首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We need to understand chemical recycling at convergent margins and how chemical interactions between subducted slab and the overlying mantle wedge affect mantle evolution and magmagenesis. This requires distinguishing contributions from recycled individual subducted components as well as those contributed by the mantle. We do this by examining magmatic products generated at different depths above a subduction zone, in an intra-oceanic arc setting. The Guguan cross-chain in the intra-oceanic Mariana arc overlies subducted Jurassic Pacific plate lithosphere at depths of ~125--230 km and erupts mostly basalt. Basalts from rear-arc volcanoes are more primitive than those from the magmatic front, in spite of being derived by lower degrees of melting of less-depleted mantle. Rear-arc magmas also show higher temperatures and pressures of equilibration. Coexisting mineral compositions become more MORB- or OIB-like with increasing height above the subduction zone. Trace element and isotopic variations indicate that the subduction component in cross-chain lavas diminishes with increasing depth to the subduction zone, except for water contents. There is little support for the idea that melting beneath the Mariana Trough back-arc basin depleted the source region of arc magmas, but melting to form rear-arc volcanoes may have depleted the source of magmatic front volcanoes. Enrichments in rear-arc lavas were not caused by sediment melting; the data instead favor an OIB-type mantle that has been modestly affected by subduction zone fluids. Our most important conclusion is that sediment fluids or melts are not responsible for the K--h relationship and other cross-chain chemical and isotopic variations. We speculate that an increasing role for supercritical fluids released from serpentinites interacting with modestly enriched mantle might be responsible for cross-chain geochemical and isotopic variations. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

2.
Boninites are an important ‘end-member’ supra-subductionzone magmatic suite as they have the highest H2O contents andrequire the most refractory of mantle wedge sources. The pressure–temperatureconditions of boninite origins in the mantle wedge are importantto understanding subduction zone initiation and subsequent evolution.Reaction experiments at 1·5 GPa (1350–1530°C),2 GPa (1400–1600°C) and 2·5 GPa (1450–1530°C)between a model primary high-Ca boninite magma composition anda refractory harzburgite under anhydrous and H2O-undersaturatedconditions (2–3 wt % H2O in the melt) have been completed.The boninite composition was modelled on melt inclusions occurringin the most magnesian olivine phenocrysts in high-Ca boninitesfrom the Northern Tongan forearc and the Upper Pillow Lavasof the Troodos ophiolite. Direct melting experiments on a modelrefractory lherzolite and a harzburgite composition at 1·5GPa under anhydrous conditions (1400–1600°C) havealso been completed. Experiments establish a P, T ‘meltinggrid’ for refractory harzburgite at 1·5, 2 and2·5 GPa and in the presence of 2–3 wt % H2O. Theeffect of 2–3 wt % dissolved H2O produces a liquidus depressionin primary boninite of  相似文献   

3.
Abstract

Along the Periadriatic Lineament in the Alps and the Sava-Vardar Zone of the Dinarides and Hellenides, Paleogene magmatic associations form a continuous belt, about 1700 km long. The following magmatic associations occur: (1) Eocene granitoids; (2) Oligocene granitoids including tonalites; (3) Oligocene shoshonite and calc-alkaline volcanics with lamprophyres; (4) Egerian-Eggenburgian (Chattian) calc-alkaline volcanics and granitoids. All of these magmatic associations are constrained by radiometric ages, which indicate that the magmatic activity was mainly restricted to the time span between 55 and 29 Ma. These igneous rocks form, both at surface and in the subsurface, the distinct linear Periadriatic-Sava-Vardar magmatic belt, with three strikes that are controlled by the indentation of Apulia and Moesia and accompanying strike-slip faulting. The geology, seismicity, seismic tomography and magnetic anomalies within this belt suggest that it has been generated in the African-Eurasian suture zone. Based on published analytical data, the petrology, major and trace element contents and Sr, Nd and O isotopie composition of each magmatic association are briefly defined. These data show that Eocene and Oligocene magmatic associations of the Late Paleogene Periadriatic-Sava-Vardar magmatic belt originated along a consuming plate margin. Based on isotopie systems, two main rock groups can be distinguished: (1) 87Sr/86Sr = 0.7036–0.7080 and δ18O = 5.9–7.2‰, indicating basaltic partial melts derived from a continental mantle-lithosphere, and (2) 87Sr/86Sr = 0.7090–72131 and δ18O = 7.3–11.5‰, indicating crustal assimilation and melting. The mantle sources for the primary basalt melts are metasomatized garnet peridotites and/or spinel lherzolites and phlogopite lherzolites of upper mantle wedge origin. The geodynamic evolution of the plutonic and volcanic associations of the Periadriatic-Sava-Vardar magmatic belt was related to the Africa-Eurasia suture zone that was dominated by break-off of the subducted lithospheric slab of Mesozoic oceanic crust, at depths of 90–100 km. This is indicated by their contemporaneity along the 1700 km long belt. © 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.  相似文献   

