首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon dioxide sequestration in deep aquifers and depleted oilfields is a potential technical solution for reducing green-house gas release to the atmosphere: the gas containment relies on several trapping mechanisms (supercritical CO2, CO2(sc), dissolution together with slow water flows, mineral trapping) and on a low permeability cap-rock to prevent CO2(sc), which is less dense than the formation water, from leaking upwards. A leakproof cap-rock is thus essential to ensure the sequestration efficiency. It is also crucial for safety assessment to identify and assess potential alteration processes that may damage the cap-rock properties: chemical alteration, fracture reactivation, degradation of injection borehole seals, etc. The reactivity of the host-rock minerals with the supercritical CO2 fluid is one of the potential mechanisms, but it is altogether unknown. Reactivity tests have been carried out under such conditions, consisting of batch reactions between pure minerals and anhydrous supercritical CO2, or a two-phase CO2/H2O fluid at 200?°C and 105/160 bar. After 45 to 60 days, evidence of appreciable mineral-fluid reactivity was identified, including in the water-free experiments. For the mixed H2O/CO2 experiments, portlandite was totally transformed into calcite; anorthite displayed many dissolution patterns associated with calcite, aragonite, tridymite and smectite precipitations. For the anhydrous CO2 experiments, portlandite was totally carbonated to form calcite and aragonite; anorthite also displayed surface alteration patterns with secondary precipitation of fibrous calcite. To cite this article: O. Regnault et al., C. R. Geoscience 337 (2005).  相似文献   

2.
Reservoir and cap-rock core samples with variable lithology's representative of siliciclastic reservoirs used for CO2 storage have been characterized and reacted at reservoir conditions with an impure CO2 stream and low salinity brine. Cores from a target CO2 storage site in Queensland, Australia were tested. Mineralogical controls on the resulting changes to porosity and water chemistry have been identified. The tested siliciclastic reservoir core samples can be grouped generally into three responses to impure CO2-brine reaction, dependent on mineralogy. The mineralogically clean quartzose reservoir cores had high porosities, with negligible change after reaction, in resolvable porosity or mineralogy, calculated using X-ray micro computed tomography and QEMSCAN. However, strong brine acidification and a high concentration of dissolved sulphate were generated in experiments owing to minimal mineral buffering. Also, the movement of kaolin has the potential to block pore throats and reduce permeability. The reaction of the impure CO2-brine with calcite-cemented cap-rock core samples caused the largest porosity changes after reaction through calcite dissolution; to the extent that one sample developed a connection of open pores that extended into the core sub-plug. This has the potential to both favor injectivity but also affect CO2 migration. The dissolution of calcite caused the buffering of acidity resulting in no significant observable silicate dissolution. Clay-rich cap-rock core samples with minor amounts of carbonate minerals had only small changes after reaction. Created porosity appeared mainly disconnected. Changes were instead associated with decreases in density from Fe-leaching of chlorite or dissolution of minor amounts of carbonates and plagioclase. The interbedded sandstone and shale core also developed increased porosity parallel to bedding through dissolution of carbonates and reactive silicates in the sandy layers. Tight interbedded cap-rocks could be expected to act as baffles to fluids preventing vertical fluid migration. Concentrations of dissolved elements including Ca, Fe, Mn, and Ni increased during reactions of several core samples, with Mn, Mg, Co, and Zn correlated with Ca from cap-rock cores. Precipitation of gypsum, Fe-oxides and clays on seal core samples sequestered dissolved elements including Fe through co-precipitation or adsorption. A conceptual model of impure CO2-water-rock interactions for a siliciclastic reservoir is discussed.  相似文献   

