首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As uniaxial compression tests of α spodumene LiAlSi2O6 at various temperatures and strain rates systematically led to brittle fracture, room-temperature microindentations have been performed with a view to characterizing the glide systems. Transmission electron microscopy (TEM) investigations show that only the [010] (100) glide system is activated. The resulting dislocations are widely dissociated (up to 3,000 Å) following the reaction [010]→[0 1/2 1/6]+[0 1/2 \(\bar 1\) /6]. In contrast, in naturally deformed spodumene the activated glide systems found in TEM studies are [001] {110} and 1/2〈110〉{1 \(\bar 1\) 0} and the corresponding dislocations are not dissociated. Such a difference in mechanical behaviour is interpreted in considering the necessary impingement of the oxygen atoms during dislocation glide. It is shown that only the dissociated b dislocations can glide with a moderate lattice friction at room temperature. The proposed model is supported by the first exploratory deformation runs performed under confining pressure.  相似文献   

2.
Two crystals of natural chalcopyrite, CuFeS2, experimentally deformed at 200° C have been studied by means of transmission electron microscopy (TEM). The activated glide planes are (001) and {112}. The dislocations in (001) have the Burgers vector [110] and a predominating edge character. They are split into two colinear partials b=1/2[110] and can cross split into {112}. The dislocations in {112} consist of straight segments along low index lattice lines. They are often arranged in dipoles generating trails of loops. Few dislocations with b=1/2[ \(\overline {11} \) 1] and [1 \(\bar 1\) 0] are present and dislocations with b=[0 \(\bar 2\) 1] occur in low angle subgrain boundaries. From weak beam contrasts it is presumed that most of the dislocations gliding in {112} have b=1/2〈3 \(\overline {11} \) 〉. They are dissociated into up to four partials. Microtwins and different types of stacking faults in {112} also occur. Models of the dissociation of dislocations are discussed.  相似文献   

3.
Widely extended, cation stacking faults in experimentally deformed Mg2GeO4 spinel have been studied using transmission electron microscopy (TEM). The faults lie on {110} planes. The displacement vector is of the form \(\frac{1}{4}\left\langle {1\bar 10} \right\rangle \) and is normal to the fault plane. The partial dislocations which bound the stacking fault have colinear Burgers vectors of the form \(\frac{1}{4}\left\langle {1\bar 10} \right\rangle \) which are normal to the fault plane.  相似文献   

4.
Dissociated dislocations have been observed for the first time by transmission electron microscopy in the perovskite-structure compound CaGeO3. Dislocations with Burgers vectors \(\left[ {1\bar 10} \right]\) and [001] (in pseudo-cubic index) are dissociated into collinear partials on the (110) plane: $$\left[ {1\bar 10} \right] = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\left[ {1\bar 10} \right] + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\left[ {1\bar 10} \right]$$ and [001] = 1/2[001] + 1/2[001]. The partials react to form octagonal extended nodes. The stacking fault ribbons with displacement vector \(\left[ {1\bar 10} \right]\) have a width of 350 A, which corresponds to a stacking fault energy of 35 erg/cm2 (or mJ/m2).  相似文献   

5.
Quartz crystals twinned according to Japan twin law were investigated by means of X-ray topography in order to understand the origin of characteristic morphology of twin crystals. It is demonstrated that the flattened and elongated morphology characteristic of quartz twins is due to preferential growth at twin junctions where dislocations with the Burgers vector direction 〈11 \(\overline {\text{2}} \) 1〉 concentrate, and that such preferential growth operates only when {10 \(\overline {\text{1}} \) 1} faces meet at the twin junction. Once {10 \(\overline {\text{1}} \) 0} faces appear at the twin junction due to the change of growth conditions, the effect diminishes sharply and the characteristic morphology becomes less pronounced. This leads to the conclusion that the characteristic morphology of quartz crystals twinned according to Japan twin law is formed at the earlier stage of growth and becomes less pronounced at the later stage of growth.  相似文献   

6.
Single crystals of sanidine which were experimentally deformed so as to introduce the (010)[100] slip system were examined by transmission electron microscopy (tem). Dislocation glide is mainly manifested in the samples deformed at 700° C, with a strain rate \(\dot \varepsilon = 1 - 2 \times 10^{ - 6} s^{ - 1} \) . In addition to the expected slip system another more important one, (12 \(\bar 1\) )[101], was found. The dislocations lying in (010) present a glissile dissociation. These observations have been discussed in term of the feldspar structure. Models for glissile dissociation in (010) are proposed: [100]=1/2[100]+1/2[100] or 1/2[101]+1/2[10 \(\bar 1\) ] and [101]=1/2[101]+1/2[101].  相似文献   