4.
《Geodinamica Acta》2002,15(4):209-231
Along the Periadriatic Lineament in the Alps and the Sava–Vardar Zone of the Dinarides and Hellenides, Paleogene magmatic associations form a continuous belt, about 1700 km long. The following magmatic associations occur: (1) Eocene granitoids; (2) Oligocene granitoids including tonalites; (3) Oligocene shoshonite and calc-alkaline volcanics with lamprophyres; (4) Egerian–Eggenburgian (Chattian) calc-alkaline volcanics and granitoids. All of these magmatic associations are constrained by radiometric ages, which indicate that the magmatic activity was mainly restricted to the time span between 55 and 29 Ma. These igneous rocks form, both at surface and in the subsurface, the distinct linear Periadriatic–Sava–Vardar magmatic belt, with three strikes that are controlled by the indentation of Apulia and Moesia and accompanying strike-slip faulting. The geology, seismicity, seismic tomography and magnetic anomalies within this belt suggest that it has been generated in the African–Eurasian suture zone. Based on published analytical data, the petrology, major and trace element contents and Sr, Nd and O isotopic composition of each magmatic association are briefly defined. These data show that Eocene and Oligocene magmatic associations of the Late Paleogene Periadriatic–Sava–Vardar magmatic belt originated along a consuming plate margin. Based on isotopic systems, two main rock groups can be distinguished: (1) 87Sr/86Sr = 0.7036–0.7080 and δ18O = 5.9–7.2‰, indicating basaltic partial melts derived from a continental mantle–lithosphere, and (2) 87Sr/86Sr = 0.7090–72131 and δ18O = 7.3–11.5‰, indicating crustal assimilation and melting. The mantle sources for the primary basalt melts are metasomatized garnet peridotites and/or spinel lherzolites and phlogopite lherzolites of upper mantle wedge origin. The geodynamic evolution of the plutonic and volcanic associations of the Periadriatic–Sava–Vardar magmatic belt was related to the Africa–Eurasia suture zone that was dominated by break-off of the subducted lithospheric slab of Mesozoic oceanic crust, at depths of 90–100 km. This is indicated by their contemporaneity along the 1700 km long belt.  相似文献   

5.
The beginnings of hydrous mantle wedge melting   总被引:5,自引:3,他引:2  
This study presents new phase equilibrium data on primitive mantle peridotite (0.33 wt% Na2O, 0.03 wt% K2O) in the presence of excess H2O (14.5 wt% H2O) from 740 to 1,200°C at 3.2–6 GPa. Based on textural and chemical evidence, we find that the H2O-saturated peridotite solidus remains isothermal between 800 and 820°C at 3–6 GPa. We identify both quenched solute from the H2O-rich fluid phase and quenched silicate melt in supersolidus experiments. Chlorite is stable on and above the H2O-saturated solidus from 2 to 3.6 GPa, and chlorite peridotite melting experiments (containing ~6 wt% chlorite) show that melting occurs at the chlorite-out boundary over this pressure range, which is within 20°C of the H2O-saturated melting curve. Chlorite can therefore provide sufficient H2O upon breakdown to trigger dehydration melting in the mantle wedge or perpetuate ongoing H2O-saturated melting. Constraints from recent geodynamic models of hot subduction zones like Cascadia suggest that significantly more H2O is fluxed from the subducting slab near 100 km depth than can be bound in a layer of chloritized peridotite ~ 1 km thick at the base of the mantle wedge. Therefore, the dehydration of serpentinized mantle in the subducted lithosphere supplies free H2O to trigger melting at the H2O-saturated solidus in the lowermost mantle wedge. Alternatively, in cool subduction zones like the Northern Marianas, a layer of chloritized peridotite up to 1.5 km thick could contain all the H2O fluxed from the slab every million years near 100 km depth, which suggests that the dominant form of melting below arcs in cool subduction zones is chlorite dehydration melting. Slab PT paths from recent geodynamic models also allow for melts of subducted sediment, oceanic crust, and/or sediment diapirs to interact with hydrous mantle melts within the mantle wedge at intermediate to hot subduction zones.  相似文献   