3.
The aim of this experimental study was to evaluate and compare the geochemical impact of pure and impure CO2 on rock forming minerals of possible CO2 storage reservoirs. This geochemical approach takes into account the incomplete purification of industrial captured CO2 and the related effects during injection, and provides relevant data for long-term storage simulations of this specific greenhouse gas. Batch experiments were conducted to investigate the interactions of supercritical CO2, brine and rock-forming mineral concentrates (albite, microcline, kaolinite, biotite, muscovite, calcite, dolomite and anhydrite) using a newly developed experimental setup. After up to 42 day (1000 h) experiments using pure and impure supercritical CO2 the dissolution and solution characteristics were examined by XRD, XRF, SEM and EDS for the solid, and ICP–MS and IC for the fluid reactants, respectively. Experiments with mixtures of supercritical CO2 (99.5 vol.%) and SO2 or NO2 impurities (0.5 vol.%) suggest the formation of H2SO4 and HNO3, reflected in pH values between 1 and 4 for experiments with silicates and anhydrite and between 5 and 6 for experiments with carbonates. These acids should be responsible for the general larger amount of cations dissolved from the mineral phases compared to experiments using pure CO2. For pure CO2 a pH of around 4 was obtained using silicates and anhydrite, and 7–8 for carbonates. Dissolution of carbonates was observed after both pure and impure CO2 experiments. Anhydrite was corroded by approximately 50 wt.% and gypsum precipitated during experiments with supercritical CO2 + NO2. Silicates do not exhibit visible alterations during all experiments but released an increasing amount of cations in the reaction fluid during experiments with impure CO2. Nonetheless, precipitated secondary carbonates could not be identified.  相似文献   

4.
Thermodynamic numerical simulations were carried out to determine the principal simple and complex migration species of Ca, Mg, Na, K, Al, B, Mn, Mo, Sr, and U with Cl, OH, SO4?2, HCO3?, and CO32? in waters at the Lomonosov diamond deposit and to estimate the saturation indexes with respect to kaolinite, Na- and Mg-montmorillonite, Mg- and Na-saponite, muscovite and paragonite, biotite, phlogopite, chromite, pyrite, plagioclase (anorthite, labradorite, and andesine), olivine (forsterite and fayalite), diopside, pyrope, gypsum, anhydrite, barite, magnesite, calcite, dolomite, talc, chrysotile, chlorite, goethite, quartz, microcline, and albite. The waters are proved not to be saturated with respect to the primary (hydrothermal) minerals. The saturation of certain water samples with uranophane suggests that this mineral is of secondary genesis. The ascent of highly mineralized deep waters shall result in the dissolution of minerals whose concentrations are near the saturation ones. To maintain the ecological standards of the discharged waters, they should be diluted and/or purified by adsorbing dissolved U on a reducing reactive barrier.  相似文献   

5.
The potential for metal release associated with CO2 leakage from underground storage formations into shallow aquifers is an important consideration in assessment of risk associated with CO2 sequestration. Metal release can be driven by acidification of groundwaters caused by dissolution of CO2 and subsequent dissociation of carbonic acid. Thus, acidity is considered one of the main drivers for water quality degradation when evaluating potential impacts of CO2 leakage. Dissolution of carbonate minerals buffers the increased acidity. Thus, it is generally thought that carbonate aquifers will be less impacted by CO2 leakage than non-carbonate aquifers due to their high buffering potential. However, dissolution of carbonate minerals can also release trace metals, often present as impurities in the carbonate crystal structure, into solution. The impact of the release of trace metals through this mechanism on water quality remains relatively unknown. In a previous study we demonstrated that calcite dissolution contributed more metal release into solution than sulfide dissolution or desorption when limestone samples were dissolved in elevated CO2 conditions. The study presented in this paper expanded our work to dolomite formations and details a thorough investigation on the role of mineral composition and mechanisms on trace element release in the presence of CO2. Detailed characterization of samples from dolomite formations demonstrated stronger associations of metal releases with dissolution of carbonate mineral phases relative to sulfide minerals or surface sorption sites. Aqueous concentrations of Sr2+, CO2+, Mn2+, Ni2+, Tl+, and Zn2+ increased when these dolomite rocks were exposed to elevated concentrations of CO2. The aqueous concentrations of these metals correlate to aqueous concentrations of Ca2+ throughout the experiments. All of the experimental evidence points to carbonate minerals as the dominant source of metals from these dolomite rocks to solution under experimental CO2 leakage conditions. Aqueous concentrations of Ca2+ and Mg2+ predicted from numerical simulation of kinetic dolomite dissolution match those observed in the experiments when the surface area is three to five orders of magnitude lower than the surface area of the samples measured by gas adsorption.  相似文献   

