首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kyzylkumite has been found in Cr-V-bearing metamorphic rocks of the Sludyanka Complex, Southern Baikal region; it has been identified by X-ray powder diffraction method. This is a late secondary mineral developed after Ti-V-oxides (schreyerite, berdesinskiite) and V-bearing rutile and titanite. Kyzylkumite represents a new structural type with composition Ti4V 2 3+ O10(OH)2 corresponding to octahedral coordination of Ti4+ and V3+. Its unit-cell dimensions are: a = 8.4787(1), b = 4.5624(1), c = 10.0330(1) Å, β = 93.174(1)°. The ideal formula of kyzylkumite Ti4V 2 3+ O10(OH)2 corresponds to composition, wt %: 65.56 TiO2, 30.75 V2O3, 3.69 H2O. Indeed, the contents (wt %) of these constituents range from 62 to 70 TiO2 and from 23 to 33 V2O3. Variations in contents and the Ti/V value are caused by partial substitution V3+ for V4+, isovalent substitutions Ti4+ and V3+ for V4+ and Cr3+, respectively, and coupled substitution V3+ + OH? ? Ti4+ + O2?. Smyslova et al. (1981)—the discovereres of kyzylkumite—assumed its composition to be the same as for schreyerite V 2 3+ Ti3O9 that principally different from kyzylkumite from the Sludyanka Complex. Therefore, re-examination of the kyzylkumite holotype or cotype from its type locality is needed.  相似文献   

2.
Emerald, the green gem variety of beryl (Be3Al2Si6O18), is the third most valuable gemstone after diamond and ruby. The green colour appearance of the crystal is due to trace of Cr3+ and V3+, which replaces Al3+ ions in the crystal lattice of beryl. The hue of green colour of emerald depends on the quantity of Cr3+ and V3+ present in the crystal. Be is incorporated along with Cr and/or V during the process of crystallization. Since Be is relatively rare in the upper continental crust, therefore specific geological and geochemical parameters are required for Be to be incorporated in the crystal lattice of emerald.The present work was carried out to understand the lithological and structural control of emerald occurrences in and around Gurabanda area within the Singhbhum shear zone (SSZ) of Singhbhum crustal province, eastern India. The biotite and serpentine schist belong to the Paleoproterozoic Dhanjori Group and constitute the major lithology of the area. Pegmatite and biotite schist contains a variety of gem minerals in abundance in the area and the gem quality emerald occur at the contact zone of quartz vein and mica-schist. Lithology and structure are the main controlling factors of gem-mineralization in the study area. The study indicates that regional metamorphism and deformation processes along the shear zone played a significant role in the formation of emerald deposits. It is inferred that Singhbhum shear zone facilitated a favourable condition, where the Be bearing pegmatites interacted with Cr bearing mica schist or ultramafic rocks to produce emerald crystal.  相似文献   

3.
Batisivite has been found as an accessory mineral in the Cr-V-bearing quartz-diopside metamorphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. A new mineral was named after the major cations in its ideal formula (Ba, Ti, Si, V). Associated minerals are quartz, Cr-V-bearing diopside and tremolite; calcite; schreyerite; berdesinskiite; ankangite; V-bearing titanite; minerals of the chromite-coulsonite, eskolaite-karelianite, dravite-vanadiumdravite, and chernykhite-roscoelite series; uraninite; Cr-bearing goldmanite; albite; barite; zircon; and unnamed U-Ti-V-Cr phases. Batisivite occurs as anhedral grains up to 0.15–0.20 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black and opaque, with a black streak and resinous luster. Batisivite is white in reflected light. The microhardness (VHN) is 1220–1470 kg/mm2 (load is 30 g), the mean value is 1330 kg/mm2. The Mohs hardness is near 7. The calculated density is 4.62 g/cm3. The new mineral is weakly anisotropic and bireflected. The measured values of reflectance are as follows (λ, nm—R max /R min ): 440—17.5/17.0; 460—17.3/16.7; 480—17.1/16.5; 500—17.2/16.6; 520—17.3/16.7; 540—17.4/16.8; 560—17.5/16.8; 580—17.6/16.9; 600—17.7/17.1; 620—17.7/17.1; 640—17.8/17.1; 660—17.9/17.2; 680—18.0/17.3; 700—18.1/17.4. Batisivite is triclinic, space group P \(\overline 1\); the unit-cell dimensions are: a = 7.521(1) Å, b = 7.643(1) Å, c = 9.572(1) Å, α = 110.20°(1), β = 103.34°(1), γ = 98.28°(1), V = 487.14(7) Å3, Z = 1. The strongest reflections in the X-ray powder diffraction pattern [d, Å (I, %)(hkl)] are: 3.09(8)(12\(\overline 2\)); 2.84, 2.85(10)(021, 120); 2.64(8)(21\(\overline 3\)); 2.12(8)(31\(\overline 3\)); 1.785(8)(32\(\overline 4\)), 1.581(10)(24\(\overline 2\)); 1.432, 1.433(10)(322, 124). The chemical composition (electron microprobe, average of 237 point analyses, wt %) is: 0.26 Nb2O5, 6.16 SiO2, 31.76 TiO2, 1.81 Al2O3, 8.20 VO2, 26.27 V2O3, 12.29 Cr2O3, 1.48 Fe2O3, 0.08 MgO, 11.42 BaO; the total is 99.73. The VO2/V2O3 ratio has been calculated. The simplified empirical formula is (V 4.8 3+ Cr2.2V 0.7 4+ Fe0.3)8.0(Ti5.4V 0.6 4+ )6.0[Ba(Si1.4Al0.5O0.9)]O28. An alternative to the title formula could be a variety (with the diorthogroup Si2O7) V8Ti6[Ba(Si2O7)]O22. Batisivite probably pertains to the V 8 3+ Ti 6 4+ [Ba(Si2O)]O28-Cr 8 3+ Ti 6 4+ [Ba(Si2O)]O28 solid solution series. The type material of batisivite has been deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

4.