6.
In recent years extensive data have been obtained on all geologically important intrusive complexes in the Central and Southern Urals by U-Pb zircon geochronologic high spatial resolution techniques (LA ICP MS, NORDSIM, and SHRIMP II). This made it possible to revise the current concepts for the magmatic activity of the Ural Paleozoic orogen.Intrusive magmatism that occurred early in the evolution of the Ural orogen was focused mostly in the Tagil megazone, was characterized by several common features, and took place nearly simultaneously within both of its zones: the Platinum Belt and the Tagil volcanic zone.The composition of the parental magmas of all complexes of this age corresponded to an ultramafic or mafic source; i.e., the magma was derived from a mantle source. The gabbroids most closely approximating the composition of the parental magmatic melts show geochemical features of suprasubduction melts, such as negative HFSE (Nb, Ti, and Zr) and positive Ba and Sr anomalies. The REE patterns of these rocks display variable La/Lu ratios, which are usually higher than 1. These geochemical features suggest that this magmatic source was a metasomatized mantle wedge, above which (at a depth of 40–25 km) a block of the pre-Ural basement occurred in Ordovician-Silurian time. The Tagil megazone started to develop on this block. By the Devonian, i.e., by the time when the Magnitogorsk zone began to evolve (~400 Ma) and continental-margin gabbro-tonalite-granodiorite magmatism was initiated (360 Ma), this basement had been destroyed by orogenesis. The major phases of Paleozoic magmatism in the Urals likely corresponded to global epochs of tectono-magmatic activity, because they correlate well with known data on the evolution of the 87Sr/86Sr ratio in Paleozoic seawater.  相似文献   

7.
The ultramafic massif of Bulqiza, which belongs to the eastern ophiolitic belt of Albania, is a major source of metallurgical chromitite ore. The massif consists of a thick (> 4 km) sequence, composed from the base upward of tectonized harzburgite with minor dunite, a transitional zone of dunite, and a magmatic sequence of wehrlite, pyroxenite, troctolite and gabbro. Only sparse, refractory chromitites occur within the basal clinopyroxene-bearing harzburgites, whereas the upper and middle parts of the peridotite sequence contain abundant metallurgical chromitites. The transition zone dunites contain a few thin layers of metallurgical chromitite and sparse bodies are also present in the cumulate section. The Bulqiza Ophiolite shows major changes in thickness, like the 41–50 wt.% MgO composition similar with forearc peridotite as a result of its complex evolution in a suprasubduction zone (SSZ) environment. The peridotites show abundant evidence of mantle melt extraction at various scales as the orthopyroxene composition change from core to rim, and mineral compositions suggest formation in a forearc, as Fo values of olivine are in 91.1–93.0 harzburgite and 91.5–91.9 in dunite and 94.6–95.9 in massive chromitite. The composition of the melts passing through the peridotites changed gradually from tholeiite to boninite due to melt–rock reaction, leading to more High Cr# chromitites in the upper part of the body. Most of the massive and disseminated chromitites have high Cr# numbers (70–80), although there are systematic changes in olivine and magnesiochromite compositions from harzburgites, to dunite envelopes to massive chromitites, reflecting melt–rock reaction. Compositional zoning of orthopyroxene porphyroblasts in the harzburgite, incongruent melting of orthopyroxene and the presence of small, interstitial grains of spinel, olivine and pyroxene likewise attest to modification by migrating melts. All of the available evidence suggests that the Bulqiza Ophiolite formed in a suprasubduction zone mantle wedge.  相似文献   

8.
The Bonin archipelago represents an uplifted fore-arc terrainwhich exposes the products of Eocene supra-subduction zone magmatism.Chichijima, at the centre of the chain, represents the typelocality for the high-Mg andesitic lava termed boninite. Therange of extrusives which constitute the boninite series volcanicsare present on Chichijima, and are disposed in the sequenceboninite-andesite-dacite with increasing height in the volcano-stratigraphy.Progression to evolved compositions within the Chichijima boniniteseries is controlled by crystal fractionation from a boniniteparental magma containing 15% MgO. Olivine and clinoenstatiteare the initial liquidus phases, but extraction of enstatiticorthopyroxene, followed by clinopyroxene and plagioclase, isresponsible for the general evolution from boninite, throughandesite, to dacite. Some andesites within the overlying MikazukiyamaFormation are petrographically distinct from the main boniniteseries in containing magnetite phenocrysts and a high proportionof plagioclase. As such, these andesites have affinities withthe calc-alkaline series. Major and trace element data for 74 boninitic series rocks fromChichijima are presented. Although major element variation isdominantly controlled by high-level crystal fractionation, thelarge variations in incompatiable trace element concentrationsat high MgO compositions cannot be explained by this mechanism.Nd, Pb, and Sr isotopic data indicate the following: (1) a strongoverprint on 87Sr/86Sr by seawater alteration; (2) Pb isotopeslie above the northern hemisphere reference line (NHRL) andare thus similar to the <30-Ma are and basin lavas of theIzu—Bonin system, and (3) Nd(40 Ma) ranges between 2.8and 6.8 within the boninite series volcanics. Differences inrare-earth elements (REE), Zr, Ti, and 143Nd/144Nd at similardegrees of fractionation can be explained by the addition ofa component of fixed composition from the down-going oceaniccrustal slab to a variably depleted source region within theoverlying wedge. Data presented for Sm/Zr and Ti/Zr indicatethat boninite series volcanics are characterized by low valuesfor both of these ratios. In particular, boninites appear tohave uniquely low Sm/Zr ratios. These characteristics may bethe result of slab melting in the presence of residual amphibole;the resultant melt could combine with typical slab dehydrationfluids and infiltrate the overlying mantle wedge. Such a fluid—meltcomponent could mix either with shallow mantle or directly withprimitive melts from depleted mantle. Trace elements, REE, andisotope data thus point to a model for boninite genesis whichrequires tightly constrained pressure—temperature conditionsin the slab combined with melting of a variably depleted sourcein the overlying wedge. Such constraints are rarely met exceptduring the subduction of juvenile oceanic crust beneath a young,hot overriding plate.  相似文献   