6.
Biotite dissolution experiments were carried out to better understand the dissolution kinetics and Fe behavior under low O2 conditions, and to give an insight into the Precambrian weathering. Mineral dissolution with a continuous flow-through reactor was employed at 25 °C for up to 65 days varying partial pressure of atmospheric oxygen (PO2), pH (6.86 and 3.01) and Fe content in mineral (1.06 and 0.11 mol of Fe per O10(OH,F)2 for biotite and phlogopite, respectively) independently for the examination of their effects on biotite dissolution. Low PO2 conditions were achieved in a newly developed glove box (PO2 ? 6 × 10−4 atm; referred to as anoxic conditions), which was compared to the present, ambient air conditions (0.2 atm of PO2; oxic conditions). The biotite dissolution rate was slightly faster under anoxic conditions at pH 6.86 while it was not affected by PO2 at pH 3.01. There was no direct effect of Fe content on dissolution rate at pH 6.86 while there was a small difference in dissolution rate between biotite and phlogopite at pH 3.01. The 1.5 order-of-magnitude faster release rate of Fe under anoxic conditions for biotite dissolution at pH 6.86 resulted from the difference in ratio of Fe3+ precipitates remaining in the reactor to Fe dissolved (about 60% and 100% under anoxic and oxic conditions, respectively), which is caused mainly by the difference in PO2. The results infer that the Fe2+ and Fe3+ contents in the Paleoproterozoic paleosols, fossil weathering profiles, are reflected by atmospheric oxygen levels at the time of weathering.  相似文献   

7.
石墨尾矿作为一类二次资源,当云母类矿物的含量在10%以上时,具有回收利用价值。黑龙江某地石墨尾矿中含有10%以上的云母类矿物,但其细度(500~800目)低于常规的云母矿,本文采用X射线衍射(XRD)分析矿物组成,再结合化学分析、扫描电镜-能谱、光学显微镜与纯矿物进行对比,由此鉴定云母类矿物种属。XRD研究初步表明石墨尾矿含有的云母族矿物属于白云母亚类或黑云母亚类。扫描电镜分析表明尾矿中的云母矿物与纯绢云母矿物均以片状和鳞片状为主要存在形态,而纯黑云母主要以片状形式存在。尾矿的Si O2含量为5%~13%,Al2O3含量为4%~8%,与纯绢云母接近。光学显微镜鉴定显示在正交偏光下石墨尾矿中的云母颜色和纯绢云母类似,而与纯黑云母截然不同。综合以上结果最终可确定该地石墨尾矿中的云母族矿物为白云母亚类中的绢云母。本研究为后续石墨尾矿的选矿工艺奠定了基础,也可应用于类似细度绢云母的鉴定。  相似文献   

