首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Metamorphic index mineral zones, pressure-temperature (P-T) conditions, and CO2-H2O fluid compositions were determined for metacarbonate layers within the Wepawaug Schist, Connecticut, USA. Peak metamorphic conditions were attained in the Acadian orogeny and increase from ~420 °C and ~6.5 kb in the low-grade greenschist facies to ~610 °C and ~9.5 kb in the amphibolite facies. The index minerals oligoclase, biotite, calcic amphibole, and diopside formed with progressive increases in metamorphic intensity. In the upper greenschist facies and in the amphibolite facies, prograde reaction progress is greatest along the margins of metacarbonate layers in contact with surrounding schists, or in reaction selvages bordering syn-metamorphic quartz veins. New index minerals typically appear first in these more highly reacted contact and selvage zones. It has been postulated that this spatial zonation of mineral assemblages resulted from infiltration, largely by diffusion, of water-rich fluids across lithologic contacts or away from fluid conduits like fractures. In this model, the infiltrating fluids drove prograde CO2 loss and were derived from surrounding dehydrating schists or sources external to the metasedimentary sequence. The model predicts that significant gradients in the mole fraction of CO2 (XCO2 X_{CO_2 } ) should have been present during metamorphism, but new estimates of fluid composition indicate that differences in XCO2 X_{CO_2 } preserved across layers or vein selvages were very small, ~0.02 or less. However, analytical solutions to the two-dimensional advection-dispersion-reaction equation show that only small fluid composition gradients across layers or selvages are needed to drive prograde CO2 loss by diffusion and mechanical dispersion. These gradients, although typically too small to be measured by field-based techniques, would still be large enough to dominate the effects of fluid flow and reaction along regional T and P gradients. Larger gradients in fluid composition may have existed across some layers during metamorphism, but large gradients favor rapid reaction and would, therefore, seldom be preserved in the rock record. Most of the H2O needed to drive prograde CO2 loss probably came from regional dehydration of surrounding metapelitic schists, although H2O-rich diopside zone conditions may have also required an external fluid component derived from syn-metamorphic intrusions or the metavolcanic rocks that structurally underlie the Wepawaug Schist.  相似文献   

2.
The ultrahigh-temperature (UHT) metamorphism of the Napier Complex is characterized by the presence of dry mineral assemblages, the stability of which requires anhydrous conditions. Typically, the presence of the index mineral orthopyroxene in more than one lithology indicates that H2O activities were substantially low. In this study, we investigate a suite of UHT rocks comprising quartzo-feldspathic garnet gneiss, sapphirine granulite, garnet-orthopyroxene gneiss, and magnetite-quartz gneiss from Tonagh Island. High Al contents in orthopyroxene from sapphirine granulite, the presence of an equilibrium sapphirine-quartz assemblage, mesoperthite in quartzo-feldspathic garnet gneiss, and an inverted pigeonite-augite assemblage in magnetite-quartz gneiss indicate that the peak temperature conditions were higher than 1,000 °C. Petrology, mineral phase equilibria, and pressure-temperature computations presented in this study indicate that the Tonagh Island granulites experienced maximum P-T conditions of up to 9 kbar and 1,100 °C, which are comparable with previous P-T estimates for Tonagh and East Tonagh Islands. The textures and mineral reactions preserved by these UHT rocks are consistent with an isobaric cooling (IBC) history probably following an counterclockwise P-T path. We document the occurrence of very high-density CO2-rich fluid inclusions in the UHT rocks from Tonagh Island and characterize their nature, composition, and density from systematic petrographic and microthermometric studies. Our study shows the common presence of carbonic fluid inclusions entrapped within sapphirine, quartz, garnet and orthopyroxene. Analysed fluid inclusions in sapphirine, and some in garnet and quartz, were trapped during mineral growth at UHT conditions as 'primary' inclusions. The melting temperatures of fluids in most cases lie in the range of -56.3 to -57.2 °C, close to the triple point for pure CO2 (-56.6 °C). The only exceptions are fluid inclusions in magnetite-quartz gneiss, which show slight depression in their melting temperatures (-56.7 to -57.8 °C) suggesting traces of additional fluid species such as N2 in the dominantly CO2-rich fluid. Homogenization of pure CO2 inclusions in the quartzo-feldspathic garnet gneiss, sapphirine granulite, and garnet-orthopyroxene gneiss occurs into the liquid phase at temperatures in the range of -34.9 to +4.2 °C. This translates into very high CO2 densities in the range of 0.95-1.07 g/cm3. In the garnet-orthopyroxene gneiss, the composition and density of inclusions in the different minerals show systematic variation, with highest homogenization temperatures (lowest density) yielded by inclusions in garnet, as against inclusions with lowest homogenization (high density) in quartz. This could be a reflection of continued recrystallization of quartz with entrapment of late fluids along the IBC path. Very high-density CO2 inclusions in sapphirine associated with quartz in the Tonagh Island rocks provide potential evidence for the involvement of CO2-rich fluids during extreme crustal temperatures associated with UHT metamorphism. The estimated CO2 isochores for sapphirine granulite intersect the counterclockwise P-T trajectory of Tonagh Island rocks at around 6-9 kbar at 1,100 °C, which corresponds to the peak metamorphic conditions of this terrane derived from mineral phase equilibria, and the stability field of sapphirine + quartz. Therefore, we infer that CO2 was the dominant fluid species present during the peak metamorphism in Tonagh Island, and interpret that the fluid inclusions preserve traces of the synmetamorphic fluid from the UHT event. The stability of anhydrous minerals, such as orthopyroxene, in the study area might have been achieved by the lowering of H2O activity through the influx of CO2 at peak metamorphic conditions (>1,100 °C). Our microthermometric data support a counterclockwise P-T path for the Napier Complex.  相似文献   