9.
E.S. Farahat 《Lithos》2010,120(3-4):293-308
Ophiolites are widely distributed in the Central Eastern Desert (CED) of Egypt, occurring as clusters in the northern (NCEDO) and southern (SCEDO) segments. Mineralogical and geochemical data on the volcanic sections of Wizer (WZO) and Abu Meriewa (AMO) ophiolites as representatives of the NCEDO and SCEDO, respectively, are presented.The WZO volcanic sequence comprises massive metavolcanics of MORB-like compositions intruded by minor boninitic dykes and thrust over island-arc metavolcanic blocks in the mélange matrix. Such transitional MORB-IAT-boninitic magmatic affinities for the WZO metavolcanics suggest that they most likely formed in a protoarc–forearc setting. Chemical compositions of primary clinopyroxene and Cr-spinel relicts from the WZO volcanic section further confirm this interpretation. The compositional variability in the WZO volcanic sequence is comparable with the associated mantle rocks that vary from slightly depleted harzburgites to highly depleted harzburgites containing small dunite bodies, which are residues after MORB, IAT and boninite melt formation, respectively. Source characteristics of the different lava groups from the WZO indicate generation via partial melting of a MORB source which was progressively depleted by melt extraction and variably enriched by subduction zone fluids. MORB-like magma may have been derived from ~ 20% partial melting of an undepleted lherzolite source, leaving slightly depleted harzburgite as a residuum. The generation of island-arc magma can be accounted for by partial melting (~ 15%) of the latter harzburgitic mantle source, whereas boninites may have been derived from partial melting (~ 20%) of a more refractory mantle source previously depleted by melt extraction of MORB and IAT melts, leaving ultra-refractory dunite bodies as residuum.The AMO volcanic unit occurs as highly deformed pillowed metavolcanic rocks in a mélange matrix. They can be categorized geochemically into LREE-depleted (La/YbCN = 0.41–0.50) and LREE-enriched (La/YbCN = 4.7–4.9) lava types that show an island arc to MORB geochemical signature, respectively, signifying a back-arc basin setting. This is consistent, as well, with their mantle section. Source characteristics indicate depleted to slightly enriched mantle sources with overall slight subduction zone geochemical affinities as compared to the WZO.Generally, CED ophiolites show supra-subduction zone geochemical signature with prevalent island arc tholeiitic and minor boninitic affinities in the NCEDO and MORB/island-arc association in the SCEDO. Such differences in geochemical characteristics of the NCEDO and SCEDO, along with the abundance of mature island arc metavolcanics which are close in age (~ 750 Ma) to the ophiolitic rocks, general enrichment in HFSE of ophiolites from north to south, and lack of a crustal break and major shear zones, is best explained by a geotectonic model whereby the CED represents an arc–back-arc system above a southeast-dipping subduction zone.  相似文献   

