首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A large number of Mississippi Valley-Type (MVT) deposits are located within dissolution zones in carbonate host rocks. Some genetic models propose the existence of cavities generated by an earlier event such as a shallow karstification, that were subsequently filled with hydrothermal minerals. Alternative models propose carbonate dissolution caused by the simultaneous precipitation of sulfides. These models fail to explain either the deep geological setting of the cavities, or the observational features which suggest that the dissolution of carbonates and the precipitation of minerals filling the cavities are not strictly coeval. We present a genetic model inspired by the textural characteristics of MVT deposits that accounts for both the dissolution of carbonate and precipitation of sulfides and later carbonates in variable volumes. The model is based on the mixing of two hydrothermal fluids with a different chemistry. Depending on the proportion of the end members, the mixture dissolves and precipitates carbonates even though the two mixing solutions are both independently saturated in carbonates. We perform reactive transport simulations of mixing of a regional groundwater and brine ascending through a fracture, both saturated in calcite, but with different overall chemistries (Ca and carbonate concentrations, pH, etc). As a result of the intrinsic effects of chemical mixing, a carbonate dissolution zone, which is enhanced by acid brines, appears above the fracture, and another zone of calcite precipitation builds up between the cavity and the surrounding rock. Sulfide forms near the fracture and occupies a volume smaller than the cavity. A decline of the fluid flux in the fracture would cause the precipitation of calcite within the previously formed cavities. Therefore, dissolution of carbonate host rock, sulfide precipitation within the forming cavity, and later filling by carbonates may be part of the same overall process of mixing of fluids in the carbonate host rock.Editorial handling: C. Everett  相似文献   

2.
《Applied Geochemistry》2003,18(10):1555-1571
In the context of the proposed low- and intermediate-level radioactive waste repository at Wellenberg (Switzerland), calculations simulating the interaction between hyperalkaline solutions and a fractured marl, at 25 °C, have been performed. The aim of these calculations is to evaluate the possible effects of mineral dissolution and precipitation on porosity and permeability changes in such a fractured marl, and their impact on repository performance. Solute transport and chemical reaction are considered in both a high-permeability zone (fracture), where advection is important, and the wall rock, where diffusion is the dominant transport mechanism. The mineral reactions are promoted by the interaction between hyperalkaline solutions derived from the degradation of cement (a major component of the engineered barrier system in the repository) and the host rock. Both diffusive/dispersive and advective solute transport are taken into account in the calculations. Mineral reactions are described by kinetic rate laws. The fluid flow system under consideration is a two-dimensional porous medium (marl, 1% porosity), with a high-permeability zone simulating a fracture (10% porosity) crossing the domain. The dimensions of the domain are 6 m per 1 m, and the fracture width is 10 cm. The fluid flow field is updated during the course of the simulations. Permeabilities are updated according to Kozeny's equation. The composition of the solutions entering the domain is derived from modeling studies of the degradation of cement under the conditions at the proposed underground repository at Wellenberg. Two different cases have been considered in the calculations. These 2 cases are representative of 2 different stages in the process of degradation of cement (pH 13.5 and pH 12.5). In both cases, the flow velocity in the fracture diminishes with time, due to a decrease in porosity. This decrease in porosity is caused by the precipitation of calcite (replacement of dolomite by calcite) and other secondary minerals (brucite, sepiolite, analcime, natrolite, tobermorite). However, the decrease in porosity and flow velocity is much more pronounced in the lower pH case. The extent of the zone of mineral alteration along the fracture is also much more limited in the lower pH case. The reduction of porosity in the fractures would be highly beneficial for repository performance, since it would mean that the solutions coming from the repository and potentially carrying radionuclides in solution would have to flow through low-conductive rock before they would be able to get to higher-conductive features. The biggest uncertainty in the reaction rates used in the calculations arises from the surface areas of the primary minerals. Additional calculations making use of smaller surface areas have also been performed. The results show that the smaller surface areas (and therefore smaller reaction rates) result in a smaller reactivity of the system and smaller porosity changes.  相似文献   