7.
In the system Na2O-CaO-Al2O3-SiO2 (NCAS), the equilibrium compositions of pyroxene coexisting with grossular and corundum were experimentally determined at 40 different P-T conditions (1,100–1,400° C and 20.5–38 kbar). Mixing properties of the Ca-Tschermak — Jadeite pyroxene inferred from the data are (J, K): $$\begin{gathered} G_{Px}^{xs} = X_{{\text{CaTs}}} X_{{\text{Jd}}} [14,810 - 7.15T - 5,070(X_{{\text{CaTs}}} - X_{{\text{Jd}}} ) \hfill \\ {\text{ }} - 3,350(X_{{\text{CaTs}}} - X_{{\text{Jd}}} )^2 ] \hfill \\ \end{gathered} $$ The excess entropy is consistent with a complete disorder of cations in the M2 and the T site. Compositions of coexisting pyroxene and plagioclase were obtained in 11 experiments at 1,190–1,300° C/25 kbar. The data were used to infer an entropy difference between low and high anorthite at 1,200° C, corresponding to the enthalpy difference of 9.6 kJ/mol associated with the C \(\bar 1\) =I \(\bar 1\) transition in anorthite as given by Carpenter and McConnell (1984). The resulting entropy difference of 5.0 J/ mol · K places the transition at 1,647° C. Plagioclase is modeled as ideal solutions, C \(\bar 1\) and I \(\bar 1\) , with a non-first order transition between them approximated by an empirical expression (J, bar, K): $$\Delta G_T = \Delta G_{1,473} \left[ {1 - 3X_{Ab} \tfrac{{T^4 - 1,473^4 }}{{\left( {1,920 - 0.004P} \right)^4 - 1,473^4 }}} \right],$$ where $$\Delta G_{1,473} = 9,600 - 5.0T - 0.02P$$ The derived mixing properties of the pyroxene and plagioclase solutions, combined with the thermodynamic properties of other phases, were used to calculate phase relations in the NCAS system. Equilibria involving pyroxene+plagioclase +grossular+corundum and pyroxene+plagioclase +grossular+kyani te are suitable for thermobarometry. Albite is the most stable plagioclase.  相似文献   

8.
Transmission electron microscope (tem) observations of single and multiple twins in calcite and dolomite are presented, and the results are analysed by means of selected area diffraction and trace analysis. Simple twinning in rhodochrosite and kutnahorite is also analysed. It is shown that the ordered carbonates, such as dolomite, have a common twinning plane {01 \(\bar 1\) 2} and this appears to be their only mode of deformation twinning. The carbonates with higher symmetry, such as calcite, have {01 \(\bar 1\) 8} as the primary twinning plane but calcite itself has other twinning mechanisms, of which the most important is illustrated. Crossing and stopping twins are also discussed. It is shown that twinning in calcite, which occurs predominantly at low temperatures, is characterized by the generation of large numbers of glide dislocations.  相似文献   

9.
Berlinite, AlPO4, is a structural analog of quartz and a number of physical properties are very similar in both materials. It is thus interesting to compare their mechanical properties and investigate the possible role of water. Constant strain rate tests on wet synthetic crystals have been performed at room temperature and at 600 MPa confining pressure. They indicate that \((000){1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3}\langle 11\bar 20\rangle \) is the easy glide system. Detailled investigation of the crystal structure shows that the corresponding a dislocations can glide in such a way that only the weaker Al—O bonds are broken. This explains why this glide system is much more easily activated in berlinite than in quartz. Deformation experiments at higher temperature and at atmospheric pressure clearly show a thermally activated regime. However the actually available crystals are so rich in water that above 300° C the dislocation structure resulting from deformation is completely hidden by water precipitation and coarsening of the as-grown fluid inclusions. Like for wet quartz this later phenomenon generates numerous bubbles and sessile dislocation loops.  相似文献   

10.
The ferric-ferrous ratio of natural silicate liquids equilibrated in air   总被引:1,自引:1,他引:1  
Results of chemical analyses of glasses produced in 46 melting experiments in air at 1,350° C and 1,450° C on rocks ranging in composition from nephelinite to rhyolite have been combined with other published data to obtain an empirical equation relating in \((X_{{\text{Fe}}_{\text{2}} {\text{O}}_{\text{3}} }^{{\text{liq}}} /X_{{\text{FeO}}}^{{\text{liq}}} )\) to T, \(\ln f_{{\text{O}}_{\text{2}} } \) and bulk composition. The whole set of experimental data range over 1,200–1,450° C and oxygen fugacities of 10?9.00 to 10?0.69 bars, respectively. The standard errors of temperature and \(\log _{10} f_{{\text{O}}_{\text{2}} } \) predictions from this equation are 52° C and 0.5 units, respectively, for 186 experiments.  相似文献   

