcanics of similar style, but barren, in southeastern parts of the Carpathians to simply link them directly to the slab evolution. In all three districts, the presence of magmatic fluids released from shallow plutons and their mixing with meteoric water were critical for mineralization, requiring transtensional or extensional local regimes at the time of mineralization, possibly following initial compressional regimes.These three systems show that mineralization was probably controlled by the superposition of favourable mantle lithospheric conditions and partly independent, evolving upper crustal deformation conditions.In the 13 to 11 Ma period the dominant mineralization formed all across the Carpathians, and was superimposed on structurally favourable crustal areas with, at that time, volcanic–hydrothermal activity. The period may reflect the moment when the (upper part of the) crust failed under lithospheric extension imposed by the slab evolution. This crustal failure would have fragmented the overriding plate, possibly breaking up the thermal lid, to provoke intensive fluid flow in specific areas, and allowed subsequent accelerated tectonic development, block rotation and extrusion of a “family of sub-blocks” that are arbitrarily regarded as the Tisia–Dacia or Alcapa blocks, even though they have lost their internal entity.  相似文献   

6.
Lead isotope analyses of 25 sulfide samples (galenas, iron sulfides, and sulfosalts) from five different mines of the Skellefte district, northern Sweden, demonstrate that the Pb-isotopic composition of galenas and other sulfides rich in lead varies between individual deposits within the district. This contrasts with many other base-metal districts, where ore lead is isotopically homogeneous on a regional basis. Although all of the Skellefte leads are depleted in 207Pb relative to average global lead evolution models, thus suggesting a large mantle-derived component in their sources, the Nasliden deposit lying at the contact of the host volcanic rocks and the overlying metasediments contains a significant component of crustal lead. It is concluded that while the Pb-isotope data are consistent with a volcanic exhalative origin of the ores of the Skellefte district, they also demonstrate that older crustal lead was incorporated into the sulfides during their emplacement and the subsequent period of magmatic and metamorphic activity which followed their deposition.  相似文献   

7.
黑龙江省是我国著名金矿产区之一,发育多个浅成低温热液型金矿,它们与中生代陆相火山-次火山岩有密切的关系,但对这些陆相火山-次火山岩的成因缺乏系统研究,制约了本区金矿的成因认识和矿床勘查。本次研究采用先进的LA-ICP-MS锆石定年法、地球化学Sr-Nd-Pb同位素示踪等方法,对与乌拉嘎浅成低温热液金矿存在密切成因联系的次火山岩(花岗闪长斑岩)进行深入研究。LA-ICP-MS锆石定年法获得乌拉嘎矿区葡萄沟岩体及其南部含矿岩枝的成岩年龄分别为108.2±1.2Ma和106±1.1Ma,与区内宁远村组火山岩成岩时间基本相近,推断金矿成矿时代为早白垩世晚期,与东安金矿和高松山金矿为同期。岩石地球化学确定该岩体为高钾钙碱性(σ=1.83~2.18)偏铝质I型花岗岩特征,结合微量元素和Sr-Nd-Pb研究显示其具有活动陆缘弧岩浆岩特点,进一步得出岩浆源区和成矿物质具有来源于新元古代形成的镁铁质下地壳的部分熔融的属性。早白垩世时,中国东部处于伸展应力体制下,尤其黑龙江构造活动强烈,起源于新生下地壳重融的岩浆活动频繁,结合已有的浅成低温热液金矿床资料显示,推断区内具有巨大的成矿潜力。  相似文献   

8.
Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as opposed to deposits to the south. Deep-seated structures of regional extent that formed during the Proterozoic allowed the magmas to rise to shallow crustal levels. Proterozoic sites of intrusions at 1.65, 1.4, and 1.1 Ga were also important precursors to alkaline-related gold deposits. Many of the larger gold deposits are located at sites of Proterozoic intrusions, and are localized at the intersection of northeast-trending ductile shear zones formed during Mesoproterozoic deformation, and an important north-trending fault formed during 1.1 Ga rifting.  相似文献   