3.
惠州凹陷东部珠海组储层碱性成岩作用及孔隙演化   总被引:1,自引:0,他引:1  
根据铸体薄片、扫描电镜、粒度分析、X衍射等资料,对惠州凹陷东部珠海组储层的岩石学特征、成岩作用和孔隙演化过程进行分析研究。研究认为,惠州凹陷东部珠海组储层的岩石类型以岩屑砂岩、长石质岩屑砂岩、岩屑质石英砂岩和岩屑质长石砂岩为主,结构成熟度与成分成熟度较低。砂岩埋藏过程中经历了明显的碱性成岩作用:石英的溶蚀与交代、碳酸盐矿物胶结、伊利石和绿泥石的沉淀以及钠长石化等。碱性成岩作用对孔隙的影响包括:石英溶蚀形成次生溶孔、碳酸盐胶结物沉淀损失粒间孔隙、黏土矿物沉淀形成晶间微孔。研究区珠海组主要发育粒内溶孔和粒间溶孔,原生孔隙较少。储层现今处于中成岩阶段A期,早期经历了强烈的压实作用,使其孔隙度由原始孔隙度32.1%降低至8.8%。早成岩阶段为碱性成岩环境,石英溶蚀增孔约0.5%;碳酸盐、硫酸盐、伊利石等胶结物沉淀减孔约2.3%。中成岩阶段A期为酸性成岩环境,硅质、高岭石等胶结物沉淀减孔约1.2%;长石、岩屑等溶蚀增孔约4.3%。最终,储层演化至现今孔隙度10.1%。  相似文献   

4.
The Cretaceous Bashijiqike Formation is the main gas-bearing strata in the northern structural deformation zone of Kuqa subbasin. The acidic dissolution of this formation arose at 5–4Ma, which corresponds to the late burial stage of the Bashijiqike Formation. Variability of interlayer due to rock composition is negligible. Differentiation of acidic dissolution in sandstones was controlled by difference in amount of exogenous acid fluid from underlying strata. For the absence of sedimentary and structural carrier system between the isolated sandstone reservoirs, most fluid-rock systems show relative sealing feature during later burial stage by sealing feature of formation pressure, geochemical characteristics of formation water and content of diagenetic products in sandstones. Variation of sealing effects for different fluid-rock systems is obvious. The pressure coefficient is inversely proportional to acidic dissolved porosity of sandstone reservoirs, indicating that the variation of sealing effects for fluidrock system mainly controls the differentiation of acidic dissolution.  相似文献   

5.
沉积盆地流体活动及其成岩响应   总被引:6,自引:0,他引:6  
盆地流体活动通过改变成岩场的温压和孔隙水介质条件,进而影响到盆地内成岩作用序列、水—岩相互作用以及储层孔隙变化。对于碎屑岩而言,流体活动仅能导致母岩中少部分矿物的溶蚀以及孔隙内溶解与沉淀作用发生,富含二氧化碳和有机酸的流体活动为次生孔隙发育提供条件,超压环境下流体幕式释放既可导致超压体内次生孔隙的发育,又可以导致热流体活动影响区域内浅部储层的成岩异常;对于碳酸盐岩而言,由于碳酸盐岩具有很强的溶解性,盆地流体活动导致碳酸盐岩储层组构及空间发生巨大的变化,其中天水的下渗以及与深部热液或热流体沿断裂或裂缝释放均可导致碳酸盐岩成分、组构、储集空间发生根本性变化,故与盆地流体活动密切相关的风化壳型岩溶储层和构造热液白云岩储层构成碳酸盐岩中最为重要的储层类型。然而,盆地流体活动及其成岩响应研究仍存在许多亟待解决的难点问题,急待深入的研究探索。  相似文献   