Manganiferous quartz-mica schists (4 m in stratigraphic thickness) overlie epidote amphibolite in the Chiroro River area, Hidaka Mountains, Hokkaido. The schist layers have a considerable range of A/F ratios and bulk oxidation ratios which vary from 21.5 to 100. Manganese contents are from 4 to 30 times higher than that of the average shale with 0.09% MnO. The schists are essentially quartz-white mica-biotite-Mn garnet-tourmaline-±epidote-magnetite assemblages. A highly oxidized layer (5–8 cm thick) 95 cm above the epidote amphibolite contact is characterized by viridine-piemontite-spessartine-Mn white mica-Mn tourmaline-Ti-Mn haematite indicative of both high initial manganese content and very high f O2 conditions of recrystallization.Viridine contains up to 17 mol% Mn3+SiO5 and coexists with piemontite with between 13.6 and 15.4 wt% Mn2O3. Mn-poor-Fe-rich (Ps32) epidote occurs in the less oxidized schist enclosing the viridine-piemontite bearing seam. Garnets vary widely in composition with end member variations (mol%) of Spess22.9–80.5; And0.2–11.7; Alm1.1–57.1; Pyr2.0–12.2; Gross7.0–49.0. The more manganiferous garnets occur in rocks with higher oxidation ratios while almandiferous varieties occur in schists with low oxidation ratios. Biotite ranges from green to red-brown varieties (increasing Ti and Fe) with Mg/ (Mg+Fe) ratios varying from 56 to 48. Ten to fifteen percent octahedral R2+ is replaced by Al indicating a trend towards eastonite-siderophyllite. The white micas deviate only slightly from dioctahedral stoichiometry but have up to 25% of octahedral sites occupied by Fe, Mg and to a lesser extent Mn and Ti as R2+ Si4+2Al3+ and in highly oxidized rocks as (Fe,Mn)3+Al3+. The white mica in the highly oxidized viridine-piemontite schist is pale pinkishorange, exhibits reverse pleochroism, and has between 0.30 and 0.43 wt% Mn2O3.There is a close comparison, both in terms of stratigraphic thickness and Fe-Mn variation, between the Chiroro schist sequence and many oceanic cores so that the bulk chemistry and mineralogy of the pelitic schists is largely an extension of the original Eh-pH conditions of hemipelagic sedimentation and post-depositional adjustments during diagenesis. The thin viridine-piemontite bearing schist is correlated with an oxidized, Fe-Mn rich layer commonly found in present day oceanic cores. The viridine presumably formed by reaction of original ferro-manganese microgranules and clay minerals. Halmrolytic alteration of the underlying metabasalt resulted in leaching of Mn and Fe (in particular) into the overlying sediments and the formation of concentrations of haematite — manganese oxide — Mn garnet along the schist-epidote amphibolite contact.Estimation of the P-T conditions of metamorphism from the phase relations and compositions in the epidote amphibolite associated with the manganiferous schist gives T °C = 530560 and a minimum P fluid > 3 kb which corresponds to the epidote amphibolite facies of Barrovian-type terrains.This paper is dedicated to Professor Kenzo Yagi on the occasion of his retirement from the Chair of Mineralogy, Department of Geology and Mineralogy, Hokkaido University, Sapporo, Japan  相似文献   

5.