9.
西天山浅成低温金矿容矿火山岩地球化学及成矿环境初探   总被引:5,自引:0,他引:5  
20世纪90年代,在新疆西天山北段晚古生代火山岩区内相继发现了阿希大型金矿床及其外围的伊尔曼得、恰布坎卓它等金矿床(点),并进一步确定了其系产于晚古生代火山岩内的浅成低温矿床.矿床赋存于伊犁晚古生代火山岩区的吐拉苏-也里莫墩火山岩带中.矿床围岩为下石炭统大哈拉军山组中基性-中酸性陆相火山岩系,以钙碱性为主,少量碱性系列岩石,具有富硅、钠、贫钾、铝、镁、钙成分和里特曼指数偏高的特点;岩石稀土元素含量中等(ΣREE=41.59×10-6~135.83×10-6),属于轻稀土富集型(含量29.05×10-6~95.37×10-6),分镏程度较高;容矿火山岩以K、Rb、Ba、Th等大离子元素富集和Ti、Y、Yb、Sc等亏损为特征,接近于板内过渡型玄武岩系列岩石;火山岩和矿石206Pb/204Pb值为17.5269~18.6644,207Pb/204Pb值为15.1073~16.0108,208Pb/204Pb值为37.3670~38.1958,具壳幔混合源特征;含金石英脉锶同位素初始值与区内容矿火山岩、矿化有关蚀变矿物十分接近,介于0.705~0.709之间,显示成矿作用与火山岩系的密切成因联系;文中结合容矿火山岩时空分布和成矿地球化学特征的讨论分析,揭示了金矿成矿与容矿火山岩的内在联系,确立了金矿化的陆内裂谷环境特点,建立了浅成低温热液型金矿的第三种成矿背景,拓宽了找矿区域.  相似文献   

10.
Analysis of the distribution patterns of Pb isotope data from mineralised samples using the plumbotectonic model of Carr et al. (1995), which invokes mixing between crustal and mantle reservoirs, indicates systematic spatial patterns that reflect major metallogenic and tectonic boundaries in the Paleozoic Lachlan and Delamerian orogens in New South Wales and Victoria, Australia. This distribution pattern accurately maps the boundary between the Central and Eastern Lachlan subprovinces. The Central Lachlan Subprovince is characterised by Pb isotope characteristics with a strong crustal signature, whereas the Eastern Lachlan Subprovince is characterised by variable crustal and mantle signatures. The Macquarie Volcanic Province is dominated by Pb with a mantle signature: known porphyry Cu–Au and high sulphidation epithermal Au–Cu deposits in the province are associated with a zone characterised by the strongest mantle signatures. In contrast, granite-related Sn deposits in the Central Lachlan Subprovince are characterised by the strongest crustal signatures. The Pb isotope patterns are broadly similar to Nd isotope model age patterns derived from felsic magmatic rocks, although a lower density of Nd isotope data locations makes direct comparison difficult.The two reservoirs identified by Carr et al. (1995) do not appear to be isotopically linked: the crustal source was not formed via extraction from the mantle source. Rather, the two reservoirs formed separately. The mantle reservoir may have been sourced from a subducting proto-Pacific plate, whereas the crustal reservoir is most likely to be extended Australian crust. The data allow the possibility that the proto-Pacific mantle source was isotopically linked to the western Tasmanian crustal source.Comparison of Pb isotope data from the Girilambone district, Central Lachlan Subprovince, (e.g., Tritton and Avoca Tank Cu deposits) with those from the Cobar Cu–Au–Zn–Pb district, Eastern Lachlan Subprovince, in north central New South Wales indicates a less radiogenic signature, and probably older age, for deposits in the Girilambone district. Hence, a syngenetic volcanic-associated massive sulphide origin for these deposits is preferred over a syn-tectonic origin. The data are also consistent with formation of the Girilambone deposits in a back-arc basin inboard from the earliest phase of the Macquarie Volcanic Province.  相似文献   