10.
The ~ 570 Ma old Khantaishir ophiolite is built by up to 4 km harzburgitic mantle with abundant pyroxenites and dunites followed by ~ 2 km of hornblende-gabbros and gabbronorites and by a ~ 2.5 km thick volcanic unit composed of a dyke + sill complex capped by pillow lavas and some volcanoclastics. The volcanics are mainly basaltic andesites and andesites (or boninites) with an average of 58.2 ± 1.0 wt% SiO2, X Mg = 0.61 ± 0.03 (X Mg = molar MgO/(MgO + FeOtot), TiO2 = 0.4 ± 0.1 wt% and CaO = 7.5 ± 0.6 wt% (errors as 2σ). Normalized trace element patterns show positive anomalies for Pb and Sr, a negative Nb-anomaly, large ion lithophile elements (LILE) concentrations between N- and E-MORB and distinctly depleted HREE. These characteristics indicate that the Khantaishir volcanics were derived from a refractory mantle source modified by a moderate slab-component, similar to boninites erupted along the Izu-Bonin-Mariana subduction system and to the Troodos and Betts Cove ophiolites. Most strikingly and despite almost complete outcrops over 260 km2, there is no remnant of any pre-existing MORB crust, suggesting that the magmatic suite of this ophiolite formed on completely denudated mantle, most likely upon subduction initiation. The architecture of this 4–5 km thick early arc crust resembles oceanic crust formed at mid ocean ridges, but lacks a sheeted dyke complex; volcanic edifices are not observed. Nevertheless, low melting pressures combined with moderate H2O-contents resulted in high-Si primitive melts, in abundant hornblende-gabbros and in a fast enrichment in bulk SiO2. Fractional crystallization modeling starting from the observed primitive melts (56.6 wt% SiO2) suggests that 25 wt% pyroxene + plagioclase fractionation is sufficient to form the average Khantaishir volcanic crust. Most of the fractionation happened in the mantle, the observed pyroxenite lenses and layers in and at the top of the harzburgites account for the required cumulate volumes. Finally, the multiply documented occurrence of highly depleted boninites during subduction initiation suggests a causal relationship of subduction initiation and highly depleted mantle. Possibly, a discontinuity between dense fertile and buoyant depleted mantle contributes to the sinking of the future dense subducting plate, while the buoyant depleted mantle of the future overriding plate forms the infant mantle wedge.  相似文献   

11.
《Earth》2007,80(1-2):1-46
Information on the physical and chemical properties of the lithosphere–asthenosphere system (LAS) can be obtained by geophysical investigation and by studies of petrology–geochemistry of magmatic rocks and entrained xenoliths. Integration of petrological and geophysical studies is particularly useful in geodynamically complex areas characterised by abundant and compositionally variable young magmatism, such as in the Tyrrhenian Sea and surroundings.A thin crust, less than 10 km, overlying a soft mantle (where partial melting can reach about 10%) is observed for Magnaghi, Vavilov and Marsili, which belong to the Central Tyrrhenian Sea backarc volcanism where subalkaline rocks dominate. Similar characteristics are seen for the uppermost crust of Ischia. A crust about 20 km thick is observed for the majority of the continental volcanoes, including Amiata–Vulsini, Roccamonfina, Phlegraean Fields–Vesuvius, Vulture, Stromboli, Vulcano–Lipari, Etna and Ustica. A thicker crust is present at Albani – about 25 km – and at Cimino–Vico–Sabatini — about 30 km. The structure of the upper mantle, in contrast, shows striking differences among various volcanic provinces.Volcanoes of the Roman region (Vulsini–Sabatini–Alban Hills) sit over an upper mantle characterised by Vs mostly ranging from about 4.2 to 4.4 km/s. At the Alban Hills, however, slightly lower Vs values of about 4.1 km/s are detected between 60 and 120 km of depth. This parallels the similar and rather homogeneous compositional features of the Roman volcanoes, whereas the lower Vs values detected at the Alban Hills may reflect the occurrence of small amounts of melts within the mantle, in agreement with the younger age of this volcano.The axial zone of the Apennines, where ultrapotassic kamafugitic volcanoes are present, has a mantle structure with high-velocity lid (Vs 4.5 km/s) occurring at the base of a 40-km-thick crust. Beneath the Campanian volcanoes of Vesuvius and Phlegraean Fields, the mantle structure shows a rigid body dipping westward, a feature that continues southward, up to the eastern Aeolian arc. In contrast, at Ischia the upper mantle contains a shallow low-velocity layer (Vs = 3.5–4.0 km/s) just beneath a thin but complex crust. The western Aeolian arc and Ustica sit over an upper mantle with Vs ∼ 4.2–4.4 km/s, although a rigid layer (Vs = 4.55 km/s) from about 80 to 150 km occurs beneath the western Aeolian arc. In Sardinia, no significant differences in the LAS structure are detected from north to south.The petrological–geochemical signatures of Italian volcanoes show strong variations that allow us to distinguish several magmatic provinces. These often coincide with mantle sectors identified by Vs tomography. For instance, the Roman volcanoes show remarkable similar petrological and geochemical characteristics, mirroring similar structure of the LAS. The structure and geochemical-isotopic composition of the upper mantle change significantly when we move to the Stromboli–Campanian volcanoes. The geochemical signatures of Ischia and Procida volcanoes are similar to other Campanian centres, but Sr–Pb isotopic ratios are lower marking a transition to the backarc mantle of the Central Tyrrhenian Sea. The structural variations from Stromboli to the central (Vulcano and Lipari) and western Aeolian arc are accompanied by strong variations of geochemical signatures, such as a decrease of Sr-isotope ratios and an increase of Nd-, Pb-isotope and LILE/HFSE ratios. The dominance of mafic subalkaline magmatism in the Tyrrhenian Sea basin denotes large degrees of partial melting, well in agreement with the soft characteristics of the uppermost mantle in this area. In contrast, striking isotopic differences of Plio-Quaternary volcanic rocks from southern to northern Sardinia does not find a match in the LAS geophysical characteristics.The combination of petrological and geophysical constraints allows us to propose a 3D schematic geodynamic model of the Tyrrhenian basin and bordering volcanic areas, including the subduction of the Ionian–Adria lithosphere in the southern Tyrrhenian Sea, and to place constraints on the geodynamic evolution of the whole region.  相似文献   