11.
The order-disorder transformation in NaGaSi3O8 was studied at \(P_{H_2 O} \approx 100\) bar using a hydrous sodium gallium silicate gel and synthetic Ga-albites of various degrees of order as initial materials. The structural state of the gallium albites was determined by the angle separation in X-ray powder patterns of 131 and 1 \(\bar 3\) 1, and of \(\bar 2\) 04 and 060 peaks. The direction of order-disorder transformations was found to change sharply at 938 (±3)°C. This indicates a first order phase transition in NaGaSi3O8 as in albite, of which it is the structural analogue.  相似文献   

12.
A set of sanidine single crystals were previously deformed at 700° C in a Griggs triaxial press with different crystallographic orientations of the core so as to induce dislocation glide of different slip systems respectively. Deformed crystals have been studied by transmission electron microscopy (TEM) and the activated slip systems have been characterized for two orientations. (010)[001] and (001)1/2[ \(\overline 1 \) 10] systems expected for one orientation (main stress nearly parallel to [012]) are observed, whereas the (001)[100] system expected for the other orientation (main stress nearly parallel to [101]) is never observed. In the latter specimen the deformation is rather difficult and occurs through unexpected systems characterized as (110)1/2[1 \(\overline 1 \) 2] and (1 \(\overline 1 \) 1)1/2[110]. In all the samples studied the deformation is heterogeneous, exhibiting dislocation configurations related to temperature variations.  相似文献   

13.
Approximately 125 hydrothermal annealing experiments have been carried out in an attempt to bracket the stability fields of different ordered structures within the plagioclase feldspar solid solution. Natural crystals were used for the experiments and were subjected to temperatures of ~650°C to ~1,000°C for times of up to 370 days at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =600 bars, or \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =1,200 bars. The structural states of both parent and product materials were characterised by electron diffraction, with special attention being paid to the nature of type e and type b reflections (at h+k=(2n+1), l=(2n+1) positions). Structural changes of the type C \(\bar 1\) I \(\bar 1\) , C \(\bar 1\) → “e” structure, I \(\bar 1\) → “e” and “e” structure → I \(\bar 1\) have been followed. There are marked differences between the ordering behaviour of crystals with compositions on either side of the C \(\bar 1\) ? I \(\bar 1\) transition line. In the composition range ~ An50 to ~ An70 the e structure appears to have a true field of stability relative to I \(\bar 1\) ordering, and a transformation of the type I \(\bar 1\) ? e has been reversed. It is suggested that the e structure is the more stable ordered state at temperatures of ~ 800°C and below. For compositions more albite-rich than ~ An50 the upper temperature limit for long range e ordering is lower than ~ 750°C, and there is no evidence for any I \(\bar 1\) ordering. The evidence for a true stability field for “e” plagioclase, which is also consistent with calorimetric data, necessitates reanalysis both of the ordering behaviour of plagioclase crystals in nature and of the equilibrium phase diagram for the albite-anorthite system. Igneous crystals with compositions of ~ An65, for example, probably follow a sequence of structural states C \(\bar 1\) I \(\bar 1\) e during cooling. The peristerite, Bøggild and Huttenlocher miscibility gaps are clearly associated with breaks in the albite, e and I \(\bar 1\) ordering behaviour but their exact topologies will depend on the thermodynamic character of the order/disorder transformations.  相似文献   

14.
Dislocation configurations in natural single crystals of CaTiO3 perovskite deformed in high-temperature creep were examined and characterized by transmission electron microscopy. Screw dislocations with Burgers vector [100]pc and [011]pc, dissociated on the $(01\bar 1)_{{\text{pc}}} $ plane, form rectangular networks with extended four-fold nodes in the shape of octagons, a configuration never observed in any of the previously investigated perovskites, except CaGeO3. Screw dislocations with Burgers vector [101]pc and $(\bar 101)_{{\text{pc}}} $ , on the (010)pc plane, react to form a twist wall; the dislocations with Burgers vector [002] produced by the reaction decompose into two perfect dislocations [001]pc. This results in a new configuration, never observed before, with three-fold nodes at the corners of rectangles. Both the octagonal extended nodes and the junctions decomposed into perfect dislocations are seen in samples deformed indifferently by slip on {100}pc or {110}pc planes, but they seem to appear only above 1520 K, in the cubic phase.  相似文献   