Iron- and vanadium-bearing kyanites have been synthesized at 900 and 1100° C/20 kb in a piston-cylinder apparatus using Mn2O3/Mn3O4- and MnO/Mn-mixtures, respectively, as oxygen buffers. Solid solubility on the pseudobinary section Al2SiO5-Fe2SiO5(-V2SiO5) of the system Al2O3-Fe2O3(V2O3)-SiO2 extends up to 6.5 mole% (14mole %) of the theoretical end member FeSiO5(V2SiO5) at 900°C/20 kb. For bulk compositions with higher Fe2SiO5 (V2SiO5) contents the corundum type phases M2O3(M = Fe3+, V3+) are found to coexist with the Fe3+(V3+)-saturated kyanite solid solution plus quartz. The extent of solid solubility on the join Al2SiO5-Fe2SiO5 at 1 100°C was not found to be significantly higher than at 900° C. Microprobe analyses of iron bearing kyanites gave no significant indication of ternary solid solubility in these mixed crystals. Lattice constants a 0, b 0, c 0, and V0 of the kyanite solid solutions increase with increasing Fe2SiO5- and V2SiO5-contents proportionally to the ionic radii of Fe3+ and V3+, respectively, the triclinic angles ,, remain constant. Iron kyanites are light yellowish-green, vanadium kyanites are light green. Iron kyanites, (Al1.87 Fe 0.13 3+ )SiO5, were obtained as crystals up to 700 m in length.  相似文献   

6.
7.
Oxyvanite has been identified as an accessory mineral in Cr-V-bearing quartz-diopside meta- morphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. The new mineral was named after constituents of its ideal formula (oxygen and vanadium). Quartz, Cr-V-bearing tremolite and micas, calcite, clinopyroxenes of the diopside-kosmochlor-natalyite series, Cr-bearing goldmanite, eskolaite-karelianite dravite-vanadiumdravite, V-bearing titanite, ilmenite, and rutile, berdesinskiite, schreyerite, plagioclase, scapolite, barite, zircon, and unnamed U-Ti-V-Cr phases are associated minerals. Oxyvanite occurs as anhedral grains up to 0.1–0.15 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black, with black streak and resinous luster. The microhardness (VHN) is 1064–1266 kg/mm2 (load 30 g), and the mean value is 1180 kg/mm2. The Mohs hardness is about 7.0–7.5. The calculated density is 4.66(2) g/cm3. The color of oxyvanite is pale cream in reflected light, without internal reflections. The measured reflectance in air is as follows (λ, nm-R, %): 440-17.8; 460-18; 480-18.2; 520-18.6; 520-18.6; 540-18.8; 560-18.9; 580-19; 600-19.1; 620-19.2; 640-19.3; 660-19.4; 680-19.5; 700-19.7. Oxyvanite is monoclinic, space group C2/c; the unit-cell dimensions are a = 10.03(2), b = 5.050(1), c = 7.000(1) Å, β = 111.14(1)°, V = 330.76(5)Å3, Z = 4. The strongest reflections in the X-ray powder pattern [d, Å, (I in 5-number scale)(hkl)] are 3.28 (5) (20\(\bar 2\)); 2.88 (5) (11\(\bar 2\)); 2.65, (5) (310); 2.44 (5) (112); 1.717 (5) (42\(\bar 2\)); 1.633 (5) (31\(\bar 4\)); 1.446 (4) (33\(\bar 2\)); 1.379 (5) (422). The chemical composition (electron microprobe, average of six point analyses, wt %): 14.04 TiO2, 73.13 V2O3 (53.97 V2O3calc, 21.25 VO2calc), 10.76 Cr2O3, 0.04 Fe2O3, 0.01 Al2O3, 0.02 MgO, total is 100.03. The empirical formula is (V 1.70 3+ Cr0.30)2.0(V 0.59 4+ Ti0.41)1.0O5. Oxyvanite is the end member of the oxyvanite-berdesinskiite series with homovalent isomorphic substitution of V4+ for Ti. The type material has been deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

8.
Zirconolite, allanite and hoegbomite are present as accessory phases in a metasomatically altered spinel-calcite-marble from the contact with the Bergell intrusives (Switzerland/Italy). Textural relationships indicate a step-wise alteration of spinel to 1) hoegbomite or corundum + magnetite, 2) margarite and 3) chlorite. Replacement of spinel by hoegbomite can be described by the substitution 1.94(Mg2+, Fe2+, Zn2+, Mn2+, Ca2+)Ti4+ +0.12(OH) where Al3+ and Fe3+ are held constant. The average composition of the Bergell hoegbomites is given by the formula Fe 0.97 2+ Mg0.69Zn0.04Ti0.17Al3.94Fe 0.06 3+ O7.98(OH)0.02 and seems to be imposed by the composition of pre-existing spinel. During the first two steps of spinel alteration, calcite was replaced by anorthite+phlogopite, and the rare earth element(REE)-bearing minerals zirconolite, allanite and sphene were formed. Allanites have characteristic chondrite-normalized REE patterns with enrichment in the light REE. The zirconolite patterns show a marked increase in concentration from La to Ce, followed by an almost constant section. Sphene lacks detectable La, and its REE patterns vary from grain to grain. Contemporaneous formation of phlogopite, REE-bearing minerals and hoegbomite during replacement of the spinel-calcite-marble indicates that the metamorphic fluid introduced potassium along with REE and other high valence cations (Ti4+, Zr4+, U4+, Th4A3804265, Nb5A3804265, Y3A3804265) possibly as polynuclear complexes. The abundance of fluorine-bearing phlogopite and fluor-apatite as well as their close association with REE-bearing minerals and hoegbomite suggests F and PO 4 3– as likely ligands for complexing of the above mentioned elements.  相似文献   

9.