12.
This paper presents new major and trace element data from 150 garnet xenocrysts from the V. Grib kimberlite pipe located in the central part of the Arkhangelsk diamondiferous province (ADP). Based on the concentrations of Cr2O3, CaO, TiO2 and rare earth elements (REE) the garnets were divided into seven groups: (1) lherzolitic “depleted” garnets (“Lz 1”), (2) lherzolitic garnets with normal REE patterns (“Lz 2”), (3) lherzolitic garnets with weakly sinusoidal REE patterns (“Lz 3”), (4) lherzolitic garnets with strongly sinusoidal REE patterns (“Lz 4”), (5) harzburgitic garnets with sinusoidal REE patterns (“Hz”), (6) wehrlitic garnets with weakly sinusoidal REE patterns (“W”), (7) garnets of megacryst paragenesis with normal REE patterns (“Meg”). Detailed mineralogical and geochemical garnet studies and modeling results suggest several stages of mantle metasomatism influenced by carbonatite and silicate melts. Carbonatitic metasomatism at the first stage resulted in refertilization of the lithospheric mantle, which is evidenced by a nearly vertical CaO-Cr2O3 trend from harzburgitic (“Hz”) to lherzolitic (“Lz 4”) garnet composition. Harzburgitic garnets (“Hz”) have probably been formed by interactions between carbonatite melts and exsolved garnets in high-degree melt extraction residues. At the second stage of metasomatism, garnets with weakly sinusoidal REE patterns (“Lz 3”, “W”) were affected by a silicate melt possessing a REE composition similar to that of ADP alkaline mica-poor picrites. At the last stage, the garnets interacted with basaltic melts, which resulted in the decrease CaO-Cr2O3 trend of “Lz 2” garnet composition. Cr-poor garnets of megacryst paragenesis (“Meg”) could crystallize directly from the silicate melt which has a REE composition close to that of ADP alkaline mica-poor picrites. P-T estimates of the garnet xenocrysts indicate that the interval of ~60–110 km of the lithospheric mantle beneath the V. Grib pipe was predominantly affected by the silicate melts, whereas the lithospheric mantle deeper than 150 km was influenced by the carbonatite melts.  相似文献   

13.
TTG岩石构造组合(或岩类)表征洋壳俯冲作用。本文提出TTG岩类的4个亚类:(1)镁安山岩系列(MA)低压型TTG亚类,形成于非常年轻和很热的洋壳俯冲,压力≤1 500~1 600 MPa,深度≤50~60 km,例如活动洋中脊俯冲的板片窗的边缘;(2)镁安山岩系列(MA)高压型TTG亚类,形成于比较年轻和较热的洋壳俯冲,压力≥1 500~1 600 MPa,深度≥50~60 km;(3)低镁(或非镁)安山岩系列(LMA)低压型TTG亚类,形成于洋内弧下地壳,压力≤1 500~1 600 MPa,深度≤50~60 km;(4)低镁(或非镁)安山岩系列(LMA)高压型TTG亚类,形成了大陆边缘弧山根带,压力≥1 500~1 600 MPa,深度≥50~60 km。对TTG岩类4个亚类的研究,并结合对无TTG形成的老的冷的俯冲带洋壳和冷的弧地壳以及幔楔有无岩浆产生等方面的研究,可以重建岩浆弧的壳幔结构和热结构,进而可为与洋俯冲有关的成矿作用提供地质背景。  相似文献   

14.
The assembly of Late Neoproterozoice Cambrian supercontinent Gondwana involved prolonged subduction and accretion generating arc magmatic and accretionary complexes, culminating in collision and formation of high grade metamorphic orogens. Here we report evidence for mafic magmatism associated with post-collisional extension from a suite of gabbroic rocks in the Trivandrum Block of southern Indian Gondwana fragment. Our petrological and geochemical data on these gabbroic suite show that they are analogous to high Fe tholeiitic basalts with evolution of the parental melts dominantly controlled by fractional crystallization. They display enrichment of LILE and LREE and depletion of HFSE with negative anomalies at Zre Hf and Ti corresponding to subduction zone magmatic regime. The tectonic affinity of the gabbros coupled with their geochemical features endorse a heterogeneous mantle source with collective melt contributions from sub-slab asthenospheric mantle upwelling through slab break-off and arc-related metasomatized mantle wedge, with magma emplacement in subduction to post-collisional intraplate settings. The high Nb contents and positive Nbe Ta anomalies of the rocks are attributed to inflow of asthenospheric melts containing ancient recycled subducted slab components and/or fusion of subducted slab materials owing to upwelling of hot asthenosphere. Zircon grains from the gabbros show magmatic crystallization texture with low U and Pb content. The LA-ICPMS analyses show 206 Pb/238 U mean ages in the range of 507-494 Ma suggesting Cambrian mafic magmatism. The post-collisional mafic magmatism identified in our study provides new insights into mantle dynamics during the waning stage of the birth of a supercontinent.  相似文献   