8.
The Cambrian–Ordovician Knox Group, a thick sequence of dolostone and minor dolomitic sandstone, is a prospective CO2 sequestration target in the southern Illinois Basin, USA. Thorough evaluation of the Knox Group is critical because the main sequestration target elsewhere in the Illinois Basin, the Cambrian Mount Simon Sandstone, is thin or absent throughout most of Kentucky. A 2477-m-deep carbon storage test well in Hancock County, Kentucky, was drilled, and 626 metric tons of CO2 was injected into the Knox saline reservoirs. To understand the long-term fate of CO2 injected into the Knox reservoirs, geochemical reactions between CO2, brine and rock-forming minerals were modeled using TOUGHREACT. The modeling benefited from a robust data set collected from the test well, including core porosity and permeability, petrographic and X-ray powder diffraction mineralogy, brine chemistry, temperature and pressure measurements. Kinetic batch models and 2-D radial reactive transport models were used to evaluate the migration of the injected CO2, changes in brine chemistry, and mineral dissolution and precipitation. Results from the kinetic models suggest that sections of the Knox dominated by dolomite have very limited mineral-trapping capacity for CO2, whereas thin sections of dolomitic sandstone with aluminosilicate minerals such as K-feldspar facilitate mineral trapping. The 2-D model for the CO2 injection test suggests that, because of the presence of thick permeable intervals in the Knox and the small volume of injected CO2 in the test, the radius of influence is less than 11 m from the well. The hypothetical long-term injection model indicates, on the other hand, that commercial-scale injection would influence a much larger area and part of the injected CO2 remains in the supercritical/gas phase for a long time. Because of the buoyancy effect, most supercritical/gas-phase CO2 migrates upward and stays in the top of the reservoirs dominated by dolomite with small mineral-trapping capacity.  相似文献   

9.
We conducted CO2–water–rock interaction experiments to elucidate the dissolution characteristics and geochemical trapping potential of three different altered andesitic to rhyolitic tuffaceous rocks (Tsugawa, Ushikiri and Daijima tuffaceous rock) relative to fresh mid-ocean ridge basalt. The experiments were performed under 1 MPa CO2 pressure to reproduce the water–rock–CO2 interactions in CO2 storage situations. Basalt showed high acid neutralization potential and rapid dissolution of silicate minerals. Two of the tuffaceous rocks (Ushikiri and Daijima) showed relatively high solubility trapping potential, mainly due to the dissolution of carbonate minerals in the andesitic Ushikiri tuffaceous rock and the ion-exchange reaction with zeolite minerals in the rhyolitic Daijima tuffaceous rock. The mineral trapping potential of the Ushikiri tuffaceous rock was found to be relatively high, due to the rapid dissolution of Mg- and Ca-bearing silicate minerals. Our experimental results suggest that regions of porous and andesitic tuffaceous rock hold global promise as CO2 storage sites.  相似文献   

10.
To understand the initial reactions of granite in a CO2-saturated hydrothermal system, experiments were conducted using a batch-type autoclave over a temperature range of 100–350 °C at up to 250 bar and numerical computations of phase equilibria based on the experimental results were carried out. The experiments showed that the dissolution of granite and the deposition of secondary minerals were encouraged by the addition of CO2. Solution chemistry and examination of the granite’s surface texture suggested that its initial dissolution is characterized by the release of Na and Ca (from the dissolution of plagioclase) and that initial precipitation occurs by deposition of some secondary minerals on to plagioclase and/or biotite in the CO2-saturated system. However, the effect of CO2 was small at 350 °C owing to the low activity of H2CO3. According to EDX analysis and numerical phase equilibrium calculations, the secondary minerals formed might be kaolinite, muscovite, smectite and calcite. That is, the granite as a whole might have the potential to take-up dissolved CO2. The results suggest that the alteration of granite under CO2-saturated hydrothermal conditions has the potential to capture CO2 when it is injected at moderate temperatures (150–250 °C) into granite-hosted rock masses.  相似文献   