Summary The pegmatites at Pegmatite Peak (Bearpaw Mts., Montana) crystallized from an evolved fraction of nepheline-syenitic melt enriched in Sr, Ba, light REE and Nb. These rocks are composed essentially of microcline (up to 1.1 wt.% Na2O and 1.0 wt.% BaO), altered nepheline (replaced by analcime, zeolites, muscovite and gibbsite), and prismatic aegirine set in an aggregate of fibrous and radial aegirine. The early accessory assemblage includes Mg-Fe mica, rutile, zircon, titaniferous magnetite and thorite. Precipitation of these phases was followed by crystallization of a plethora of rare minerals enriched in Sr, Ba, light REE and Nb. Three major stages are distinguished in the evolution of this mineralization: primary, agpaitic and deuteric. Primary repositories for Sr, REE and Nb included betafite, loparite-(Ce), crichtonite and ilmenite-group minerals. Betafite (Ta-poor, REE- and Th-rich) is present in very minor amounts and did not contribute significantly to the sequestration of incompatible elements from the nepheline-syenite melt. Loparite-(Ce) evolved predominantly by depletion in Sr and Ca and enrichment in Nb, Na and REE, i.e. from strontian niobian loparite (up to 22.0 wt.% SrO) to niobian loparite (up to 17.6 wt.% Nb2O5). Crichtonite contains minor Na, Ca and K, lacks detectable Ba and REE, and is unusually enriched in Mn (7.0–13.6 wt.% MnO). The ilmenite-group minerals evolved from manganoan ilmenite to ferroan pyrophanite, and have relatively low Nb contents ( 0.9 wt.% Nb2O5). During the agpaitic stage, the major repositories for incompatible elements were silicates, including lamprophyllite, titanite and chevkinite-group minerals. Lamprophyllite is generally poor in Ba, and contains relatively minor Ca and K; only few small crystals exhibit rims of barytolamprophyllite with up to 26.3 wt.% BaO. Titanite is devoid of Al and depleted in Fe, but significantly enriched in Nb, Sr, REE and Na: up to 6.4, 4.5, 4.4. and 2.9 wt.% oxides, respectively. The chemical complexity of titanite suggests involvement of several substitution mechanisms: Ca2++Ti4+Na1++Nb5+, Ca2 Sr2+, 2Ca2+Na1++REE3+, and Ca t++OZ-~--Nal+ + (OH)1–. Chevkinite group minerals evolved from Sr-rich (strontiochevkinite) to REE-rich compositions [chevkinite-(Ce)]. Strontiochevkinite from Pegmatite Peak is compositionally similar to the type material from Sarambi, and has high ZrO2 (up to 7.8 wt.%) and low FeOT ( 2.5 wt.%) contents. During the final stages of formation of the pegmatites, a deuteric F-bearing fluid enriched in Sr and REE precipitated carbonates and minor phosphates confined to fractures and cavities in the rock. In this youngest assemblage of minerals, ancylite-(Ce) is the most common Sr-REE host. Some discrete crystals of ancylite show significant enrichment in Th (up to 6.0 wt.% ThO2). Ancylite-(Ce) and bastnaesite associated with metaloparite and TiO2 (anatase?) comprise a replacement assemblage after primary loparite. The typical replacement pattern includes a loparite core with locally developed metaloparite, surrounded by a bastnaesite-anatase intermediate zone and an ancylite rim. Fluorapatite is rare, and has very high Sr, Na and REE contents, up to 21.4, 2.6 and 12.9 wt.% oxides, respectively. Compositionally, this mineral corresponds to the solid solution series between fluorapatite and belovite-(Ce). At this stage, hollandite-group minerals became a minor host for Ba; they demonstrate the evolutionary trend from priderite (5.2 wt. % K2O, 7.4 wt. % BaO) to Ba-Fe hollandite (19.2–21.4 wt. % BaO). Thus, the evolution of Sr, REE, Ba and Nb mineralization was a complex, multi-stage process, and involved primary crystallization, re-equilibration phenomena and late-stage deuteric alteration.