15.
New petrological and isotope–geochemical data are obtained for rocks from the South China Sea shelf zone (Thu, Cu-Lao Re, Hong Jo islands and Katuik–Ile des Cendres island group). These data are correlated with the available published data on the volcanic rocks of the terrestrial part of Vietnam and with data on the basaltoids of the South China Sea, Thailand, and the northern part of Hainan island. Despite the fact that the studied volcanic rocks belong to different structural zones—continental margin, shelf zone, marginal sea—their formation is related to the same type of rift volcanism. Owing to this, the different compositions of the primary magmatic melts indicate, first of all, the heterogeneity of the mantle sources. The uniformity of manifestations of volcanism over the entire studied territory within the age boundaries excludes any zoning at the transition from one structure to another. The leading role of mantle diapirism in the evolution of volcanism throughout the entire Indochina region is shown. It is proposed that the formation of alkaline series and “alkaline” trends of changes in their compositions are consequences of fractionation of melts which originated from an asthenosphere plume chamber. Meanwhile, the tholeiitic magma series are of reactionary origin and “tholeiitic” trends record the processes of mixing of melts generated during melting of the lithospheric mantle with those of a plume chamber. Individual samples show insignificant contamination of melts by crustal material.  相似文献   

16.
The Urumieh-Dokhtar magmatic arc (UDMA) of Central Iran has been formed during Neotethyan Ocean subduction underneath Eurasia. The Rabor-Lalehzar magmatic complex (RLMC), covers an area ~1000?km2 in the Kerman magmatic belt (KMB), SE of UDMA. RLMC magmatic rocks include both granitoids and volcanic rocks with calc-alkaline and adakitic signatures but with different ages.Miocene adakitic rocks are characterd by relatively enrichmented in incompatible elements, high (Sr/Y)(N) (>40), and (La/Yb)(N) (>10) ratios with slightly negative Eu anomalies (EuN/Eu*≈ 0.9), depletion in HFSEs, and relatively non-radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7048–0.7049). In contrast, the Oligocene granitoids exhibit low Sr/Y (<20) and La/Yb (<9) ratios, negative Eu anomalies (EuN/Eu*?≈?0.5), and enrichment in HFSEs and radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7050–0.7052), showing affinity to the island arc rocks. Eocene volcanic rocks which crusscut the younger granitoid rocks comprise andesites and dacites. Geochemically, lavas show calc-alkaline character without any Eu anomaly (EuN/Eu*?≈?1.0). Based on the geochemical and isotopic data we propose that melt source for both calc-alkaline and adakitic rocks from the RLMC can be related to the melting of a sub-continental lithospheric mantle (SCLM). Basaltic melts derived from a metasomatized mantle wedge might be emplaced at the mantle-crust boundary and formed the juvenile mafic lower crust. However, some melts fractionated in the shallow magma chambers and continued to rise forming the volcanic intermediate-mafic rocks at the surface. On the other hand, the assimilation and fractional crystallization in the shallow magma chambers of may have been responsible for the development of Oligocene granitoids with calc-alkaline affinity. In the mid-Late Miocene, following the collision between Afro-Arabia and Iranian block the juvenile mafic crust of UDMA underwent thickening and metamorphosed into garnet-amphibolites. Subsequent upwelling of a hot asthenosphere during Miocene was responsible for partial melting of thickened juvenile crust of the SE UDMA (RLM complex). The adakitic melts ascended to the shallow crust to form the adakitic rocks in the KMB.  相似文献   

17.
《Gondwana Research》2010,17(3-4):414-430
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   

18.
Some 455 events (mb  4.5) in the Indo-Myanmar subduction zone are compiled using the ISC/EHB/NEIC catalogues (1964–2011) for a systematic study of seismic precursors, b-value and swarm activity. Temporal variation of b-value is studied using the maximum likelihood method beside CUSUM algorithm. The b-values vary from 0.95 to 1.4 for the deeper (depth ⩾60 km) earthquakes, and from 0.85 to 1.3 for the shallower (depth <60 km) earthquakes. A sudden drop in the b-value, from 1.4 to 0.9, prior to the occurrence of larger earthquake(s) at the deeper depth is observed. It is also noted that the CUSUM gradient reversed before the occurrence of larger earthquakes. We further examined the seismicity pattern for the period 1988–1995 within a radius of 150 km around the epicentre (latitude: 24.96°N; longitude: 95.30°E) of a deeper event M 6.3 of May 6, 1995 in this subduction zone. A precursory swarm during January 1989 to July 1992 and quiescence during August 1992 to April 1995 are identified before this large earthquake. These observations are encouraging to monitor seismic precursors for the deeper events in this subduction zone.  相似文献   