3.
WATERS  D. J. 《Journal of Petrology》1986,27(2):541-565
Sapphirine occurs with cordierite, phlogopite, spinel, sillimanite,corundum, orthopyroxene, and gedrite in granulite facies Mg-and Al-rich paragneisses within the low P, high T NamaqualandMetamorphic Complex. The gneisses reveal a three-stage texturalhistory. Sapphirine appeared during a second stage of progrademineral growth which produced nodular structures and intergrowthsinvolving spinel, corundum, and sillimanite, pseudomorphingan earlier generation of coarse, amphibolite facies minerals.A third generation of coarse, cross-cutting, mainly hydrousminerals (gedrite, kornerupine, phlogopite) is sporadicallydeveloped. The wide variety of cofacial mineral assemblages allows thedelineation of the stable mineral associations of sapphirinein the system K2O-MgO-FeO-Al2O3-SiO2-H2O under P-T conditionsindependently estimated at about 5 kb, 750–800 °C.The natural assemblages provide constraints which, taken togetherwith existing thermodynamic and experimental data, allow theestimation of P-T slopes of sapphirine equilibria. The mineraltextures thus indicate sapphirine growth under increasing T,decreasing a(H2O), and constant or slightly increasing P. The preservation of prograde reaction textures during fine-grainedmineral growth probably results from the reduced importanceand/or more CO2-rich composition of the metamorphic fluid undergranulite facies conditions in these refractory rocks. Aqueousfluids were locally reintroduced after the metamorphic peak.  相似文献   

4.
RUMBLE  DOUGLAS  III 《Journal of Petrology》1978,19(2):317-340
The rocks of the Clough Formation, Black Mountain, New Hampshire,were regionally metamorphosed at 5.5 (±0.5) kb and 495°± 10 °C during the Acadian orogeny. Mineral assemblagesattained chemical equilibrium during metamorphism on the scaleof single sedimentary beds up to 1 m thick. An aqueous, intergranular,metamorphic fluid was probably present; however, the concentrationsof the species H2O, H2, and O2 as well as the abundance of 18Oin the fluid varied from bed to bed. Neither isobaric nor polybaricosmotic equilibrium of H2 was attained between sedimentary beds.Fluid composition was controlled in each bed by the inherentbuffer capacity of the solid phases. Despite the effects ofprogressive dehydration during metamorphism, the buffer capacitiesof the mineral assemblages were sufficiently great that vestigesof premetamorphic heterogeneity of volatile components havebeen preserved.  相似文献   