6.
Grouting of water-conducting fractures with low-alkali cement is foreseen for the potential future repository for spent nuclear fuel in Finland (ONKALO site). A possible consequence is the formation of high-pH solutions which will be able to react with the host rock. Calculations have been performed including the hydration and simultaneous leaching of the grout. The effect of different possible groundwater compositions has been studied. The results show that after grouting, the duration of the initial high-pH peak is short (<0.5 a), which compares well with observations at a test borehole. Magnesium in the groundwater induces the precipitation of brucite at the grout–fracture interface, which consumes OH. In the longer term, the results show a gradually decaying pH tail (pH < 9) controlled by the precipitation of calcite at the grout–fracture interface. The duration of this tail correlates inversely with the carbonate content of the inflowing groundwater.  相似文献   

7.
采用SYS-1型碳酸盐岩溶蚀速率测定仪,选取四川东北地区5种碳酸盐岩样进行溶蚀实验,研究了三种主要TSR流体产物对碳酸盐岩的改造作用。H2S的溶蚀能力相对较强,在120℃温度下对微晶灰岩的溶蚀率可达17.09%;CO2的溶蚀能力次之;水的溶蚀作用可以忽略不计。H2S和CO2这两种酸性溶液的溶蚀能力从常温到200℃呈较强—强—弱的变化趋势,其中CO2的最大溶蚀率所处温度范围为60~90℃,H2S的最大溶蚀率所处温度范围为60~150℃。TSR产物中的酸性气体可以对储层进行改造,但不一定能够改良储层,而TSR过程中石膏向方解石的转变可以使储层孔隙度增加,从而改良储层物性。  相似文献   

8.
酸性流体对碳酸盐岩储层的改造作用   总被引:13,自引:1,他引:12  
普遍认为CO2、有机酸及H2S是碳酸盐岩储层溶蚀作用的酸性流体。CO2对碳酸盐岩储层的溶蚀作用已有不少学者进行了研究,本文则以一个全新的模拟实验方式对不同类型碳酸盐岩在有机酸和H2S水溶液中的相对溶蚀能力进行了研究,结果发现随温度从常温升高至200℃,有机酸对碳酸盐岩的溶蚀能力由弱变强再变弱,在90℃左右溶蚀能力最强。而H2S水溶液对碳酸盐岩的溶蚀作用则明显不同,60℃时基本达到最大溶蚀率,温度继续升高后,溶蚀能力一直维持在较高的水平并略有增加,150℃后突然降低。由于H2S主要是硫酸盐高温热还原产物(TSR),因而在碳酸盐岩成岩早期阶段,溶蚀作用的流体可能主要是有机酸和C02,而在深埋阶段,H2S水溶液则可能是溶蚀作用的主要流体。  相似文献   

9.
为了研究碳酸盐岩储层原油裂解过程中硫、钙元素赋存状态的变化,采集塔河油田TK772井奥陶系鹰山组产层的原油,通过半开放实验体系"地层孔隙热压生排烃模拟仪"开展仿真地层条件的成气模拟实验,利用同步辐射X射线吸收近边结物(XANES)技术对固体产物中的硫、钙元素的化学赋存状态进行精确检测。结果表明,原油直接裂解(原油+灰岩实验(系列1))固体产物中含硫化合物以噻吩类和硫酸钙为主,是原油裂解过程中部分噻吩类物质被氧化的结果;含钙化合物以碳酸钙为主。有溶解硫酸盐存在的原油裂解(原油+灰岩+硫酸镁实验(系列2))固体产物中含硫化合物以硫酸钙为主,噻吩类为辅,可能是溶解硫酸盐(硫酸镁)的加入、硫酸盐热化学还原反应(TSR)和溶蚀-沉淀作用共同作用的结果。系列2中伴随着温压的升高,H2S的生成和硫酸钙相对百分含量增加,指示原油裂解过程中发生了硫酸盐热化学还原反应(TSR);硫酸钙的生成和富集表明,TSR过程产生的酸性流体可以对碳酸盐岩储层产生明显的溶蚀作用,同时可能会生成次生膏盐。  相似文献   