15.
An empirically derived Redlich-Kwong type of equation of state (ERK) is proposed for H2O, expressing a, the term related to the attraction between the molecules, as a pressure-independent function of temperature, and b, the covolume, as a temperature-independent function of pressure. The coefficients of a(T) and b(P) were derived by least squares non-linear regression, using P-V-T data given by Burnham et al. (1969b) and Rice and Walsh (1957) in conjunction with more precise recent data obtained by Tanishita et al. (1976), Hilbert (1979) and Schmidt (1979): $$a(T) = 1.616 x 10^8 - 4.989 x 10^4 T - 7.358 x 10^9 T^{ - 1} $$ and $$ = \frac{{1 + 3.4505x 10^{--- 4} P + 3.8980x 10^{--- 9} P^2 - 2.7756x 10^{--- 15} P^3 }}{{6.3944x 10^{--- 2} + 2.3776x 10^{--- 5} + 4.5717x 10^{--- 10} P^2 }}$$ , where T is expressed in Kelvin and P in bars. The ERK works very well at upper mantle conditions, at least up to 200 kbar and 1,000 °C. At subcritical conditions and those somewhat above the critical point, it still reproduces the molar Gibbs energy, \(\tilde G_{{\text{H}}_{\text{2}} {\text{O}}} \) , with a maximum deviation of 400 joules. Thus, for the purpose of calculation of geologically interesting heterogeneous equilibria, it predicts the thermodynamic properties of H2O well enough. The values of molar volume, \(\tilde V_{{\text{H}}_{\text{2}} {\text{O}}} \) , and \(\tilde G_{{\text{H}}_{\text{2}} {\text{O}}} \) are tabulated in the appendix over a considerable P-T range. A FORTRAN program generating these functions as well as a FORTRAN subroutine for calculating the fugacity values, \(f_{{\text{H}}_{\text{2}} {\text{O}}} \) for incorporation into existing programs, are available upon request.  相似文献   

16.
Boron is known to interact with a wide variety of protonated ligands(HL) creating complexes of the form B(OH)2L-.Investigation of the interaction of boric acid and bicarbonate in aqueoussolution can be interpreted in terms of the equilibrium $B(OH)_3^0 + HCO_3^ - \rightleftharpoons B(OH)_2 CO_3^ - + H_2 O$ The formation constant for this reaction at 25 °C and 0.7 molkg-1 ionic strength is $K_{BC} = \left[ {B(OH)_2 CO_3^ - } \right]\left[ {B(OH)_3^0 } \right]^{ - 1} \left[ {HCO_3^ - } \right]^{ - 1} = 2.6 \pm 1.7$ where brackets represent the total concentration of each indicatedspecies. This formation constant indicates that theB(OH)2 $CO_3^ - $ concentration inseawater at 25 °C is on the order of 2 μmol kg-1. Dueto the presence of B(OH)2 $CO_3^ - $ , theboric acid dissociation constant ( $K\prime _B $ ) in natural seawaterdiffers from $K\prime _B $ determined in the absence of bicarbonate byapproximately 0.5%. Similarly, the dissociation constants of carbonicacid and bicarbonate in natural seawater differ from dissociation constantsdetermined in the absence of boric acid by about 0.1%. Thesedifferences, although small, are systematic and exert observable influenceson equilibrium predictions relating CO2 fugacity, pH, totalcarbon and alkalinity in seawater.  相似文献   

17.
A great wealth of analytical data for fluid inclusions in minerals indicate that the major species of gases in fluid inclusions are H2O, CO2, CO, CH4, H2 and O2. Three basic chemical reactions are supposed to prevail in rock-forming and ore-forming fluids: $$\begin{gathered} H_2 + 1/2{\text{ O}}_{\text{2}} = H_2 O, \hfill \\ CO + 1/2{\text{ O}}_{\text{2}} = CO_2 , \hfill \\ CH_4 + 2{\text{O}}_{\text{2}} = CO_2 + 2H_2 O, \hfill \\ \end{gathered} $$ and equilibria are reached among them. \(\lg f_{O_2 } - T,{\text{ }}\lg f_{CO_2 } - T\) and Eh-T charts for petrogenesis and minerogenesis in the supercritical state have been plotted under different pressures. On the basis of these charts \(f_{O^2 } ,{\text{ }}f_{CO_2 } \) , Eh, equilibrium temperature and equilibrium pressure can be readily calculated. In this paper some examples are presented to show their successful application in the study of the ore-forming environments of ore deposits.  相似文献   