11.
斑岩_浅成低温热液型铜金矿床是西藏最新发现的组合矿床类型,其具有巨大的找矿潜力。笔者在西藏多龙矿集区铁格隆南铜金矿床、雄村矿集区主要矿体系统地质编录、综合研究的基础上,对其矿床地质背景、矿体形态产状、矿物组合、蚀变特征、成岩成矿年龄等进行了系统的总结,在前人研究的基础上,提出班怒成矿带与早白垩世岛弧型中_酸性火山岩_浅成岩组合有关的铜、金、银、铅锌矿床成矿亚系列,以及冈底斯成矿带与早侏罗世—晚侏罗世岛弧型中_酸性火山岩_浅成岩组合有关的铜、金、银、铅锌矿床成矿亚系列,是西藏最重要的寻找斑岩型_浅成低温热液型铜金矿的矿床成矿系列。依据"缺位找矿"理论,预测多龙矿集区尕尔勤、地堡那木岗、铁格隆山是浅成低温热液型铜金矿床的进一步勘查评价区,色那、拿顿角砾岩筒是寻找独立高硫化型浅成低温热液金矿床的重要靶区。铁格隆南浅成低温热液矿体叠加在斑岩型矿体之上,高硫化型浅成低温热液矿床浅部发育多孔状硅帽和明矾石_地开石_高岭石蚀变组合,金属矿物以硫砷铜矿_铜蓝_蓝辉铜矿_黝铜矿_黄铜矿_斑铜矿_黄铁矿等铜硫二元体系矿物组合为主,其中黄铁矿_黄铜矿_斑铜矿形成较早,矿床规模可突破1200万吨。雄村铜金矿集区发育低硫化型浅成低温热液多金属金矿体,矿体呈脉状,或在火山机构边缘构造中独立产出,或叠加于斑岩型铜金矿体之上产出,以绢云母化、叶蜡石化、伊利石化发育,闪锌矿、黝铜矿、磁黄铁矿_黄铁矿为主要金属矿物组合为特征,洞嘎、普钦木_哑达是低硫化型浅成低温热液矿床的勘查评价区,深部有找到斑岩型铜金矿的可能。上述2套矿床成矿系列亚系列都与燕山期斑岩铜金矿床的流体演化有关,具有特殊的蚀变矿物、金属矿物组合,寻找独立的浅成低温热液型金矿是下一步需要重视的找矿方向。  相似文献   

12.
The Toodoggone district comprises Upper Triassic to Lower Jurassic Hazelton Group Toodoggone Formation volcanic and sedimentary rocks, which unconformably overlie submarine island-arc volcanic and sedimentary rocks of the Lower Permian Asitka Group and Middle Triassic Takla Group, some of which are intruded by Upper Triassic to Lower Jurassic plutons and dikes of the Black Lake suite. Although plutonism occurred episodically from ca. 218 to 191 Ma, the largest porphyry Cu–Au ± Mo systems formed from ca. 202 to 197 Ma, with minor mineralization occurring from ca. 197 to 194 Ma. Porphyry-style mineralization is hosted by small-volume (<1 km3), single-phase, porphyritic igneous stocks or dikes that have high-K calc-alkaline compositions and are comparable with volcanic-arc granites. The Fin porphyry Cu–Au–Mo deposit is anomalous in that it is 16 m.y. older than any other porphyry Cu–Au ± Mo occurrence in the district and has lower REEs. All porphyry systems are spatially restricted to exposed Asitka and Takla Group basement rocks, and rarely, the lowest member of the Hazelton Group (i.e., the ca. 201 Ma Duncan Member). The basement rocks to intrusions are best exposed in the southern half of the district, where high rates of erosion and uplift have resulted in their preferential exposure. In contrast, low- and high-sulfidation epithermal systems are more numerous in the northern half of the district, where the overlying Hazelton Group rocks dominate exposures. Cogenetic porphyry systems might also exist in the northern areas; however, if they are present, they are likely to be buried deeply beneath Hazelton Group rocks. High-sulfidation epithermal systems formed at ca. 201 to 182 Ma, whereas low-sulfidation systems were active at ca. 192 to 162 Ma. Amongst the studied epithermal systems, the Baker low-sulfidation epithermal deposit displays the strongest demonstrable genetic link with magmatic fluids; fluid inclusion studies demonstrate that its ore fluids were hot (>468°C), saline, and deposited metals at deep crustal depths (>2 km). Sulfur, C, O, and Pb isotope data confirm the involvement of a magmatic fluid, but also suggest that the ore fluid interacted with Asitka and Takla Group country rocks prior to metal deposition. In contrast, in the Shasta, Lawyers, and Griz-Sickle low-sulfidation epithermal systems, there is no clear association with magmatic fluids. Instead, their fluid inclusion data indicate the involvement of low-temperature (175 to 335°C), low-salinity (1 to 11 equiv. wt.% NaCl) fluids that deposited metals at shallow depths (<850 m). Their isotope (i.e., O, H, Pb) data suggest interaction between meteoric and/or metamorphic ore fluids with basement country rocks.  相似文献   