10.
碳酸盐岩储层油气储量丰富,经过长期的地质构造运动形成了复杂的缝洞结构,给油气开采工作带来了一定的难度,针对这一工程问题本文采用自主研发的岩溶演化模拟软件KarstEvolSys为数值模拟工具,研究裂缝密度和降雨补给量对碳酸盐岩岩体溶蚀演化的影响,通过控制嵌入基质体中的裂缝数量和水流补给到系统中的流速来完成模拟。研究发现:当降雨补给量不变时,基质体内嵌入的裂缝条数越多,每一裂缝捕获水流量越少,从而导致裂缝系统开度增加速率减慢,岩体的溶蚀速率变缓;当对同一岩溶系统分别补给不同的降雨量时,由于水流对系统中Ca2+浓度的稀释作用,促进了水岩化学反应,加速了含CO2的水流对裂缝壁的溶蚀,导致岩体溶蚀速率随着降雨补给量的增加而增加。  相似文献   

11.
Mineral precipitation in the pores of a rock may exert a force, which is called crystallization pressure. This process has been studied experimentally and results bring a new look on the way fractures may develop and seal in natural systems. Cylindrical core samples of porous limestone and sandstone were left for several weeks in contact with an aqueous solution saturated with sodium chloride, at 30 or 45 °C, under axial normal stress in the range 0.02–0.26 MPa. The fluid was allowed to rise in the core samples by capillary forces, up to a controlled height where evaporation and precipitation occurred. The uniaxial deformation of the samples was measured using high-resolution displacement sensors. The samples were characterized using computed X-ray tomography, allowing therefore imaging in 3D the intensity and localization of the damage. Two kinds of damage could be observed. Firstly, small rock fragments were peeled from the sample surface. Secondly, and more interestingly, fracture networks developed, by nucleation of microcracks at the interface where evaporation occurred, and propagation to the free surface. Two families of fractures could be identified. A first set of sealed fracture parallel to the evaporation front is directly induced by crystallization pressure. A second fracture network, perpendicular to the evaporation front, accommodates the first set of fractures. An analytical model where fluid flow is coupled to evaporation, vapour transport, and localization of mineral precipitation explains the shape of this fracture network.  相似文献   

12.
埋藏成岩过程中碳酸盐的溶解与沉淀强烈控制着深埋藏地层中碳酸盐岩储层质量,与之有关的地质过程是人们多年来不懈研究的热点领域。热流体沿断裂向上运移所造成的碳酸盐溶解成为近年人们普遍认可的模式,但这不能圆满解释大量存在的不与断裂伴生的深埋藏碳酸盐的溶解机制。基于四川盆地东北部和塔里木盆地北部深埋藏碳酸盐溶解与沉淀机制的研究,认为埋藏过程中盆地的沉降与抬升是碳酸盐溶解与沉淀以及次生孔隙发育的另一重要机制,在改变流体对碳酸盐饱和状况方面具有和热流体沿断裂向上运移相同的重要性。研究表明:与川东北飞仙关组类似的埋藏历史更有利于深埋藏成岩过程中碳酸盐的溶解,主要特点是当前埋藏深度不是最大埋藏深度,在最大埋藏深度附近发生热化学硫酸盐还原作用,其后盆地持续抬升造成温度降低和碳酸盐溶解,与之有关的次生孔隙形成所造成的岩石力学性质的变化与上覆载荷减小可以得到平衡,次生孔隙得以保存,岩石储层质量改善;塔里木盆地北部的奥陶系埋藏历史不利于深埋藏成岩过程碳酸盐的溶解,主要特点是当前埋藏深度是最大埋藏深度,古喀斯特发生之后盆地持续沉降造成温度升高和碳酸盐沉淀,并与上覆载荷的增加同步发生,结果是孔隙的封堵、岩石的致密化和储层质量的变差。  相似文献   