Die primäre, agpaitische und deuterische Hauptphase in der Entwicklung der akzessorischen Sr, REE, Ba und Nb-Mineralisation in den nephelinsyenitischen Pegmatiten von Pegmatite Peak, Bearpaw Mts., Montana
Zusammenfassung Die Pegmatite von Pegmatite Peak (Bearpaw Mts., Montana) sind aus dem Restdifferentiat einer nephelinsyenitischen Schmelze, die an Sr, Ba, leichten SEE und Nb angereichert war, auskristallisiert. Diese Gesteine bestehen hauptsächlich aus Mikroklin (max. 1.1 Gew.% Na2O und max. 1.0 Gew.% BaO), alteriertem Nephelin (verdrängt durch Analcim, Zeolithe, Muscovit und Gibbsit) und prismatischem Agirin, welcher von einem Aggregat aus fasrigem und strahligem Ägirin umgeben ist. Als frühe akzessorische Mineralien sind Mg-Fe Glimmer, Rutil, Zirkon, titanführender Magnetit und Thorit auskristallisiert. Anschließend bildete sich eine Vielzahl seltener, Sr-, Ba, leichter SEE- und Nb-reicher Mineralien aus. In den Proben von Pegmatite Peak sind drei Hauptphasen in der Entwicklung der akzessorischen Sr-, Ba-, SEE- und Nb-Mineralisation zu unterscheiden: eine primäre, eine agpaitische und eine deuterische. Primär wurden Sr, SEE und Nb in Betafit, Loparit-(Ce), Crichtonit und Mineralien der Ilmenitgruppe eingebaut. Betafit (Ta-arm, SEE- und Th-reich) ist ein sehr seltenes Mineral in den Pegmatiten, und hat die inkompatiblen Elemente nur unbedeutend konzentriert. Loparit-(Ce) entsteht im wesentlichen durch den Austausch von Sr und Ca durch Nb, Na und SEE; d.h. durch Umwandlung von strontium- und niobhältigem Loparit ( 22.0 Gew.% SrO) zu niobhältigem Loparit ( 17.6 Gew.% Nb2O5). Crichtonit enthält eine geringe Menge Na, Ca und K, ist ohne feststellbare SEE und Ba und ist gewönlich Mn-reich (7.0-13.6 Gew.% MnO). Mineralien der Ilmenitgruppe entwickeln sich von manganfiihrendem Ilmenit hin zu eisenführendem Pyrophanit und haben relativ niedrige Nb-Gehalte ( 0.9 Gew.% Nb2O5). Während der agpaitischen Phase waren Silikate wie Lamprophyllit, Titanit und Mineralien der Tscheffkinitgruppe die wichtigsten Träger von inkompatiblen Elementen. Lamprophyllit ist generell Ba-arm und ist durch relativ niedrige Ca- und K-Gehalte charakterisiert. Nur wenige kleine Kristalle zeigen barytolamprophyllitische Ränder (< 26.3 Gew.% BaO). Fe ist im Titanit (Al-frei) abgereichert während Nb, Sr, SEE und Na (jeweils max. 6.4, 4.5, 4.4 und 2.9 Gew.% Oxid) angereichert wurden. Die chemische Zusammensetzung des Titanits kann durch mehrere Substituierungen erklärt werden: Ca l++Ti4+~Nal+-I-Nbs+, Ca2+ Sr2+, 2Ca2+ Na1++REE3+, und Ca2+ +O2 Na1+ +(OH)1–. Mineralien der Tscheffkinitgruppe entwickeln sich aus Sr-reichen (Strontiotscheffkinit) hin zu SEE-reichen Gliedern [Tscheffkinit-(Ce)]. Strontiotscheffkinit von Pegmatite Peak mit hohem ZrO2-(< 7.8 Gew.%) und niedrigem FeOT-Gehalt (< 2.5 Gew.%) hat eine ähnliche Zusammensetzung wie der Holotyp von Sarambi. Während der letzten Phasen der Bildung der Pegmatite brachte ein deuterisches, F-haltiges, Sr- und SEE-reiches Fluid Karbonate und in geringer Mengen Phosphate in Spalten und Hohlräumen im Gestein zur Ausfällung. Ankylit-(Ce) ist das häufigste Sr- und SEE-führende Mineral dieser jüngsten Mineralassoziation. Manche einzelne Ankylitkristalle zeigen eine bedeutende Anreicherung von Th (< 6.0 Gew.% ThO2). Ankylit, Bastnäsit, Metaloparit und TiO2 (Anatas?) ersetzten den ursprünglichen Loparit. Typische Verdrängungen zeigen sich als Körner mit loparitischen Kernen, welche örtlich mit Metaloparit verwachsen sind, weiters einer Bastnäsit-Anatas Zwischenzone und einem ankylitischen Rand. Fluorapatit ist hier ein seltenes Mineral und hat sehr hohe Sr-, Na- und SEE-Gehalte (jeweils 21.4, 2.6 und 12.9 Gew.% Oxid). Von der chemischen Zusammensetzung aus gesehen gehört dieses Mineral zur Fluoapatit-Belovit-(Ce)-Mischkristallreiche. Während der deuterischen Phase dienten die Mineralien der Hollanditgruppe untergeordnet als Träger für Ba; sie legen die Entwicklung von Priderit (5.2 Gew.% K20, 7.4 Gew.% BaO) zu Ba-Fe-Hollandit (19.2–21.4 Gew.% BaO). Somit ist die Entwicklung der Sr-, SEE-, Ba- und Nb-Mineralisation ein komplexer mehrphasiger Prozeß und umfaßt die primäre Kristallisation, Reäquilibrierungsphänomene und eine späte deuterische Alteration.
