首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
孙涛  吴涛  葛阳  樊奇  李丽霞  吕鑫 《地学前缘》2022,29(5):476-482
琼东南盆地深水区具备形成天然气水合物藏的地质条件,是我国海洋天然气水合物两个勘探开发先导示范区之一。本文选取深水区浅表层水合物为研究对象,基于天然气地球化学、稀有气体地球化学分析,开展了其与深部常规天然气藏的对比研究。结果表明:本次研究的浅表层气体碳同位素与深部常规天然气碳同位素的特征类似,气源主要为深部热成因气,生物气的贡献不明显,气体的成因类型为煤型气,推测气源岩为崖城组煤系烃源岩。轻稀有气体Ar同位素组成显示,气源岩和第三系相关;样品中3He/4He值偏高,指示了部分幔源气的贡献。因此,在富生烃凹陷背景下,讨论深部热成因气对水合物成藏具有重要意义,深部热成因气藏与浅层水合物藏在垂向上可以形成立体的天然气藏,为未来的“多气可采”提供理论支持,也有助于提高深水区天然气水合物矿藏开发的经济性。  相似文献   

2.
信石印 《地质与资源》2018,27(2):204-208
对天然气水合物的形成机理与分布特征、现今和地质历史时期天然气水合物的识别标志及其与油气成藏的相关性等方面的主要研究进展与实例的分析显示,天然气水合物在主动陆缘俯冲带增生楔和被动陆缘的陆隆台地断褶区非常发育,以似海底反射、特殊自生碳酸盐岩矿物、非搬运成因的局部沉积破坏或杂乱堆积、大型圆形凹陷和巨大规模的海底滑坡为识别标志,与油气成藏具有共生组合关系.深部气藏渗漏或油藏裂解形成的大量天然气为浅层外源成藏天然气水合物提供气源;古天然气水合物的形成有利于页岩气的保存和成藏;古天然气水合物分解可为浅层气藏提供气源.  相似文献   

3.
为了厘清琼东南盆地南部低凸起及其周缘区天然气水合物富集影响因素及成藏模式,利用天然气水合物钻探获取的钻井、测井及2D/3D地震资料,分析了研究区天然气水合物赋存的地质、地球物理特征,探讨了水合物富集控制成藏的影响因素,建立了水合物成藏模式.结果表明:琼东南盆地南部低凸起及其周缘区位于中央坳陷带南坡的深部流体输导优势方向上.多个站位水合物钻探显示,水合物具有分层、多类型储集层的特征.测井上含水合物层段总体具有高电阻率、低声波时差特征.地震剖面分析显示气烟囱顶部气体横向充注现象明显,气体垂向运移受限.研究区水合物的气源兼具微生物成因和热解气成因.断层、气烟囱以及孔?缝渗漏体系为深层热解气的运移提供了良好的输导条件.浅层块体搬运沉积的快速堆积使得其内部孔隙流体难以迅速排出,从而其孔隙流体压力相比上覆和下伏地层要高,使得下伏流体的垂向输导受阻,形成封盖作用.超压封盖层是研究区多类型储集层水合物主要的控制因素.根据封盖能力的差异性及其对水合物富集程度的影响提出了封闭系统和开放系统两种类型的水合物成藏模式.   相似文献   

4.
从南海北部浅层气的成因看水合物潜在的气源   总被引:2,自引:1,他引:1  
傅宁  林青  刘英丽 《现代地质》2011,25(2):332-339
应用天然气浓缩轻烃分析技术、天然气碳同位素分析技术,结合现有地质资料和水合物分析资料,对南海北部浅层气的成因特征、运移特征及南海已发现的水合物成因特征进行了详细分析。研究结果表明,南海北部盆地浅层气藏普遍具有混合成因的特征,并主要以生物气-热成因气(生物降解气)混合气为主。浅层气的这种混合成因特征揭示了水合物的气源不仅与生物气有关,也与热成因气生物降解气有关,而混合气中的热成因气(生物降解气)的气源来自深部油气藏,表明水合物的气源与常规深部油气藏有密切的关系。南海北部大陆边缘神狐陆坡深水区天然气水合物主要为生物成因和混合成因二种类型,生物成因的水合物δ13C1值分布在-57‰~-74.3‰之间, 混合成因的水合物δ13C1值分布在-46.2‰~-63‰之间。珠江口盆地白云凹陷深水区为南海北部水合物最具潜力的勘探区。  相似文献   