11.
A laboratory geochemical study was conducted using a drill core sample of cap rock from the Surat Basin, Australia, to investigate the effect of NO2 contained in the CO2 gas exhausted from the oxyfuel combustion process (oxyfuel combustion CO2) on the cap rock. A gas (CO2 containing NO2) was prepared to simulate the exhaust gas produced from the oxyfuel combustion process. Two types of gases (pure CO2 and CO2 containing SO2) were also prepared as reference gases. The effect of NO2 on cap rock was studied experimentally using these gases. No differences in the amounts of leached ions and pH changes for CO2 containing NO2 (36 ppmv), pure CO2, and CO2 containing SO2 (35 ppmv) existed. The pH values decreased immediately after CO2 gas injection but increased with time as a result of mineral buffering. Leaching of Fe, Mg, Ca, and K was suggested to have occurred as the result of dissolution of Fe-chlorite, prehnite and illite-smectite mixed layer clay in the shale sample. The amounts of Ca, Fe, and Mg leached with CO2 containing NO2 (318 ppmv) were higher than those for pure CO2. For the mixture containing 318 ppmv NO2, the pH increased more than that for the other gas conditions immediately after the pH fall at the start of the experiment, because oxidation-reduction reactions occurred between Fe2+ and NO3. Moreover, the results indicated that some of the leached Ca and Fe were deposited on the shale sample because of the pH increase. Therefore, we concluded that the effects of NO2 on mineral dissolution and pH changes of formation water are negligible when oxyfuel combustion CO2 containing about 30 ppmv of NO2 is injected into an underground aquifer. In addition, even if about 300 ppmv NO2 is accidentally injected into the underground aquifer, mineral dissolution is suppressed due to the buffering of pH decrease after gas injection.  相似文献   

12.
Compositions of the major phenocryst minerals (olivine, phlogopite) and groundmass minerals (olivine, phlogopite, kalsilite), and a glass phase have been determined from a biotite mafurite occurring as an ejected block in the highly K-rich ultramafic rocks of south west Uganda. Comparison of the phenocryst mineral compositions with those determined from recent high pressure experiments on biotite mafurite composition suggests this rock may have formed by partial melting of a K-enriched mantle source containing both H2O and CO2 at approximately 1,250 ° C and 30 kb. The absence of crystalline leucite but its presence as a major component of the glass phase and textural relations in the groundmass indicate that the final consolidation of the biotite mafurite took place at pressures greater than atmospheric. The presence of phlogopite, olivine, kalsilite, and glass mainly of leucite composition may suggest that consolidation took place under the conditions where these phases were in equilibrium. Based on the experimentally determined conditions for the reaction of phlogopite break down to olivine+kalsilite +liquid+vapor, a crude estimation of the consolidation conditions for ejected blocks of biotite mafurite are 1,150 °–1,180 ° C at a of 1–2 kb.  相似文献   

13.
In order to evaluate the extent of CO2–water–rock interactions in geological formations for C sequestration, three batch experiments were conducted on alkali feldspars–CO2–brine interactions at 150–200 °C and 300 bars. The elevated temperatures were necessary to accelerate the reactions to facilitate attainable laboratory measurements. Temporal evolution of fluid chemistry was monitored by major element analysis of in situ fluid samples. SEM, TEM and XRD analysis of reaction products showed extensive dissolution features (etch pits, channels, kinks and steps) on feldspars and precipitation of secondary minerals (boehmite, kaolinite, muscovite and paragonite) on feldspar surfaces. Therefore, these experiments have generated both solution chemistry and secondary mineral identity. The experimental results show that partial equilibrium was not attained between secondary minerals and aqueous solutions for the feldspar hydrolysis batch systems. Evidence came from both solution chemistry (supersaturation of the secondary minerals during the entire experimental duration) and metastable co-existence of secondary minerals. The slow precipitation of secondary minerals results in a negative feedback in the dissolution–precipitation loop, reducing the overall feldspar dissolution rates by orders of magnitude. Furthermore, the experimental data indicate the form of rate laws greatly influence the steady state rates under which feldspar dissolution took place. Negligence of both the mitigating effects of secondary mineral precipitation and the sigmoidal shape of rate–ΔGr relationship can overestimate the extent of feldspar dissolution during CO2 storage. Finally, the literature on feldspar dissolution in CO2-charged systems has been reviewed. The data available are insufficient and new experiments are urgently needed to establish a database on feldspar dissolution mechanism, rates and rate laws, as well as secondary mineral information at CO2 storage conditions.  相似文献   