5.
Metamorphic isograds and time-integrated fluid fluxes were mappedover the 1500 km2 exposure of the Waits River Formation, easternVermont, south of latitude 4430'N. Isograds based on the appearanceof oligoclase, biotite, and amphibole in metacarbonate rocksdefine elongated metamorphic highs centered on the axes of twolarge antiforms. The highest-grade isograd based on the appearanceof diopside is closely associated spatially with synmetamorphicgranitic plutons. Pressure, calculated from mineral equilibria,was fairly uniform in the area, 7 1.5 kb; calculated temperatureincreases from {small tilde} 480C at the lowest grades in thearea to {small tilde} 575C in the diopside zone. CalculatedXco2f equilibrium metamorphic fluid increases from <0-03at the lowest grades to 0.2 in the amphibole zone and decreasesto 0.07 in the diopside zone. Time-integrated fluid fluxesincrease with increasing metamorphic grade, with the followingmean values for each metamorphic zone (in cm3/cm2): ankerite-oligoclasezone, 1 x 104; biotite zone, 7 x 104; amphibole zone, 2 x 105;diopside zone, 7 x 105. The mapped pattern of time-integrated fluxes delineates twolarge deep-seated ({small tilde} 25-km depth) regional metamorphichydrothermal systems, each centered on one of the major antiforms.Fluid flowed subhorizontally perpendicular to the axis of theantiforms from their low-temperature flanks to their hot axialregions and drove prograde decarbonation reactions as they went.Along the axes of the antiforms fluid flow was further focusedaround synmetamorphic granitic intrusions. In the hot axialregion fluid changed direction and flowed subvertically outof the metamorphic terrane, precipitating quartz veins. Estimatesof the total recharge, based on progress of prograde decarbonationreactions, nearly match estimates of the total discharge, basedon measured quartz vein abundance, (2-10) x 1012 cm3 fluid percm system measured parallel to the axes of the antiforms. Withinthe axial regions fluids had lower XCO2 and rocks record greatertime-integrated fluxes close to the intrusions than at positionsmore than {small tilde} 5 km from them. The differences in bothfluid composition and time-integrated flux can be explainedby mixing close to the intrusions of regional metamorphic fluidsof XCO2/ with fluids from another source with XCO2{small tilde}0 in the approximate volume ratio of 1:2.  相似文献   

6.
Progress () of the infiltration-driven reaction, 4olivine +5CO2 + H2O = talc + 5magnesite, that occurred during Barrovianregional metamorphism, varies at the cm-scale by a factor of3·5 within an 3 m3 volume of rock. Mineral and stableisotope compositions record that XCO2, 18Ofluid, and 13Cfluidwere uniform within error of measurement in the same rock volume.The conventional interpretation of small-scale variations in in terms of channelized fluid flow cannot explain the uniformityin fluid composition. Small-scale variations in resulted insteadbecause (a) reactant olivine was a solid solution, (b) initiallythere were small-scale variations in the amount and compositionof olivine, and (c) fluid composition was completely homogenizedover the same scale by diffusion–dispersion during infiltrationand subsequent reaction. Assuming isochemical reaction, spatialvariations in image variations in the (Mg + Fe)/Si of the parentrock rather than the geometry of metamorphic fluid flow. Ifinfiltration-driven reactions involve minerals fixed in composition,on the other hand, spatial variations in do directly imagefluid flow paths. The geometry of fluid flow can never be determinedfrom geochemical tracers over a distance smaller than the oneover which fluid composition is completely homogenized by diffusion–dispersion. KEY WORDS: Alpine Barrovian metamorphism; diffusion; metamorphic fluid composition; metamorphic fluid flow; reaction progress  相似文献   