5.
琼东南盆地最新的水合物调查研究发现了大量疑似BSR(bottom simulating reflector)特征的地震反射界面,但BSR特征并不典型。为了解决在BSR特征不甚明显的地区进行天然气水合物识别和成矿远景研究的问题,本文首先通过对调查所取得的第一手资料的综合分析,指出了琼东南盆地海域天然气水合物地球物理标识——BSR识别的局限性;然后从天然气水合物成藏所必须具备的气源、运移通道、有利沉积条件等几个方面出发,探讨了琼东南盆地天然气水合物成藏必须具备的气源、气体运通道和储层等特征,对琼东南盆地天然气水合物地球物理识别标志——BSR判识提供了良好佐证。综合分析认为:琼东南盆地海域的中央坳陷带内发育了大量气烟囱的位置及其附近海底浅层应是天然气水合物发育的重点目标区。  相似文献   

6.
神狐钻探区天然气水合物成藏地质条件分析   总被引:1,自引:0,他引:1  
以天然气水合物成藏系统理论为指导,对神狐钻探区天然气水合物成藏地质条件进行了系统研究。研究结果表明:神狐钻探区具有优越的烃类生成体系和流体运移体系。天然气水合物气源以生物气-热成因气混合气为主,气源岩生烃潜力大;断层、气烟囱以及断层滑脱面可以为含烃流体在纵向和横向上的运移提供优势运移通道。地温特征和成藏就位体系-沉积物岩性及其岩性组合特征是控制该区水合物层在空间尺度上分布不均匀的主要原因,地温和地温梯度越低,沉积物粒度越粗,且具备“上细下粗”的沉积物岩性组合更有利于水合物的形成。  相似文献   

7.
天然气水合物研究覆盖了地球物理学、地球化学和地质学等多门学科,其中勘查地球化学方法可以从海底介质中直接获得与天然气水合物有关的地球化学信息,圈定水合物异常区域。近些年来大量的研究工作和陆续发现的地球物理和地球化学证据显示,南海北部海域是我国勘查天然气水合物最有潜力的区域之一。依据广州海洋地质调查局2005年第4航次获得的南海琼东南盆地沉积物酸解烃测试结果和高异常段位同位素分析数据,探讨了琼东南盆地气态烃地球化学分布特征和异常成因。结合西沙海槽已有的勘探资料和水合物成藏地质条件,分析南海北部西沙海槽—琼东南地区与天然气水合物有关的地球化学异常特征,并对水合物成藏远景进行了预测。研究成果为南海北部天然气水合物勘探提供地球化学证据。  相似文献   

8.
气源运聚通道与天然气水合物富集成藏关系密切。利用准三维地震资料并结合钻探成果,深入研究了神狐海域GMGS3钻探区高饱和度水合物站位气源运移疏导通道地质地球物理特征及其控藏作用。结果表明:高饱和度水合物产出站位发育多种类型运移疏导通道,且与BSR空间耦合关系较好;紧邻BSR之下为强振幅反射,强振幅下部游离气体充注现象明显,表明水合物稳定域下部存在气体运移的通道,且深部气体向浅层发生了运移。深大断裂、底辟及气烟囱构成了沟通深部热解气及浅层生物气与浅层温压稳定域的垂向通道,在这些通道上方可以直接形成水合物;浅部滑塌面、水道砂及海底扇构成的高孔渗连续性砂体为浅层生物气及深部运移而来的部分热成因气横向运移通道,气体的侧向运移扩大了气体供给范围,增加了矿体横向展布规模。文章认为,天然气运移疏导系统与其他成藏要素匹配良好的构造和区域是勘探高饱和度水合物的有利目标。  相似文献   

9.
羌塘盆地是青藏高原最大的含油气盆地,多年冻土广泛分布,具备良好的天然气水合物形成条件和找矿前景。基于羌塘盆地天然气水合物钻探试验井资料,从影响天然气水合物成藏角度提出了羌塘盆地3种主要的冻土结构类型,其中由冻融层、含冰沉积物冻土层、含冰基岩冻土层、非含冰基岩冻土层所组成的冻土结构最为常见。研究表明,冻土层结构对天然气水合物温压条件具有一定影响,当非含冰基岩冻土层存在时,其下伏的非冻土层的孔隙流体压力与上部冻土层的微孔和微裂隙特征紧密相关,有利于浅层烃类气体的封存和水合物的成藏。含冰冻土层冰地球化学特征指示冻土层形成的过程是大气降雪融化成水后未经蒸发作用直接渗入地下,受气候变冷影响,地层由浅往深逐渐冻结形成。同时,矿化度和阴、阳离子浓度的高低在一定程度上反映了不同深度沉积物的物化性质。含冰冻土层对于浅层烃类气体封盖作用的定量评价显示,随着含冰饱和度的增加,甲烷气体渗透率降低,当含冰饱和度达到80%时,冻土层能完全有效地限制甲烷气体运移。由于在气候变暖因素的驱动下,冻土层不仅能通过温压条件来控制天然气水合物矿藏存在的空间范围,而且还限制着来自部分水合物分解所产生的烃类气体向浅部运移。因而推测,在青藏高原冻土区可能存在一个由断裂体系相关联的深部烃类储层、中部天然气水合物储层和浅部天然气藏组成的油气系统。  相似文献   