  相似文献   

10.
Examination of schorlomite from ijolite at Magnet Cove (USA) and silicocarbonatite at Afrikanda (Russia), using electron-microprobe and hydrogen analyses, X-ray diffraction and Mössbauer spectroscopy, shows the complexity of substitution mechanisms operating in Ti-rich garnets. These substitutions involve incorporation of Na in the eightfold-coordinated X site, Fe2+ and Mg in the octahedrally coordinated Y site, and Fe3+, Al and Fe2+ in the tetrahedrally coordinated Z site. Substitutions Ti4+Fe3+Fe3+–1Si–1 and Ti4+Al3+Fe3+–1Si–1 are of major significance to the crystal chemistry of schorlomite, whereas Fe2+ enters the Z site in relatively minor quantities (<3% Fe). There is no evidence (either structural or indirect, such as discrepancies between the measured and calculated Fe2+ contents) for the presence of [6]Ti3+ or [4]Ti4+ in schorlomite. The simplified general formula of schorlomite can be written as Ca3Ti4+2[Si3-x(Fe3+,Al,Fe2+)xO12], keeping in mind that the notion of end-member composition is inapplicable to this mineral. In the published analyses of schorlomite with low to moderate Zr contents, x ranges from 0.6 to 1.0, i.e. Ti4+ in the Y site is <2 and accompanied by appreciable amounts of lower-charged cations (in particular, Fe3+, Fe2+ and Mg). For classification purposes, the mole percentage of schorlomite can be determined as the amount of [6]Ti4+, balanced by substitutions in the Z site, relative to the total occupancy in the Y site: ([6]Ti4+[6]Fe2+[6]Mg2+[8]Na+)/2. In addition to the predominant schorlomite component, the crystals examined in this work contain significant (>15 mol.%) proportions of andradite (Ca3Fe3+2Si3O12), morimotoite (Ca3Fe2+TiSi3O12), and Ca3MgTiSi3O12. The importance of accurate quantitative determination and assignment of Fe, Ti and other cations to the crystallographic sites for petrogenetic studies is discussed.
A. R. ChakhmouradianEmail: Phone: +1-204-4747278Fax: +1-204-4747623
  相似文献   

11.
A mica whose structural formula: (K1.76Na0.31)(Fe2.22Mn1.29Mg0.99Ti0.28Al0.240.98) ·(Si7.33Al0.67)O20.26(F2.16OH1.58) closely approximates that of tetrasilicic potassium mica K2(M 5 2+ )Si8O20(OH,F)4 where M2+ represents Mg2+, Fe2+, Mn2+, ..., has been discovered in the matrix of a peralkaline rhyolite (comendite) of the Mont-Dore massif (France). These micas had been obtained previously by synthesis only. In the groundmass of the rock, the micaceous phase is accompanied by a manganoan arfvedsonite, pyrophanite, magnetite, apatite, sphene, zircon and fluorite. The crystallographic properties of the mica are typically that of a tetrasilicic mica, with d 060 = 1.533Å and space group C2/m. There is a regular decrease of d 060 (parameter b) with the ionic radius of the octahedral cation in synthetic micas containing Fe2+, Co2+, Mg2+, Ni2+. The purely Mn2+ end-member could not be synthesised; its instability is discussed on the basis of structural considerations. The conditions of crystallization of the micaceous phase are estimated to be 760 ° C, 800 bars with a f o 2=10–14.7 bar. This mica has crystallized from a residual liquid, with high activity of silica and low activity of alumina, whose origin is discussed. The name MONT-DORITE is proposed for this natural tetrasilicic mica having Fe/Fe+Mg >1/2 and Fe/Fe+Mn >1/2. This name is from the stratovolcano Mont-Dore.  相似文献   

12.