7.
The northern part of the Cycladic island of Sifnos (Greece)is formed by a coherent sequence of interlayered acid and basicmetavolcanic rocks and metasediments, which underwent a high-pressureblueschist facies metamorphism during the Eocene. The metabasicrocks, including eclogites, blueschists, and actinolite-bearingrocks, are discussed in terms of their mineral assemblages,and bulk-rock and mineral chemistries. Metamorphic conditionsof 470 ? 30 ?C and 15 ? 3 kb are indicated by garnet-omphacitegeothermometry and by the development of deerite in meta-ironstonesand jadeite +quartz in meta-acidites.Mineral textures and systematicelement distributions between coexisting minerals suggest attainmentof chemical equilibrium. A new projection from garnet, epidote,quartz and vapour onto the NaAlO2-Al2O3-CaMgO2 plane is usedto illustrate equilibrium phase relations between omphacite,glaucophane, actinolite, paragonite, and chloritoid. It is demonstratedthat eclogites, blueschists, and actinolite-bearing metabasitesrepresent different bulk-rock compositions that recrystallizedunder the same fluid pressure and temperature conditions. Eclogitescontaining hydrous minerals such as glaucophane, actinolite,phengite, or paragonite in equilibrium with garnet and omphacitecan occur together with blueschists in high-pressure terraneswithout indicating different metamorphic conditions.  相似文献   

8.
The petrography and mineralogy of a coarse-grained eclogitelens from the La Rinconada Group of northeastern Margarita Island,Venezuela, reflect the metamorphic evolution of the rock. Omphacite+ garnet + paragonite + barroisite + epidote + rutile/ilmenite+ quartz + pyrite + apatite represents the stable assemblagemarking the culmination of a single metamorphic episode. Electronmicroprobe analyses of the major minerals indicate an affinitywith Smulikowski's low-temperature ‘ophiolitic’type. Schreinemakers relationships among the mineral phasesallow the observed complex reaction relations to be explainedas late-stage depressurization effects. The crystallizationof eclogite instead of amphibole gneiss, as in the chemicallyidentical country rock, must be related to a lower H2O in theaqueous fluid phase attending metamorphism. It is inferred frommineralogical stability data that the ‘culmination assemblage’was stable at approximately 450–525 °C and 11.5–13.5kb load pressure, and that depressurization to less than 5 kboccurred at slightly increasing metamorphic temperatures.  相似文献   

9.
高压-超高压变质岩石中石榴石的环带和成因   总被引:2,自引:2,他引:0  
夏琼霞  郑永飞 《岩石学报》2011,27(2):433-450
在俯冲带变质过程中,石榴石是高压-超高压变质榴辉岩和片麻岩的常见变质矿物。由于石榴石具有难熔和流体中的低溶解能力的特点,通常可以很好地保存下来,并且能够保留复杂的化学成分环带,以及不同类型的矿物或流体包裹体,为解释石榴石寄主岩石经历的变质演化历史提供了重要信息。石榴子石的主微量元素成分受控于很多因素,如全岩成分、变质的温压条件、控制石榴子石形成的相关变质反应、与石榴子石共生的矿物种类和成分等。因此,在利用石榴石探讨超高压变质的演化历史时,对石榴石进行系统的主要元素、微量元素、氧同位素以及矿物包裹体分析,以及相互间的成因关系。同时,对石榴石中的锆石或独居石包裹体并进行原位U-Pb定年和微量元素分析,可以为变质石榴石的形成时代提供直接的时间制约。深入研究超高压变质岩中石榴石的生长阶段,不仅可以为含石榴石寄主岩石的变质过程提供岩石学和地球化学证据,而且对于理解石榴石的形成机制、生长规律及其变质化学动力学过程具有重要的科学意义。  相似文献   

10.
The Southern Marginal Zone of the Limpopo Belt in South Africa is characterised by a granulite and retrograde hydrated granulite terrane. The Southern Marginal Zone is, therefore, perfectly suitable to study fluids during and after granulite facies metamorphism by means of fluid inclusions and equilibrium calculations. Isolated and clustered high-salinity aqueous and CO2(-CH4) fluid inclusions within quartz inclusions in garnet in metapelites demonstrate that these immiscible low H2O activity fluids were present under peak metamorphic conditions (800-850 °C, 7.5-8.5 kbar). The absence of widespread high-temperature metasomatic alteration indicates that the brine fluid was probably only locally present in small quantities. Thermocalc calculations demonstrate that the peak metamorphic mineral assemblage in mafic granulites was in equilibrium with a fluid with a low H2O activity (0.2-0.3). The absence of water in CO2-rich fluid inclusions is due to either observation difficulties or selective water leakage. The density of CO2 inclusions in trails suggests a retrograde P-T path dominated by decompression at T<600 °C. Re-evaluation of previously published data demonstrates that retrograde hydration of the granulites at 600 °C occurred in the presence of H2O and CO2-rich fluids under P-T conditions of 5-6 kbar and ~600 °C. The different compositions of the hydrating fluid suggest more than one fluid source.  相似文献   