10.
对来自琼东南盆地W03和W09站位的天然气水合物分解气及其赋存沉积物的地球化学特征进行对比研究。结果表明, W03和W09站位的天然气水合物分解气分别对应以生物气为主和以热成因气为主的混合成因气, 2个站位水合物赋存的深层沉积物的地球化学特征具有显著差异。以生物成因气为主的W03站位沉积物表现出较高的总有机碳(TOC)、较低的硫酸盐含量以及较高的孔隙度,这些是产甲烷菌活跃的有利条件;同时天然气水合物富集层沉积物的饱和烃中显示出强度很高的低碳数未分离复杂化合物(UCM)鼓包(C12~C19),推测该站位沉积物中产甲烷菌活跃。以热成因气为主的W09站位沉积物中轻重烷烃指数(L/H)、姥鲛烷/植烷(Pr/Ph)和n-C17/Pr等多种生物标志物特征表明,该站位在天然气水合物富集层有明显的油源烃浸染的痕迹,推测来自深部油气藏的天然气将油源烃携带到天然气水合物层位,同时该站位部分样品色谱图中显示出与油源烃微生物降解活动相关的UCM鼓包(C17~C21),表明油源烃在沉积物中也受到了微生物降解活动的影响。  相似文献   

11.
为解决琼东南盆地深水区新区天然气勘探中遇到的天然气运移认识不清的难题,在实验(数值)模拟和大量调研基础上,综合钻井、构造和地震等资料,利用盆地模拟软件,开展了深水区天然气运移规律系统研究。结果显示,深水区天然气运移主要受到“流体势场” —“通道场(输导体系格架)”—“约束场(区域盖层)”3场耦合的控制。高势生烃凹陷内的底辟带和晚期活化沟通气源断裂发育区的陵水组区域盖层完整性被破坏,天然气垂向运移为主,利于在区域盖层之上形成多个中小规模气藏组成的浅层大中型岩性型气田;部分凹陷边缘—低凸起及之上地区陵水组区域盖层保存完整,断裂—砂体—构造脊汇聚型复合输导体系发育,天然气运移侧向为主,利于在区域盖层之下形成深层整装构造型大中型气田,而新构造运动是深水区晚期大中型气田形成的重要诱因。深水区最终形成了浅层和深层两套成藏体系和3套有利成藏组合。成果指导勘探,在松南低凸起深层成藏组合勘探中首次获得突破性发现,继续拓展,有望在中央峡谷外找到新的大中型气田群。  相似文献   

12.
13.
摘要:祁连山地区天然气水合物分布较为复杂,急需对该区天然气水合物成藏控制因素与成藏模式进行深入研究。本次重点对青海木里三露天天然气水合物系 列钻井揭示的地质资料及各种样品分析测试结果进行综合分析,结果显示:该区天然气水合物气源以油型热解成因气为主,少部分在浅部混有部分微生物成因气及煤成气,这些油型热解成因 气源主要由下部或更深部上三叠统或二叠系提供;当气源岩生成烃类气体后运移至浅部直接或间接由断裂连同泥岩、油页岩等封堵形成浅部气体聚集;浅部气体聚集体局部加入微生物成因气 或煤成气,经过不晚于中更新世早期形成的岛状永久冻土作用,在天然气水合物稳定带内与水结合形成天然气水合物,当它们处在天然气水合物稳定带之外便在更浅部以异常高压气层或游离( 吸附)气存在。由于气源类型与供应条件、运移与聚集条件、天然气水合物稳定带范围的不同,它们之间的匹配关系在不同位置具有很大的差异性,从而影响该区天然气水合物在横向平面上和 纵向剖面上分布与产出的不均性。  相似文献   

14.
哈拉湖地区目前基本属于地质空白区,有关天然气水合物形成及分布的研究较少,尤其针对该地区天然气水合物储层研究与认识较为有限。青徳地2井(QH-2)位于南祁连盆地哈拉湖坳陷西部,为坳陷内首口天然气水合物调查深井,钻遇第四系、新近系-古近系和三叠系。以青徳地2井三叠系主要储集岩层段岩心为研究对象,通过岩石薄片观察以及孔隙度、渗透率、密度、铸体薄片等物性测试,结合测井资料开展哈拉湖坳陷储层特征研究,结果表明: 青德地2井三叠系储层分布较广,厚度巨大,但储集性能整体较差,绝大部分属非常规储集层,且整体裂隙较不发育,较难形成类似木里地区固结岩层中的裂隙型水合物及孔隙型水合物,而该区冻土层下存在厚层第四系松散沉积物及裂隙相对发育的古近系-新近系,可为天然气水合物形成提供良好的储集空间。  相似文献   