A new mineral, mendigite (IMA no. 2014-007), isostructural with bustamite, has been found in the In den Dellen pumice quarry near Mendig, Laacher Lake area, Eifel Mountains, Rhineland-Palatinate (Rheinland-Pfalz), Germany. Associated minerals are sanidine, nosean, rhodonite, tephroite, magnetite, and a pyrochlore-group mineral. Mendigite occurs as clusters of long-prismatic crystals (up to 0.1 × 0.2 × 2.5 mm in size) in cavities within sanidinite. The color is dark brown with a brown streak. Perfect cleavage is parallel to (001). D calc = 3.56 g/cm3. The IR spectrum shows the absence of H2O and OH groups. Mendigite is biaxial (–), α = 1.722 (calc), β = 1.782(5), γ = 1.796(5), 2V meas = 50(10)°. The chemical composition (electron microprobe, mean of 4 point analyses, the Mn2+/Mn3+ ratio determined from structural data and charge-balance constraints) is as follows (wt %): 0.36 MgO, 10.78 CaO, 37.47 MnO, 2.91 Mn2O3, 4.42 Fe2O3, 1.08 Al2O3, 43.80 SiO2, total 100.82. The empirical formula is Mn2.00(Mn1.33Ca0.67) (Mn0.50 2+ Mn0.28 3+ Fe0.15 3+ Mg0.07)(Ca0.80 (Mn0.20 2+)(Si5.57 Fe0.27 3+ Al0.16O18). The idealized formula is Mn2Mn2MnCa(Si3O9)2. The crystal structure has been refined for a single crystal. Mendigite is triclinic, space group \(P\bar 1\); the unit-cell parameters are a = 7.0993(4), b = 7.6370(5), c = 7.7037(4) Å, α = 79.58(1)°, β = 62.62(1)°, γ = 76.47(1)°; V = 359.29(4) Å3, Z = 1. The strongest reflections on the X-ray powder diffraction pattern [d, Å (I, %) (hkl)] are: 3.72 (32) (020), 3.40 (20) (002, 021), 3.199 (25) (012), 3.000 (26), (\(01\bar 2\), \(1\bar 20\)), 2.885 (100) (221, \(2\bar 11\), \(1\bar 21\)), 2.691 (21) (222, \(2\bar 10\)), 2.397 (21) (\(02\bar 2\), \(21\bar 1\), 203, 031), 1.774 (37) (412, \(3\bar 21\)). The type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4420/1.  相似文献   

13.
Summary Ardennite of complex composition: (Mn2+ 3.488Ca0.509Ba0.002)=4(Mg0.916916 Fe3+ 0.165 Mn3+ 0.099Cu0.033Ni0.009Zn0.006 Ti0.008Al4.764)=6(As5+ 0.823V5+ 0.022P0.005B0.069Al0.042Si5.039)=6O21.81(OH)6.17 occurs in crack-seal quartz veins in quartz-albite-piemontite-spessartine-phengitehematite-chlorite-rutile-tourmaline ± calcite schist of the Haast Schist Group near Arrow Junction, western Otago, New Zealand. The Mn2+/Mn3+-ratio is sensitive to calculations and to accuracy of analyses. Boron is detected in ardennite for the first time. Other properties include = 1.734(3), = 1.735(3), = 1.751(3), 2VZ = 30(2)°;a = 8.721(1),b = 5.816(1),c = 18.545(3) Å,V = 940.7(2) Å3. Associated mineral phases are spessartine, hematite, piemontite containing 0.7% SrO and 0.06% PbO, and phengite. Later-stage vein minerals comprise chlorite, albite, and manganoan calcite which were deposited under less highly oxidizing conditions. Digenite with minor intergrown covellite occurs in small amount with manganoan calcite and quartz in a cross-cutting late-stage veina chalcopyrite and native copper occur in other late-stage veins. Arsenic and other components of the ardennite and associated minerals are derived from highly oxidized ferromanganese oxide- and hydroxide-bearing siliceous pelagic sediments that formed the protolith for the piemontite schist. The veins formed at a relatively early stage after metamorphism peaked in the chlorite zone of the greenschist facies under conditions that have been estimated at about 4.5 kbar, 390 °C.