11.
The Connemara ophicalcites and associated marbles contain varyingproportions of calcite, dolomite, tremolitic amphibole, serpentinizedolivine, diopside, humite, phlogopite, clinochlore, and quartz.They formed from a chemically precipitated 'primary' dolomitewith a small amount of mica and clay minerals in which muchof the trace and minor element content of the rock, e.g. Al,Fe, Ti, Zn, Ni, Cr, Zr, K, Rb, and rare earths was concentrated.The rock was probably silicified after deposition, possiblyduring metamorphism, and was probably not deposited with majoradmixed detrital quartz or feldspar. The formation during metamorphismof complementary segregated layers rich in either olivine (Fo98±2)or calcite resulted from important chemical changes controlledby the composition of the stable metamorphic minerals, i.e.those for which solution concentrations exceeded the solubilityproduct for the pore fluid. The mineralogy influenced the localconcentrations of both major and trace elements and emphasizesthe importance of solutions and the stable metamorphic mineralogyin manipulating the composition of some metamorphic rocks. Somecriteria for recognizing segregated layers in metamorphic rocksare given. Serpentinization was probably by addition of water and silicaand not by movement of Fe or Mg. Chemical analyses of forty-threesamples each for twenty-six oxides and elements are given andthe first occurrence of humite in Connemara is reported.  相似文献   

12.
Using the Selektor-C software program package, oxidation potential and the composition of metamorphogenic fluid were determined for mineral assemblages from nine samples of granulite-grade metamorphic rocks by solving the inverse problems of convex programming. The calculated and real mineral assemblages are in good agreement with respect to the composition and association of minerals, which is compelling evidence for the attainment of chemical equilibrium (minimum of Gibbs free energy) under given P-T conditions. Based on the dual solution of the inverse problem, a new approach was proposed for the estimation of the oxidation potential of fluid and mineral assemblages, which can be used to determine oxygen potential for almost any mineral association, independent of the presence of magnetite, ilmenite, or graphite. It was found that magnetite-free mineral associations are characterized by highly reducing conditions corresponding to oxygen potentials close to the CCO buffer. The external metamorphic fluid that was present during granulite-facies metamorphism was probably formed in the graphite stability field. The results of calculations for the model aqueous electrolyte solution-mineral assemblage suggest high SiO2 solubility in the metamorphogenic fluid. Therefore, the process of granulite metamorphism may be a potent geochemical factor of the redistribution and transportation of silica from lower to upper crustal levels.  相似文献   

13.
Scapolite and other halogen-rich minerals (phlogopite, amphibole,apatite, titanite and clinohumite) occur in some high-pressureamphibolite facies calc-silicates and orthopyroxene-bearingrocks at Sare Sang (Sar e Sang or Sar-e-Sang), NE Afghanistan.The calc-silicates are subdivided into two groups: garnet-bearingand garnet-free, phlogopite-bearing. Besides garnet and/or phlogopite,the amphibolite facies mineral assemblages in the calc-silicatesinclude clinopyroxene, calcite, quartz and one or more of theminerals scapolite, plagioclase, K-feldspar, titanite, apatiteand rarely olivine. Orthopyroxene-bearing rocks consist of clinopyroxene,garnet, plagioclase, scapolite, amphibole, quartz, calcite andaccessory dolomite and alumosilicate (kyanite?). Retrogradephases in the rocks are plagioclase, scapolite, calcite, amphibole,sodalite, haüyne, lazurite, biotite, apatite and dolomite.The clinopyroxene is mostly diopside and rarely also hedenbergite.Aegirine and omphacite with a maximum jadeite content of 29mol % were also found. Garnet from the calc-silicates is Grs45–95Py0–2and from the orthopyroxene-bearing rocks is Grs10–15Py36–43.Peak P–T metamorphic conditions, calculated using availableexchange thermobarometers and the TWQ program, are 750°Cand 1·3–1·4 GPa. Depending on the rock type,the scapolite exhibits a wide range of composition (from EqAn= 0·07, XCl =0·99 to EqAn = 0·61, XCl =0·07).Equilibria calculated for scapolite and coexisting phases atpeak metamorphic conditions yield XCO2 = 0·03–0·15.XNaCl (fluid), obtained for scapolite, ranges between 0·04and 0·99. Partitioning of F and Cl between coexistingphases was calculated for apatite–biotite and amphibole–biotite.Fluorapatite is present in calc-silicates, but orthopyroxene-bearingrocks contain chlorapatite. Cl preferentially partitions intoamphibole with respect to biotite. All these rocks have sufferedvarious degrees of retrogression, which resulted in removalof halogens, CO2 and S. Halogen- and S-bearing minerals formedduring retrogression and metasomatism are fluorapatite, sodalite,amphibole, scapolite, clinohumite, haüyne, pyrite, andlazurite, which either form veins or replace earlier formedphases. KEY WORDS: scapolite; fluid composition; high-pressure; amphibolite facies; Western Hindukush; Afghanistan  相似文献   