15.
Harlahu Depression is basically a geological blank area now. Few studies on the formation and distribution of natural gas hydrate have been published, especially the research and understanding of natural gas hydrate reservoir in this area. The borehole QH-2 is located in the western part of Harlahu Depression of South Qilian Basin, and it was the first deep drilling hole for natural gas hydrate investigation in this area, in which Quaternary,Neogene—Paleogene and Triassic strata were drilled. The authors took the core of Triassic reservoir in well QH-2 as the research object to study the reservoir characteristics of Harlahu Depression, through the thin section observation of rock, porosity, permeability, rock density, casting thin section and other physical property tests, as well as the logging data. The research shows that Triassic reservoir of well QH-2 is widely distributed with great thickness. However, the physical property of the reservoir is poor, and most parts of the reservoir were unconventional reservoirs. The fractures are not developed, so it is difficult to form fracture type hydrate and pore type hydrate in the consolidated rock stratum similar to Muli area. While, the thick Quaternary loose sediments and Tertiary strata with relatively developed fissures were developed under the permafrost regions in this area, which may provide a better reservoir space for the formation of natural gas hydrate.  相似文献   

16.
二十多年来,南海天然气水合物勘查评价均主要集中在南海北部大陆边缘陆坡深水区,且先后在珠江口盆地神狐、珠江口盆地东部海域调查区和琼东南盆地陵水-松南调查区取得了天然气水合物勘查试采的重大突破及进展,陆续发现了两个大规模的天然气水合物藏,初步评价预测南海天然气水合物资源规模达800亿吨油当量左右,取得了南海天然气水合物勘探的阶段性重大成果.然而,南海天然气水合物资源进一步深化和拓展勘探的有利领域在哪里?尤其是可持续滚动勘探的战略接替区及选区在何处?其与目前陆坡深水油气及水合物勘探紧密相邻的外陆坡-洋陆过渡带(OCT)乃至洋盆区是否具有天然气水合物形成的地质条件?根据海洋地质调查及初步的地质综合分析研究,认为外陆坡-洋陆过渡带乃至洋盆区具备天然气水合物成藏的基本地质条件,可作为南海未来天然气水合物勘查的战略接替区和可持续滚动勘探的战略选区及资源远景区.针对这些影响和决定将来天然气水合物勘探决策部署及走向等关键问题进行初步分析与探讨,抛砖引玉希望能够对未来南海天然气水合物资源勘查评价及战略接替区之选择有所裨益!   相似文献   

17.
库车前陆盆地构造挤压作用下的天然气运聚效应探讨   总被引:2,自引:0,他引:2  
以克拉2气田为例,探讨了喜马拉雅晚期强烈构造挤压作用下天然气的运聚效应。构造挤压引起流体压力的快速增加,打破前期相对稳定的流体势场;断裂带为相对低应力区,不增压或与周围岩层相比增压相对小,成为相对低势区,岩层中的天然气向断裂处汇聚,使断裂带势能增大;构造挤压使地层发生破裂和已有断裂开启,同时垂向上气势梯度也大幅度增大,深部天然气沿断裂的垂向运移动力得以增强,断裂带处汇聚天然气沿开启断裂向上部地层快速运移,并侧向充注区域性盖层下的砂体,最终在构造挤压作用下的相对低气势区聚集。喜马拉雅晚期以来库车前陆逆冲带盐下断背斜、背斜构造挤压作用下为相对低气势区,油源断裂发育,构造强烈活动使断裂开启,垂向上气势梯度大幅度增大,保存条件较好,为喜马拉雅晚期以来天然气有利聚集区。中西部前陆盆地构造挤压强烈,对天然气成藏具有重要影响。因此,开展前陆盆地构造挤压对天然气成藏的影响研究,对指导前陆盆地油气勘探具有重要的理论意义和应用。  相似文献   

18.
We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 m below the seafloor [mbsf]) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2- to 2.5-km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor focused vertical gas migration from greater depth (e.g., Sites 1244 and 1245). Non-hydrocarbon gases such as CO2 and H2S are not abundant in sampled hydrates. The new gas geochemical data are inconsistent with earlier models suggesting that seafloor gas hydrates at Hydrate Ridge formed from gas derived from decomposition of deeper and older gas hydrates. Gas hydrate formation at the Southern Summit is explained by a model in which gas migrated from deep sediments, and perhaps was trapped by a gas hydrate seal at the base of the gas hydrate stability zone (GHSZ). Free gas migrated into the GHSZ when the overpressure in gas column exceeded sealing capacity of overlaying sediments, and precipitated as gas hydrate mainly within shallow sediments. The mushroom-like 3D shape of gas hydrate accumulation at the summit is possibly defined by the gas diffusion aureole surrounding the main migration conduit, the decrease of gas solubility in shallow sediment, and refocusing of gas by carbonate and gas hydrate seals near the seafloor to the crest of the local anticline structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号