18.
Raman sprectra of a gypsum crystal were made at pressures between 0.001 and 7 kbar using He gas as the pressure medium. \(\frac{{{\text{d}}v}}{{dP}}\) values for bands in the range 3,600–100 cm?1 were obtained. Comparison of results with \(\frac{{{\text{d}}v}}{{{\text{d}}T}}\) from the literature for temperatures of 77 and 300° K. shows that the internal modes of the SO4 units are more sensitive to pressure than to temperature. The effect is small. Coupled H2O-SO4 translational modes are greatly affected by both pressure and temperature while coupled Ca-SO4 mode are less so. It was found that stretching vibrations of water molecules were affected differently under pressure. The band at 3,500 cm?1 is more greatly displaced by pressure \(\left( {\frac{{{\text{d}}v}}{{{\text{d}}P}} = {\text{2}}{\text{.11cm}}^{{\text{ - 1}}} /{\text{kbar}}} \right)\) than the band at 3,400 cm?1 \(\left( {\frac{{{\text{d}}v}}{{{\text{d}}P}} \simeq {\text{2}}{\text{.11cm}}^{{\text{ - 1}}} /{\text{kbar}}} \right)\) . Assuming two different hydrogen bond intensities for the water molecules, one can attribute this difference in behavior of stretching modes to and increase in hydrogen bonding of one of the hydrogens which is exterior to the double H2O planes in the gypsum structure. The great variety of pressure derivatives for the different types of vibrational modes observed indicates that each molecular unit readjusts internally to pressure induced volume changes and the some of the chemical bonds between the units are significantly affected.  相似文献   

19.
Variations in the equilibrium degree of Al/Si order in anorthite have been investigated experimentally over the temperature range 800-1535° C. Spontaneous strain measurements give the temperature dependence of the macroscopic order parameter, Q, defined with respect to the \(C\bar 1 \rightleftharpoons I\bar 1\) phase transition, while high temperature solution calorimetric data allow the relationship between Q and excess enthalpy, H, to be determined. The thermodynamic behaviour can be described by a Landau expansion in one order parameter if the transition is first order in character, with an equilibrium transition temperature, T tr, of ~2595 K and a jump in Q from 0 to ~0.65 at Ttr. The coefficients in this Landau expansion have been allowed to vary with composition, using Q=1 at 0 K for pure anorthite as a reference point for the order parameter. Published data for H and Q at different compositions allow the calibration of the additional parameters such that the free energy due to the \(C\bar 1 \rightleftharpoons I\bar 1\) transition in anorthite-rich plagioclase feldspars may be expressed (in cal. mole-1) as: \(\begin{gathered}G = \tfrac{1}{2} \cdot 9(T - 2283 + 2525X_{Ab} )Q^2 \\ {\text{ + }}\tfrac{1}{4}( - 26642 + 121100X_{Ab} )Q^4 \\ {\text{ + }}\tfrac{1}{6}(47395 - 98663X_{Ab} )Q^6 \\ \end{gathered}\) where X Ab is the mole fraction of albite component. The nature of the transition changes from first order in pure anorthite through tricritical at ~An78 to second order, with increasing albite content. The magnitude of the free energy of \()\) ordering reduces markedly as X Ab increases. At ~700° C incommensurate ordering in crystals with compositions ~An50–An70 needs to have an associated free energy reduction of only a few hundred calories to provide a more stable structure. These results, together with a simple mixing model for the disordered ( \()\) ) solid solution, an assumed tricritical model for the incommensurate ordering and published data for ordering in albite have been used to calculate a set of possible free energy relations for the plagioclase system. The incommensurate structure should appear on the equilibrium phase diagram, but its apparent stability with respect to the assemblage albite plus anorthite at low temperatures depends on the values assigned to the mixing parameters of the $$$$ solid solution.  相似文献   

20.
Creep experiments have been performed on samples from a single crystal of vanadium-doped forsterite under controlled \(p_{{\text{O}}_2 } \) conditions to investigate the effects of the addition of substitutional defects in the tetrahedral lattice sites. The addition of vanadium causes marked changes in the flow behavior of the forsterite, with a net increase in the creep rate at high \(p_{{\text{O}}_2 } \) and a new \(p_{{\text{O}}_2 } \) -dependent flow regime at low \(p_{{\text{O}}_2 } \) conditions. These observations can be interpreted as resulting from changes in the majority defect species that maintain the charge neutrality within the crystal. A climb-controlled dislocation creep model for the high-temperature deformation of vanadium-doped forsterite is proposed in which either (i) movement of uncharged jogs is rate-limited by the diffusion of silicon via a vacancy mechanism or (ii) movement of positively charged jogs is rate-limited by diffusion of oxygen via a vacancy mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号