14.
Within the western Sierra Nevada metamorphic belt, linear bodiesof alpine-type ultramafic rock, now composed largely of serpentineminerals, parallel the regional strike and commonly coincidewith major fault zones. Within this metamorphic belt, east ofSacramento, California, ultramafic rocks near a large maficintrusion, the Pine Hill Intrusive Complex, have been emplacedduring at least two separate episodes. Those ultramafic rocks,evidently unaffected by the Pine Hill Intrusive Complex andcomposed largely of serpentine minerals, were emplaced alonga major fault zone after emplacement of the Pine Hill IntrusiveComplex. Those ultramafic rocks, contact metamorphosed by thePine Hill Intrusive Complex, show a zonation of mineral assemblagesas the igneous contact is approached: olivine+antigorite+chlorite+tremolite+Fe-Cr spinel olivine+talc+chlorite+tremolite+Fe-Crspinel olivine+anthophyllite+chlorite+tremolite+Fe-Cr spinel olivine+orthopyroxene+aluminous spinel+hornblende+Fe-Cr spinel.Superimposed on these mineral assemblages are abundant secondaryminerals (serpentine minerals, talc, chlorite, magnetite) whichformed after contact metamorphism. Correlation of observed mineralassemblages with the experimental systems, MgO-SiO2-H2O andMgO-Al2O3-SiO2-H2O suggests an initial contact temperature of775±25 °C for the Pine Hill Intrusive Complex assumingPtotal Pfluid PH2O. The pressure acting on the metamorphic rockduring emplacement of the intrusion is estimated to be a minimumof 1.5 kb.  相似文献   

15.
The redox state of sillimanite zone (650–700°C, 5–6kbar) metasediments of the Barrovian type area, Scotland, wasinvestigated using estimates of metamorphic oxygen fugacity(fO2), sulfur fugacity (fS2), and fluid chemistry based on newdeterminations of mineral and rock compositions from 33 samples.A total of 94% of the samples lack graphite, contain both ilmenite–hematitesolid solutions (RHOMOX) and magnetite, and had metamorphicfO2 about 2 log10 units above the quartz–fayalite–magnetite(QFM) buffer. The regional variation in metamorphic fO2 forthese rocks was minimal, about ±0·3 log10 units,reflecting either a protolith that was homogeneous with respectto redox state, or an initially variable protolith whose redoxstate was homogenized by metamorphic fluid–rock interaction.RHOMOX inclusions in garnet porphyroblasts that become richerin ilmenite from the interior to the edge of the host porphyroblastsuggest that at least some syn-metamorphic reduction of rockoccurred. Significant variations in bulk-rock oxidation ratio(OR) that are probably inherited from sedimentary protolithsare found from one layer to the next; OR ranges mostly between  相似文献   