13.
The paper reports Rb-Sr isotopic data obtained by the authors on ore-hosting rocks from the Kairagach epithermal Au-Ag deposit in the Kurama ore district in the Central Tien Shan, Uzbekistan. The influence of mineralizing hydrothermal solutions on the host volcanic rocks of andesite-dacite composition and the metasomatic alterations of these rocks are proved to have been resulted in with the homogenization of the Sr isotopic composition, i.e., its equalization between various modes of Sr occurrence. This offers additional possibilities of the application of the Rb-Sr isochron method in dating hydrothermal processes. The application of Rb-Sr isotopic methods in studying samples from the Kairagach deposit allowed the authors to obtain dates whose reliability corresponds to isochron one (291 ± 3 Ma) or is very close to it (290 ± 6 Ma). The data thus obtained provide good reasons to believe that the corresponding epithermal mineral deposits in the Kurama ore district (Kairagach, Kochbulak, and others) were genetically related to and simultaneous with the emplacement subvolcanic porphyry intrusions.  相似文献   

14.
The world-class Imiter silver deposit, in the Anti-Atlas Mountains of Morocco, is a Neoproterozoic epithermal vein deposit genetically associated with a felsic volcanic event, and formed within a regional extensional tectonic regime. Rhyolitic volcanism related to ore formation has been dated at 550Dž Ma by ion-probe U/Pb on zircons. The economic silver mineralization is superimposed on an older, discrete base-metal assemblage associated with calc-alkaline granodioritic magmatism. The magmatism is dated at 572LJ Ma by ion-probe U/Pb dating on zircons, and by 40Ar/39Ar dating on hydrothermal muscovites. In the Anti-Atlas Mountains, the Precambrian-Cambrian transition appears as an important period for the formation of major, productive precious-metal deposits associated with volcanic events and extensional tectonics. The Imiter silver deposit constitutes a Precambrian analogue to modern epithermal deposits.  相似文献   