13.
Carbon dioxide enhanced oil recovery (CO2-EOR) has been widely applied to the process of carbon capture, utilization, and storage (CCUS). Here, we investigate CO2–oil–water–rock interactions under reservoir conditions (100 °C and 24 MPa) in order to understand the fluid–rock interactions following termination of a CO2-EOR project. Our experimental results show that CO2-rich fluid remained the active fluid controlling the dissolution–precipitation processes in an oil-undersaturated sandstone reservoir; e.g., the dissolution of feldspar and calcite, and the precipitation of kaolinite as well as solid phases comprising O, Si, Al, Na, C, and Ti. Mineral dissolution rates were reduced in the case that mineral surfaces were coated by oil. Mineral wettability and composition, and oil saturation were the main controls on the exposed surface area of grains, and mineral wettability in particular led to selective dissolution. In addition, the permeability of the reservoir decreased substantially due to the precipitation of kaolinite and solid-phase particles, and due to the clogging of less soluble mineral particles released by the dissolution of K-feldspar and carbonate cement, whereas porosity increased. The results provide insight into potential formation damage resulting from CO2-EOR projects.  相似文献   

14.
A numerical model is presented to describe the evolution of fracture aperture (and related permeability) mediated by the competing chemical processes of pressure solution and free‐face dissolution/precipitation; pressure (dis)solution and precipitation effect net‐reduction in aperture and free‐face dissolution effects net‐increase. These processes are incorporated to examine coupled thermo‐hydro‐mechano‐chemo responses during a flow‐through experiment, and applied to reckon the effect of forced fluid injection within rock fractures at geothermal and petroleum sites. The model accommodates advection‐dominant transport systems by employing the Lagrangian–Eulerian method. This enables changes in aperture and solute concentration within a fracture to be followed with time for arbitrary driving effective stresses, fluid and rock temperatures, and fluid flow rates. This allows a systematic evaluation of evolving linked mechanical and chemical processes. Changes in fracture aperture and solute concentration tracked within a well‐constrained flow‐through test completed on a natural fracture in novaculite (Earth Planet. Sci. Lett. 2006, in press) are compared with the distributed parameter model. These results show relatively good agreement, excepting an enigmatic abrupt reduction in fracture aperture in the early experimental period, suggesting that other mechanisms such as mechanical creep and clogging induced by unanticipated local precipitation need to be quantified and incorporated. The model is applied to examine the evolution in fracture permeability for different inlet conditions, including localized (rather than distributed) injection. Predictions show the evolution of preferential flow paths driven by dissolution, and also define the sense of permeability evolution at field scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
地下孔隙率和渗透率在空间和时间上的变化及影响因素   总被引:18,自引:5,他引:18  
黄思静  侯中健 《沉积学报》2001,19(2):224-231
地下岩石孔隙率和渗透率在空间和时间上的变化受众多因素控制,总的说来,包括沉积与成岩两个最为主要的因素。沉积盆地的性质和沉积环境控制了沉积物的组成、岩石的结构和原生孔隙。沉积作用所经历的时间相对较短而进程较快;成岩作用所经历的时间相对较长而进程较慢。从对孔隙率和渗透率的控制作用来说,成岩作用的研究难度相对较大。近年来,一些传统的形成地下岩石次生孔隙的机制受到挑战,这些传统机制中最为主要的是有机酸对铝硅酸溶解形成次生孔隙,但这会造成介质pH值的升高,碳酸盐矿物和高岭石的沉淀。地下岩石中碳酸水溶解产生的次生孔隙也是有限的。新的机制如大气淡水的溶解作用,深部冷却地下水的溶解作用,硅酸盐的水解都得到了人们的普遍接受,这对于次生孔隙成因的解释及地下岩石孔隙率和渗透率的预测十分重要。对于碳酸盐岩来说,与不整合面附近的古喀斯特有关的油气藏得到了更多的关注。深埋藏过程中碳酸盐岩成岩作用的研究中,温度和压力的影响对不同碳酸盐矿物溶解及沉淀作用的差异性控制了地下碳酸盐岩孔隙率和渗透率分布.  相似文献   