16.
The Connemara ophicalcites and associated marbles contain varyingproportions of calcite, dolomite, tremolitic amphibole, serpentinizedolivine, diopside, humite, phlogopite, clinochlore, and quartz.They formed from a chemically precipitated ‘primary’dolomite with a small amount of mica and clay minerals in whichmuch of the trace and minor element content of the rock, e.g.Al, Fe, Ti, Zn, Ni, Cr, Zr, K, Rb, and rare earths was concentrated.The rock was probably silicified after deposition, possiblyduring metamorphism, and was probably not deposited with majoradmixed detrital quartz or feldspar. The formation during metamorphismof complementary segregated layers rich in either olivine (Fo98?2)or calcite resulted from important chemical changes controlledby the composition of the stable metamorphic minerals, i.e.those for which solution concentrations exceeded the solubilityproduct for the pore fluid. The mineralogy influenced the localconcentrations of both major and trace elements and emphasizesthe importance of solutions and the stable metamorphic mineralogyin manipulating the composition of some metamorphic rocks. Somecriteria for recognizing segregated layers in metamorphic rocksare given. Serpentinization was probably by addition of water and silicaand not by movement of Fe or Mg. Chemical analyses of forty-threesamples each for twenty-six oxides and elements are given andthe first occurrence of humite in Connemara is reported.  相似文献   

17.
In southwest New Zealand, a suite of felsic diorite intrusions known as the Western Fiordland Orthogneiss (WFO) were emplaced into the mid to deep crust and partially recrystallized to high‐P (12 kbar) granulite facies assemblages. This study focuses on the southern most pluton within the WFO suite (Malaspina Pluton) between Doubtful and Dusky sounds. New mapping shows intrusive contacts between the Malaspina Pluton and adjacent Palaeozoic metasedimentary country rocks with a thermal aureole ~200–1000 m wide adjacent to the Malaspina Pluton in the surrounding rocks. Thermobarometry on assemblages in the aureole indicates that the Malaspina Pluton intruded the adjacent amphibolite facies rocks while they were at depths of 10–14 kbar. Similar P–T conditions are recorded in high‐P granulite facies assemblages developed locally throughout the Malaspina Pluton. Palaeozoic rocks more than ~200–1000 m from the Malaspina Pluton retain medium‐P mid‐amphibolite facies assemblages, despite having been subjected to pressures of 10–14 kbar for > 5 Myr. These observations contradict previous interpretations of the WFO Malaspina Pluton as the lower plate of a metamorphic core complex, everywhere separated from the metasedimentary rocks by a regional‐scale extensional shear zone (Doubtful Sound Shear Zone). Slow reaction kinetics, lack of available H2O, lack of widespread penetrative deformation, and cooling of the Malaspina Pluton thermal anomaly within c. 3–4 Myr likely prevented recrystallization of mid amphibolite facies assemblages outside the thermal aureole. If not for the evidence within the thermal aureole, there would be little to suggest that gneissic rocks which underlie several 100 km2 of southwest New Zealand had experienced metamorphic pressures of 10–14 kbar. Similar high‐P metamorphic events may therefore be more common than presently recognized.  相似文献   

18.
The Menderes Massif comprises an inner crystalline core with gneissic rocks and an outer surrounding schist belt with predominantly metasedimentary rocks. Both units have a complex metamorphic history including a late Alpine overprint. Temperatures inferred from oxygen isotope compositions of coexisting minerals increase from 420 to 600°C from the rim to the center. More positive '18O values in all minerals from the schist belt may reflect a higher abundance of sedimentary precursor material, whereas biotites and muscovites in core and rim are indistinguishable in hydrogen isotope composition. 'D values of muscovites range from -35 to -60‰, whereas 'D values of biotites range from -65 to -125‰, indicating normal values for muscovite but anomalously negative values for some biotites. For muscovite the trend can be interpreted in terms of increasing loss of water with rising metamorphic temperature. For biotite the 'D values decrease with increasing H2O content and decreasing Na2O+K2O content, which provides evidence for alteration processes or exchange of K and Na with water from interlayers of biotite forming hydro-biotite. The data suggest isotopic resetting of pre-Alpine characteristics during Alpine metamorphism. The hydrogen isotope composition of biotite was later disturbed, probably during extensional neotectonic movements in this region, as this allowed infiltration of and exchange with D-depleted meteoric water; however, the muscovites retained its Alpine characteristics.  相似文献   