15.
The Zijinshan ore district occurs as one of the largest porphyry-epithermal Cu–Au–Mo ore systems in South China, including the giant Zijinshan epithermal Cu–Au deposit and the large Luoboling porphyry Cu–Mo deposit. The mineralization is intimately related to Late Mesozoic large-scale tectono-magmatic and hydrothermal events. The Cu–Au–Mo mineralization occurs around intermediate-felsic volcanic rocks and hypabyssal porphyry intrusions. In this study, we summarize previously available Re–Os isotopes, zircon U–Pb age and trace elements, and Sr–Nd–Pb isotope data, and present new Pb–S and Re–Os isotope data and zircon trace elements data for ore-related granitoids from the Zijinshan high-sulfidation epithermal Cu–Au deposit and the Luoboling porphyry Cu–Mo deposit, in an attempt to explore the relationship between the two ore systems for a better understanding of their geneses. The ore-bearing porphyritic dacite from the Zijinshan deposit shows a zircon U-Pb age of 108–106 Ma and has higher zircon Ce4+/Ce3+ ratios (92–1568, average 609) but lower Ti-in-zircon temperatures (588–753 °C, average 666 °C) when compared with the barren intrusions in the Zijinshan ore district. Relative to the Zijinshan porphyritic dacite, the ore-bearing granodiorite porphyry from the Luoboling deposit show a slightly younger zircon U–Pb age of 103 Ma, but has similar or even higher zircon Ce4+/Ce3+ ratios (213–2621, average 786) and similar Ti-in-zircon temperatures (595–752 °C, average 675 °C). These data suggest that the ore-bearing magmatic rocks crystallized from relatively oxidized and hydrous magmas. Combined with the high rhenium contents (78.6–451 ppm) of molybdenites, the Pb and S isotopic compositions of magmatic feldspars and sulfides suggest that the porphyry and ore-forming materials in the Luoboling Cu–Mo deposit mainly originated from an enriched mantle source. In contrast, the ore-bearing porphyritic dacite in the Zijinshan Cu–Au deposit might be derived from crustal materials mixing with the Cathaysia enriched mantle. The fact that the Zijinshan Cu–Au deposit and the Luoboling Cu–Mo deposit show different origin of ore-forming materials and slightly different metallogenic timing indicates that these two deposits may have been formed from two separate magmatic-hydrothermal systems. Crustal materials might provide the dominant Cu and Au in the Zijinshan epithermal deposit. Cu and Au show vertical zoning and different fertility because the gold transports at low oxygen fugacity and precipitates during the decreasing of temperature, pressure and changing of pH conditions. It is suggested that there is a large Cu–Mo potential for the deeper part of the Zijinshan epithermal Cu–Au deposit, where further deep drilling and exploration are encouraged.  相似文献   

16.
Two sulphide ore deposits, Svärdsjö and Åmmeberg, occurring in the Bergslagen ore district in south-central Sweden have been examined for their Pb isotope compositions. Analyses of the ore lead reveals a great isotopic homogeneity, with compositions that nearly coincide with results obtained from other deposits in the area. The Stacey and Kramers growth model for Pb in conformable ores yields model ages, however, that are 100–150 Ma too low in comparison with the accepted geological ages. Isotopic data from whole rocks and mineral separates indicate an open system behaviour with respect to U and Pb. On the basis of geological/geochemical evidence the sulphide ores in Bergslagen are considered to have formed by volcanic-exhalative processes. The ore lead is interpreted as a mixture of newly added mantle-material and a minor Archean component. It is likely that the main part of the ore lead was derived from volcanic source rocks, but most probably sediments, interbedded in the volcanic succession also played some role.  相似文献   

17.
内蒙古七一牧场北山矿床是近年来在额尔古纳地块新发现的一个中型银铅锌矿床。本文在野外地质勘查和室内综合整理分析的基础上,对该矿床的基本地质特征及成因进行了初步研究。该矿床银铅锌矿体赋存于中侏罗统塔木兰沟组安山质火山岩和上侏罗统满克头鄂博组流纹质火山碎屑岩中,呈脉状、细脉浸染状,受北西向、近南北向断裂构造控制,其形成与晚侏罗世花岗斑岩、钾长花岗岩具有密切的时空联系。成矿作用在空间上表现出一定的分带性,随着赋矿深度的增加,成矿元素呈现出Pb→Pb、Zn、Ag→Zn(Cu)的变化特点。结合硫、铅同位素及流体包裹体特征,初步认为该矿床应为晚侏罗世-早白垩世伸展环境下形成的与火山-岩浆作用有关的浅成-超浅成中低温热液脉型银铅锌矿床。  相似文献   

18.
内蒙古白音诺尔铅锌矿铅同位素研究   总被引:1,自引:0,他引:1  
内蒙古白音诺尔铅锌矿床是大兴安岭地区储量最大的铅锌矿床,矿体主要沿花岗闪长(斑)岩与大理岩接触带产出。为了查明成矿物质来源,对矿石中的硫化物和矿区内及外围主要侵入岩开展了铅同位素示踪分析。测试结果表明:矿石中硫化物的N(206Pb)/N(204Pb)为18.266~18.372,平均值18.296,N(207Pb)/N(204Pb)为15.501~15.579,平均值15.536,N(208Pb)/N(204Pb)为38.016~38.339,平均值38.138。铅同位素年龄校正计算结果表明:矿石中硫化物的Pb同位素比值与大理岩和花岗闪长(斑)岩非常相似,表明矿石中的铅主要来自花岗闪长(斑)岩和大理岩,说明成矿物质也主要来自这两类岩石,进一步证明了白音诺尔铅锌矿床的成矿与花岗闪长(斑)岩和大理岩有关,属于矽卡岩型矿床,与喷流沉积型和火山岩块状硫化物矿床有明显的差别。与区域上其他银多金属矿床对比发现,本区银多金属矿床的Pb同位素组成非常相似,其组成范围多有重叠,暗示这些矿床的矿石铅来源也非常相似,可能表明有一个共同的富银的基底或地层为这些银多金属矿床的形成提供了成矿物质来源。  相似文献   