16.
陈圆圆  于炳松 《沉积学报》2012,30(2):219-230
 碳酸盐岩作为一种化学岩类其物性受成岩作用的影响十分明显,溶解作用是否发育直接关系到碳酸盐岩储层质量的好坏。碳酸盐矿物在埋藏环境中的溶解度与地层水的化学成分、环境的温度、pH等有着密切的关系。利用地层水化学资料,根据化学热力学的理论,通过方解石及白云石与地层水作用的平衡反应,计算吉布斯自由能变化ΔG,以此来判断方解石及白云石的溶解趋势,并建立了封闭系统中这两种矿物与水作用的热力学模型。根据这个理论模型,对塔北地区159口井奥陶系及6口井的寒武系地层水进行了ΔG的计算,结果显示,塔北地区碳酸盐岩与地层水反应的ΔG基本为负值,表明该地区总体处于碳酸盐岩溶解的环境,寒武系白云岩反应的自由能小于奥陶系灰岩,即在这种深埋条件下白云岩比灰岩更易溶解,这一点在实际岩芯资料上及前人的实验模拟中均有显示。塔北于奇地区自由能的计算结果也为负值,说明该地区强烈的充填作用并非发生在现今条件下,于奇地区现今的埋藏环境是有利于碳酸盐矿物溶解的,这一结论也在该地区奥陶系及寒武系岩芯上得到了验证。
   相似文献   

17.
 This article provides a critical synopsis of the effects of groundwater flow on mineral diagenesis. Emphasis is placed on those aspects and processes that change porosity and permeability in carbonate aquifers, because they are of particular importance to human societies as sources of supplies of water for human consumption (drinking, irrigation) and of crude oil and natural gas. Diagenetic settings in carbonates as well as clastics are generally ill defined. This paper proposes a new comprehensive classification of diagenetic settings into near-surface, shallow-, intermediate-, and deep-burial diagenetic settings; hydrocarbon-contaminated plumes; and fractures. These settings are defined on the basis of mineralogy, petroleum, hydrogeochemistry, and hydrogeology. This classification is applicable to all sedimentary basins. Diagenesis is governed by various intrinsic and extrinsic factors that include thermodynamic and kinetic constraints, as well as microstructural factors that may override the others. These factors govern diagenetic processes, such as dissolution, compaction, recrystallization, replacement, and sulfate–hydrocarbon redox-reactions. Processes such as cementation, dissolution, and dolomitization require significant flow of groundwater driven by an externally imposed hydraulic gradient. Other processes, such as stylolitization and thermochemical sulfate reduction, commonly take place without significant groundwater flow in hydrologically nearly or completely stagnant systems that are geochemically "closed." Two major effects of groundwater flow on mineral diagenesis are enhancement and reduction of porosity and permeability, although groundwater flow can also leave these rock properties essentially unchanged. In extreme cases, an aquifer or hydrocarbon reservoir rock can have highly enhanced porosity and permeability due to extensive mineral dissolution, or it can be plugged up due to extensive mineral precipitation. Received, April 1998 · Revised, July 1998 · Accepted, September 1998  相似文献   

18.
Within the framework of the HPF project (Hyperalkaline Plume in Fractured Rock) at the Grimsel Test Site (Switzerland), a small scale core infiltration experiment was performed at the University of Bern. A high-pH solution was continuously injected, under a constant pressure gradient, into a cylindrical core of granite containing a fracture. This high-pH solution was a synthetic version of solutions characteristic of early stages in the degradation of cement. The interaction between the rock and the solutions was reflected by significant changes in the composition of the injected solution and a decrease in the permeability of the rock. Changes in the mineralogy and porosity of the fault gouge filling the fracture were only minor. One-dimensional reactive transport modeling, using a modified version of the GIMRT code, was used to interpret the results of the experiment. Dispersive and advective solute transport, mineral reaction kinetics and a coupling between porosity and permeability changes were taken into account. In order to obtain a reasonable agreement between models and experimental results, reactive surface areas of the order of 105 m2/m3 rock had to be used. These values are much smaller than the values measured for the fault gouge filling the fracture, which are in the order of 106–107 m2/m3 rock. However, the results could be improved by adding a small fraction of fine grained mineral, which could explain the high initial peaks in Al and Si concentration. With the inclusion of this fine grained fraction, the initial surface areas in the model were within the range of the measured specific surface areas of the fault gouge. The fact that the decrease in permeability was significant despite the minor changes in mineralogy, suggests that permeability may be controlled by changes in the structure of the rock (pore geometries) rather than by only the bulk volumetric (porosity) changes.  相似文献   