19.
The Japan Trench subduction zone, located east of NE Japan, has regional variation in seismicity. Many large earthquakes occurred in the northern part of Japan Trench, but few in the southern part. Off Miyagi region is in the middle of the Japan Trench, where the large earthquakes (M > 7) with thrust mechanisms have occurred at an interval of about 40 years in two parts: inner trench slope and near land. A seismic experiment using 36 ocean bottom seismographs (OBS) and a 12,000 cu. in. airgun array was conducted to determine a detailed, 2D velocity structure in the forearc region off Miyagi. The depth to the Moho is 21 km, at 115 km from the trench axis, and becomes progressively deeper landward. The P-wave velocity of the mantle wedge is 7.9–8.1 km/s, which is typical velocity for uppermost mantle without large serpentinization. The dip angle of oceanic crust is increased from 5–6° near the trench axis to 23° 150 km landward from the trench axis. The P-wave velocity of the oceanic uppermost mantle is as small as 7.7 km/s. This low-velocity oceanic mantle seems to be caused by not a lateral anisotropy but some subduction process. By comparison with the seismicity off Miyagi, the subduction zone can be divided into four parts: 1) Seaward of the trench axis, the seismicity is low and normal fault-type earthquakes occur associated with the destruction of oceanic lithosphere. 2) Beneath the deformed zone landward of the trench axis, the plate boundary is characterized as a stable sliding fault plain. In case of earthquakes, this zone may be tsunamigenic. 3) Below forearc crust where P-wave velocity is almost 6 km/s and larger: this zone is the seismogenic zone below inner trench slope, which is a plate boundary between the forearc and oceanic crusts. 4) Below mantle wedge: the rupture zones of thrust large earthquakes near land (e.g. 1978 off Miyagi earthquake) are located beneath the mantle wedge. The depth of the rupture zones is 30–50 km below sea level. From the comparison, the rupture zones of large earthquakes off Miyagi are limited in two parts: plate boundary between the forearc and oceanic crusts and below mantle wedge. This limitation is a rare case for subduction zone. Although the seismogenic process beneath the mantle wedge is not fully clarified, our observation suggests the two possibilities: earthquake generation at the plate boundary overridden by the mantle wedge without serpentinization or that in the subducting slab.  相似文献   

20.
In this paper we present geochemical, zircon U–Pb and Hf isotopic data on the late Paleozoic volcanic rocks of the Dashizhai Formation, which are exposed along the northwestern margin of the Songnen terrane in eastern Inner Mongolia. Our aim is to constrain the petrogenesis and tectonic setting of the volcanic rocks and to unravel the late Paleozoic tectonic evolution of the northwestern part of the Songnen terrane, along the eastern segment of the Central Asian Orogenic Belt. Lithologically, the Dashizhai Formation is composed mainly of rhyolitic tuff, rhyolite, dacite, andesite, basaltic andesite and basalt, with minor basaltic trachyandesite. The zircons separated from these rocks are euhedral–subhedral, have high Th/U ratios (0.2–1.6), and display broad oscillatory growth zoning, indicating a magmatic origin. The results of zircon U–Pb dating indicate the volcanic rocks formed during the early Permian (295–283 Ma). Geochemically, these volcanic rocks belong to the mid-K to high-K calc-alkaline series and are characterized by an enrichment in large ion lithophile elements (LILEs) and a depletion in high field strength elements (HFSEs, such as Nb, Ta, and Ti), similar to igneous rocks that form in active continental margin settings. Most magmatic zircons of the rhyolites show positive εHf(t) values (+ 3.65 to + 13.0) and two-stage model ages (TDM2) of 1396–551 Ma. These geochemical characteristics indicate that the acidic volcanic rocks of the Dashizhai Formation were most likely derived from the partial melting of dominantly juvenile crustal components with a possible addition of “old” materials. In contrast, the basic to intermediate volcanic rocks were derived from the partial melting of a depleted lithospheric mantle that had been metasomatized by fluids derived from a subducted slab. These data, together with regional geological investigations, suggest that the generation of the early Permian volcanic rocks of the Dashizhai Formation was related to the southward subduction of the Paleo–Asian oceanic plate beneath the Songnen terrane. This also implies that the terminal collision between the Songnen and Xing'an terranes did not occur before the early Permian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号