19.
The Neoproterozoic Vazante Group at the western border of the São Francisco Craton, Brazil, hosts the largest Zn–Pb district in South America. Several authors have classified this mineral district as Mississippi Valley-type (MVT), based on the intimate association with carbonates and the epigenetic character of most ore bodies. In this paper, we present 47 new lead isotope data from four deposits located along the 300 km N–S Vazante–Paracatu–Unai linear trend. Pb isotope ratios indicate sources with relatively high U/Pb and Th/Pb ratios. Considering the 206Pb/204Pb and 208Pb/204Pb ratios as indicative parameters for the source, we suggest an upper crustal source for the metals. The small variation on the Pb isotope ratios compared to those observed in the classical MVT deposits, and other geological, fluid inclusion and sulphur isotopic data indicates a metallogenic event of long duration. It was characterized by focused circulation of hydrothermal fluids carrying metals from the basement rocks and from the sedimentary pile. The data obtained are more compatible with an evolution model similar to that of IRISH-type deposits. The existence of three Pb isotopic populations could be the result of regional differences in composition of the source rocks and in the fluid–rock interaction since the mineralization is a long-term process.  相似文献   

20.
Lead isotope ratios of ores of the Candelaria-Punta del Cobre iron oxide Cu-Au deposits and associated Early Cretaceous volcanic and batholithic rocks have been determined. For the igneous rocks, a whole-rock acid attack technique based on the separate analyses of a leachate and the residual fraction of a sample was used. The lead isotope systematics of leachate–residue pairs are significantly different for unaltered and altered igneous rocks of the Candelaria-Punta del Cobre district. Residues of unaltered igneous rocks likely represent the common lead. In contrast, residues of all the altered igneous rocks except two samples have higher Pb isotope ratios than those of unaltered magmatic rocks and cannot represent common lead. We suggest that this is a result of the hydrothermal alteration suffered by these rocks and that the common lead composition of the altered igneous (volcanic and plutonic) rocks must have been similar to that of the unaltered batholith rocks. The conclusion that the altered volcanic rocks originally had a similar common lead isotope composition as the batholith is consistent with geological and geochemical arguments (e.g., setting, regional geologic evolution, ages and relative distribution of volcanic and intrusive rocks, magmatic affinities), which indicate that these rocks were derived from similar Early Cretaceous parent magmas. The modification of the leachate–residue pair lead isotope systematics of most altered igneous rocks is consistent with a selective removal of lead and uranium from these rocks by an oxidized hydrothermal fluid. The result of the hydrothermal leaching has been to alter magmatic rocks in a way that (1) their leachable fraction is presently a mix of common lead similar to that of the ore event and of radiogenic lead evolved from a source with a consistently high Th/U, and that (2) their residual fraction has less common lead than unaltered rocks. The outcrop area with altered volcanic rocks displaying anomalously high lead isotope ratios extends over 25 km along the eastern margin of the batholith. Since lead of the ores in the Candelaria-Punta del Cobre district has the same isotopic composition as the common lead of unaltered magmatic rocks of the area, the lead isotope data are consistent with a derivation of the ore lead (and by inference of other metals like Cu) both directly from a magmatic fluid exsolved during crystallization of the batholith and/or from hydrothermal leaching of the volcanic rocks originally having similar isotopic compositions as the batholith.Editorial handling: B. Lehmann  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号