14.
Capturing CO2 from point sources and storing it in geologic formations is a potential option for allaying the CO2 level in the atmosphere. In order to evaluate the effect of geological storage of CO2 on rock-water interaction, batch experiments were performed on sandstone samples taken from the Altmark reservoir, Germany, under in situ conditions of 125 °C and 50 bar CO2 partial pressure. Two sets of experiments were performed on pulverized sample material placed inside a closed batch reactor in (a) CO2 saturated and (b) CO2 free environment for 5, 9 and 14 days. A 3M NaCl brine was used in both cases to mimic the reservoir formation water. For the “CO2 free” environment, Ar was used as a pressure medium. The sandstone was mainly composed of quartz, feldspars, anhydrite, calcite, illite and chlorite minerals. Chemical analyses of the liquid phase suggested dissolution of both calcite and anhydrite in both cases. However, dissolution of calcite was more pronounced in the presence of CO2. In addition, the presence of CO2 enhanced dissolution of feldspar minerals. Solid phase analysis by X-ray diffraction and Mössbauer spectroscopy did not show any secondary mineral precipitation. Moreover, Mössbauer analysis did not show any evidence of significant changes in redox conditions. Calculations of total dissolved solids’ concentrations indicated that the extent of mineral dissolution was enhanced by a factor of approximately 1.5 during the injection of CO2, which might improve the injectivity and storage capacity of the targeted reservoir. The experimental data provide a basis for numerical simulations to evaluate the effect of injected CO2 on long-term geochemical alteration at reservoir scale.  相似文献   

15.
Interaction parameters derived using empirical calibration methods indicate strong non-ideality in the mixing of octahedrally-coordinated cations in muscovite and biotite. The data set used for calibration comprises mineral compositions from 49 samples containing quartz, muscovite, biotite, garnet, plagioclase and Al2SiO5 (kyanite or sillimanite). Pressures and temperatures in the data set were determined through the simultaneous application of geothermometry based on the garnet-biotite FeMg1 exchange equilibrium and geobarometry based on the anorthite-breakdown equilibrium. Two equilibria yielded simple expressions from which binary interaction parameters for octahedrally-coordinated cations in biotite could be directly determined. A four-component (Fe2+, Mg, Al, Ti) regular symmetric mixing model was assumed for biotite. One equilibrium yielded a simple expression from which an interaction parameter for the mixing of the MgAl-celadonite component in muscovite could be directly determined. Two sets of calculations were performed utilizing different calibrations of the garnet-biotite geothermometer and the anothite-breakdown geobarometer and different garnet activity models. Both placed samples within or near the stability field of the Al2SiO5 phase present in each sample and both yielded similar values for the interaction parameters within narrow uncertainties, indicating that the values are insensitive to differences in the underlying methods. Using the derived interaction parameters, activity models were formulated for the annite, phlogopite, eastonite, and siderophyllite components of biotite, and for the MgAl-celadonite component of muscovite. These were utilized for the empirical calibration of 45 fluid-independent equilibria involving unique combinations of phase components from the mineral assemblage garnet + plagioclase±biotite±muscovite±quartz. Forty-three of the equilibria may be applied as geobarometers to equilibrium assemblages of quartz + muscovite + biotite + garnet + plagioclase when care is taken to insure that applications are restricted to valid compositional ranges. For these, the calibrations yielded multiple correlation coefficients ranging from 0.953 to 0.998 and standard deviations of the residuals ranging from 597 to 118 bars.  相似文献   