19.
Borehole studies of the Soultz-sous-Forêts granite are dedicated to deep geothermics. The hydraulic properties of the reservoir are mainly controlled by the occurrence of some altered cataclastic shear zones showing a low natural permeability characterized by the occurrence of brines. Those zones show a fracture cluster organisation with sealed fractures of various types (post-filled joints, sheared fractures, veins). The main hydrothermal deposits observed within the permeable zones are geodic quartz, carbonates, illite and more locally sulphides. The fracture wall–rocks are intensely transformed: dissolution of igneous minerals, crystallization of new minerals, porosity and permeability increase. It is important to characterize the newly-formed minerals in order to choose the reagents used to improve the permeability of the exchanger by chemical stimulations. This article represents a synthesis of the studies completed by the authors between 1990 and 2008 on the fracture networks, hydrothermal alterations and mineral crystallizations they induced and data about the flow pathways in the exchanger.  相似文献   

20.
四川盆地东北部三叠系飞仙关组存在广泛的硫酸盐还原作用,同时地层中也存在锶含量异常高的成岩流体。研究表明:热化学硫酸盐还原作用(TSR)和(或)细菌硫酸盐还原作用(BSR)造成的SO42-离子的消耗对成岩孔隙流体中SrSO4溶解度的改变是三叠系中高Sr成岩流体的形成机制之一,该机制使得孔隙流体从白云石化作用和碳酸盐矿物的新生变形作用中获得的Sr在流体中以高浓度的Sr2+形式存在,并使之在流体中极度富集,这也是四川盆地东北部三叠系中大型和超大型天青石矿床的形成机制之一。H2S和CO2是硫酸盐还原作用的重要产物,不同温度条件下溶于水中的H2S和CO2,与不溶于水的气体分子之间的平衡反应H2S(aq)H2S(g)和CO2(aq)CO2(g)的平衡常数和吉布斯自由能增量计算表明,当温度从25℃升高至220℃时,两个反应的平衡常数分别大致从10增至240和从20增至500,两个反应的平衡常数都始终大于1,说明H2S和CO2更趋向于以气体形式存在,同时温度越高,系统中以气体形式存在的H2S和CO2会越多,溶解于水中的H2S和CO2会越少,因而在深埋藏的高温条件下,H2S和CO2对碳酸盐矿物的溶解能力可能相对很小。相对低温的成岩环境、高温流体的向上和侧向运移、构造抬升、富氧流体与含有H2S流体的混合以及金属硫化物的沉淀是提高含H2S和(或)CO2流体对碳酸盐矿物溶解能力的五个途径。因此,与较早成岩阶段相对浅埋藏环境的碳酸盐溶解作用有关的H2S和CO2流体可能与细菌硫酸盐还原作用(BSR)关系更为密切;断层或其它流体运移通道是高温含有H2S和CO2流体向上运移的基础条件,具有原生孔隙度和渗透率的礁、滩相高能沉积物也是流体发生侧向运移的先决条件;大幅度的构造抬升造成的地层温度降低是提高含H2S和(或)CO2地层流体对碳酸盐矿物溶解能力的重要因素,地壳抬升至近地表造成的古喀斯特作用也可以为H2S的氧化提供良好的地质环境。在有关的勘探中应注意:在断层等流体运移通道造成高温含H2S和CO2流体向上运移的条件下,与之有关的构造低点应该是主要的勘探目标;在燕山运动导致的地层抬升并导致深部热流体降温的条件下,与之有关的构造高点应该是主要的勘探目标,应分别对待。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号