19.
The biotite isograd in pelitic schists of the Waterville Formationinvolved reaction of muscovite + ankerite + rutile + pyrite+graphite + siderite or calcite to form biotite + plagioclase+ ilmenite. There was no single reaction in all pelites; eachrock experienced a unique reaction depending on the mineralogyand proportions of minerals in the chlorite-zone equivalentfrom which it evolved. Quartz, chlorite, and pyrrhotite werereactants in some rocks and products in others. All inferredbiotite-forming reactions involved decarbonation and desulfidation;some were dehydration reactions and others were hydration reactions.P-T conditions at the biotite isograd were near 3500 bars and400 °C. C-O-H-S fluids in equilibrium with the pelitic rockswere close to binary CO2-H2O mixtures with XCO2 = 0.02–0.04.During the biotite-forming reaction, pelitic rocks (a) decreasedby 2–5 percent in volume, (b) performed – (4–11)kcal/liter P-V work on their surroundings, (c) absorbed 38–85kcal/liter heat from their surroundings, and (d) were infiltratedby at least 0.9–2.2 rock volumes H2O fluid. The biotite isograd sharply marks the limit of a decarbonationfront that passed through the terrane during regional metamorphism.Decarbonation converted meta-shales with 6–10 per centcarbonate to carbonate-free pelitic schists. One essential causeof the decarbonation event was pervasive infiltration of theterrane by at least 1–2 rock volumes H2O fluid early inthe metamorphic event under P-T conditions of the biotite isograd.Average shale contains 4–13 per cent siderite, ankerite,and/or calcite, but average pelitic schist is devoid of carbonateminerals. If the Waterville Formation serves as a general modelfor the metamorphism of pelitic rocks, it is likely that worldwidemany pelitic schists developed by decarbonation of shale caused,in part, by pervasive infiltration of metamorphic terranes byseveral rock volumes of aqueous fluid during an early stageof the metamorphic event.  相似文献   

20.
Meta‐anorthosite bodies are typical constituents of the Neoproterozoic Eastern Granulites in Tanzania. The mineral assemblage (and accessory components) is made up of clinopyroxene, garnet, amphibole; scapolite, epidote, biotite, rutile, titanite, ilmenite and quartz. Within the feldspar‐rich matrix (70–90% plagioclase), mafic domains with metamorphic corona textures were used for P–T calculations. Central parts of these textures constitute high‐Al clinopyroxene – which is a common magmatic mineral in anorthosites – and is therefore assumed to be a magmatic relict. The clinopyroxene rims have a diopsidic composition and are surrounded by a garnet corona. Locally the pyroxene is surrounded by amphibole and scapolite suggesting that a mixed CO2–H2O fluid was present during their formation. Thermobarometric calculations give the following conditions for the metamorphic peak of the individual meta‐anorthosite bodies: Mwega: 11–13 kbar, 850–900 °C; Pare Mountains: 12–14 kbar, 850–900 °C; Uluguru Mountains: 12–14 kbar, 850–900 °C. The P–T evolution of these bodies was modelled using pseudosections. The amount and composition of the metamorphic fluid and <0.5 mol.% fluid in the bulk composition is sufficient to produce fluid‐saturated assemblages at 10 kbar and 800 °C. Pseudosection analysis shows that the corona textures most likely formed under fluid undersaturated conditions or close to the boundary of fluid saturation. The stabilities of garnet and amphibole are dependent on the amount of fluid present during their formation. Mode isopleths of these minerals change their geometry drastically between fluid‐saturated and fluid‐undersaturated assemblages. The garnet coronae developed during isobaric cooling following the metamorphic peak. The cooling segment is followed by decompression as indicated by the growth of amphibole and plagioclase. The estimated of the metamorphic fluid is ~0.3–0.5. Although the meta‐anorthosites have different formation ages (Archean and Proterozoic) they experienced the same Pan‐African metamorphic overprint with a retrograde isobaric cooling path. Similar P–T evolutionary paths are known from the hosting granulites. The presented data are best explained by a tectonic model of hot fold nappes that brought the different aged anorthosites and surrounding rocks together in the deep crust followed by an isobaric cooling history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号