16.
 Cation partitioning data for coexisting muscovite and biotite are shown to be useful indicators of relative interlayer bond length/strength in these minerals. These data therefore provide a useful crystal-chemical perspective on relative mass-transfer kinetics of radiogenic isotopes, and account for the observation that biotite is generally less retentive of 40Ar and 87Sr than coexisting muscovite. Partitioning behavior of trace elements underscores three reasons why overall interlayer bonding in biotite is weaker than in muscovite. First, the preferences of large (Rb, Cs)+ in biotite and of small La3+ and Na+ in muscovite indicate a relatively spacious interlayer volume in biotite (suggesting a longer mean K−O bond). Second, the preference of interlayer vacancies in biotite (with some/all possibly H2O/H3O+-filled) suggests that its adjacent 2:1 sheets are connected by fewer interlayer bonds per unit cell than those of muscovite. Third, the relative exclusion of large Ba2+ from biotite despite its large interlayer sites is attributed to O−H bonds pointing into the interlayer cavity sub-normal to (001); (K+, Ba2+)-H+ repulsion thereby induced by the bare proton both destabilizes Ba2+ and weakens K−O bonds. In contrast, muscovite offers a more favorable electrostatic environment for Ba2+ substitution since its O−H bonds are directed into the vacant M 1 octahedral site sub-parallel to (001). This hypothesis is supported by the observation that progressive F(OH)−1 exchange enhances Ba2+ partitioning into biotite/phlogopite relative to coexisting muscovite. These crystal-chemical differences between biotite and muscovite are mirrored in calculated values of “ionic porosity”, Z i , defined here as the percentage of their interlayer unit-cell volume not occupied by ions. A monitor of ionic packing density and geometry, Z i is inversely correlated with K−O bond strength, which appears to be the rate-determining “kinetic common denominator” for a variety of processes affecting micas – including those responsible for loss of radiogenic isotopes in biotite and muscovite. Accordingly, the relatively longer/weaker K−O bonds of biotite are envisioned as being more easily stretched (during volume diffusion) or broken (during recrystallization or retrograde alteration). This in turn accounts for common observations of enhanced radiogenic Ar/Sr loss and younger 40Ar/39Ar and Rb/Sr ages in natural biotite (high Z i ) relative to coexisting muscovite (lower Z i ). Significantly, this pattern may arise irrespective of isotopic loss mechanism (diffusion or recrystallization, etc.), and it follows that any age discordance observed between muscovite and biotite cannot be ascribed uniquely to one mechanism or the other without appropriate field, petrographic, and petrologic constraints. Extension of this partitioning/porosity-based synthesis leads to prediction of corollary age-retentivity-composition effects among chemically diverse trioctahedral and dioctahedral micas, which are best field tested in terranes that cooled slowly under dry, static conditions. Pressure effects on argon retention are also inferred from the porosity model. Received: 9 February 1995 / Accepted: 8 September 1995  相似文献   

17.
The most suitable candidates for subsurface storage of CO2 are depleted gas fields. Their ability to retain CO2 can however be influenced by the effect which impurities in the CO2 stream (e.g. H2S and SO2) have on the mineralogy of reservoir and seal. In order to investigate the effects of SO2 we carried out laboratory experiments on reservoir and cap rock core samples from gas fields in the northeast of the Netherlands. The rock samples were contained in reactor vessels for 30 days in contact with CO2 and 100 ppm SO2 under in-situ conditions (300 bar, 100 °C). The vessels also contained brine with the same composition as in the actual reservoir. Furthermore equilibrium modeling was carried out using PHREEQC software in order to model the experiments on caprock samples.After the experiments the permeability of the reservoir samples had increased by a factor of 1.2–2.2 as a result of dissolution of primary reservoir minerals. Analysis of the associated brine samples before and after the experiments showed that concentrations of K, Si and Al had increased, indicative of silicate mineral dissolution.In the caprock samples, composed of carbonate and anhydrite minerals, permeability changed by a factor of 0.79–23. The increase in permeability is proportional to the amount of carbonate in the caprock. With higher carbonate content in comparison with anhydrite the permeability increase is higher due to the additional carbonate dissolution. This dependency of permeability variations was verified by the modeling study. Hence, caprock with a higher anhydrite content in comparison with carbonate minerals has a lower risk of leakage after co-injection of 100 ppmv SO2 with CO2.  相似文献   

18.
A sedimentary formation perturbated by supercritical CO2 reacts by dissolving primary minerals and forming new secondary phases. In this process CO2 may be trapped in stable carbonate minerals and may thereby be immobilized for long time spans. The potential for mineral trapping can be estimated by solving kinetic expressions for the reservoir minerals and possible secondary phases. This is, however, not trivial as kinetic data are uncertain or even lacking for the minerals of interest. Here, the rate equations most commonly used for CO2 storage simulations have been solved, and the rate parameters varied, to obtain sensitivity on the total amount of CO2 stored as mineral carbonate. As various expressions are in use to estimate growth rates of secondary carbonates, three formulations were compared, including one taking into account mineral nucleation preceding growth. The sensitivity studies were done on two systems, the Utsira Sand being representative for a cold quartz-rich sand (37 °C, 100 bar CO2), and the Gulf Coast Sediment, being representative for a medium temperature quartz–plagioclase-rich system (75 °C, 300 bar CO2).The simulations showed that the total predicted CO2 mineral storage is especially sensitive to the choice of growth rate model and the reactive surface area. The largest sensitivity was found on α, fraction of total surface area available for reactions, with a reduction of one order of magnitude for all reacting phases leading to 3–4 times lower predicted CO2 mineral storage. Because the reactive surface area is highly uncertain for natural systems, the range in predicted results may be even larger. The short-term predictions (<100–1000 a), such as the onset of carbonate growth, were highly sensitive to nucleation and growth rates. Moreover, the type of carbonate minerals formed was shown to be model dependent, with the simplest model predicting an unlikely carbonate assemblage at low temperature (i.e., formation of dolomite at 37 °C). Therefore, to use kinetic models to upscale short-term (<months) laboratory experiments in time, to identify the past reactions and physical conditions of natural CO2 storage analogues, and finally to predict the potential for CO2 trapping in existing and future storage projects, more knowledge has to be collected, especially on the reactive surface area of CO2 storage reservoirs, and on the rate of secondary carbonate nucleation and growth.  相似文献   

19.
A pE-pH diagram for supercritical aqueous fluids at 500° C and 2 kb total pressure is calculated from thermodynamic data assuming ideal mixing of gas species. The experimental data on the stability of annite-phlogopite solid-solutions (Wones and Eugster 1965) and on the stability of aluminous biotite (Rutherford 1968) have been used to calculate the stability of these biotite solid solutions in sanidine, muscovite and Al2SiO5 bearing assemblages. The resulting pE-pH diagrams show that Al increases the stability field of annite more per atom than does Mg. However, the addition of Al to biotite does not increase the stability of annite in very acid and alkaline solutions. Environments sufficiently acid to render aluminous biotite metastable are probably not found in nature, but the mildly alkaline environments are attainable. At constant f O 2, f H 2 and the Al content of biotite is at a minimum in muscovite + sanidine bearing assemblages, and increases relatively rapidly with increases in pH in the sanidine field, and increases more slowly with decreases in pH through the muscovite and Al2SiO5 fields.These diagrams show that the composition of biotite solid-solutions containing more aluminum than ideal annite-phlogopite and coexisting with sanidine and magnetite cannot be used to infer intensive parameters (T f O 2, ) prevailing during the crystallization of the biotite, and that in no case can any biotite composition in muscovite or Al2SiO5 bearing assemblages be used to extract this information.  相似文献   

20.
A. Proyer  E. Mposkos  I. Baziotis  G. Hoinkes 《Lithos》2008,104(1-4):119-130
Four different types of parageneses of the minerals calcite, dolomite, diopside, forsterite, spinel, amphibole (pargasite), (Ti–)clinohumite and phlogopite were observed in calcite–dolomite marbles collected in the Kimi-Complex of the Rhodope Metamorphic Province (RMP). The presence of former aragonite can be inferred from carbonate inclusions, which, in combination with an analysis of phase relations in the simplified system CaO–MgO–Al2O3–SiO2–CO2 (CMAS–CO2) show that the mineral assemblages preserved in these marbles most likely equilibrated at the aragonite–calcite transition, slightly below the coesite stability field, at ca. 720 °C, 25 kbar and aCO2 ~ 0.01. The thermodynamic model predicts that no matter what activity of CO2, garnet has to be present in aluminous calcite–dolomite-marble at UHP conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号