Vorkommen von Ardennit in Quarzgängen aus Piemontit-Schiefern, West-Otago, Neuseeland
Zusammenfassung Ardennit mit der Zusammensetzung (Mn2+ 3.488Ca0.509Ba0.002)=4(Mg0.916Fe3+ 0.165Mn3+ 0.099Cu0.033Ni0.009Zn0.006 Ti0.008Al4.764)=6(As5+ 0.823V5+ 0.022P0.005B0.069Al0.042Si5.039)=6O21.81(OH)6.17 tritt in Crack-seal-Quarzgängen in Quarz-Albit-Piemontit-Spessartin-Phengit-Hämatit-Chlorit-Rutil-Turmalin ± Calcit-Schiefern der Haast Schiefer-Gruppe nahe der Arrow Junction, West-Otago, Neuseeland, auf. Die Proportionen von Mn2+/Mn3+ hängen von der Kalkulation und der Genauigkeit der Analyse ab. Bor wird zum ersten Mal im Ardennit bestimmt. Andere Eigenschaften sind: = 1.734(3), = 1.735(3), = 1.751(3), 2Vz = 30(2)°; a = 8.721(1), b = 5.816(1), c = 18.545(3) Å, V = 940.7(2) Å3. Assoziierte Mineralphasen sind Spessartin, Hämatit, Piemontit, der 0.7% SrO und 0.06% PbO enthält und Phengit. Spät gebildete Gangmineralien, wie Chlorit, Albit und Mn-Calcit, sind unter geringer oxidierenden Bedingungen entstanden. Digenit mit etwas Covellin tritt in kleinen Mengen zusammen mit Mn-Calcit und Quartz in einem querschlägigen Gang auf, Chalcopyrit und gediegenes Kupfer kommen in anderen späten Gängen vor. Arsen und andere Komponenten des Ardennites and der assoziierten Minerale können von hochoxidierten, Fe-Mn-Oxid- und Hydroxyd-führenden, Sireichen, pelagischen Sedimenten hergeleitet werden, die das Ausgangsgestein für den Piemontit darstellen. Die Gänge wurden in einem relativ frühen Stadium, nach dem Metamorphosehöhepunkt, innerhalb der Chloritzone der Grünschiefer-Fazies, unter ungefähr 4.5 kbar und 390°C, gebildet.


With 4 Figures  相似文献   

14.
Ninety-seven mineral phases consisting of ten chloritoids, fifteen epidotes, sixteen garnets, four sphenes, seven rutiles, seven pyroxenes, thirteen blue amphiboles, two green amphiboles, eleven phengites, two paragonites, a mariposite, seven chlorites, and two specimens of albite were obtained from the metamorphic rocks of Île de Groix, and their chemical, physical, optical and X-ray properties determined. The chloritoids are all optically positive, monoclinic polymorphs with large 2V, moderate refractive indices and characterized by high densities. Their fluorine contents have been used to propose a new upper limit for OHF substitution in the chloritoid structure, suggesting that partial pressure of fluorine might modify the stability of chloritoids from that determined in pure H2O. The epidotes belong to the Al-Fe epidote series and are epidote sensu stricto. The almandine-rich garnets and the chloromelanites are metastable relics in the glaucophane schists. The grossular contents of the calcareous schist garnets are believed to have become depressed under high CO2 pressure and the low Tschermak's contents of the pyroxenes are to be explained by equilibria involving epidote at high and low temperature when the Tschermak's components will break down to epidote group minerals. The sphenes contain appreciable amounts of combined water, fluorine substituting for oxygen and aluminium substituting for silicon and titanium. The presence of H3O+ is suspected in a specimen of blue amphibole. The barroisite has a composition between glaucophane and hornblende. On account of its high Fe3+ content it is believed to have formed under higher P O 2 than the blue amphiboles. The paragonites which occur in the ohloritoid veins are unstable in the potassium-rich aluminous schists. The phengites show a tendency towards sericitic composition due to post-glaucophanisation readjustments under the lower pressure conditions of the greenschist facies. Some of the Fe3+ contents of the chlorites are interpreted as due to oxidation of ferrous iron, e.g. 2 [Fe(OH)2]2FeOOH + H2. The minerals show strong chemical control of the host rock and their Mn contents are directly related to those of the minerals from which they have evolved through retrogression.Chloritoids and epidotes that are not associated with garnets contain higher amounts of manganese; similarly, the two blue amphiboles with the highest FeMg ratios were obtained from rocks in which garnet has not appeared. It is therefore believed that ottrelite and piemontite would be stable only at the lowest subfacies of the greenschist facies. Also, the ironrich amphiboles must have evolved from low-grade iron-aluminium chlorites, since on the appearance of garnet in a schist iron-aluminium chlorites react with quartz to give almandine and Mg-rich chlorites. The Fe2+Mg ratios of the blue amphiboles therefore reflect the grade of the original schist in which the minerals formed.  相似文献   

15.
Aqualite, a new eudialyte-group mineral from hydrothermally altered peralkaline pegmatites of the Inagli alkaline pluton (Sakha-Yakutia, Russia) is described in this paper. Natrolite, microcline, eckermanite, aegirine, batisite, innelite, lorezenite, thorite, and galena are associated minerals. Aqualite occurs as isometric crystals up to 3-cm across. The color is pale pink, with a white streak and vitreous luster. The mineral is transparent. The fracture is conchoidal. The mineral is brittle; no cleavage or parting is observed. The Mohs’ hardness is 4 to 5. The density is 2.58(2) g/cm3 (measured by the volumetric method) and 2.66 g/cm3 (calculated). Aqualite is optically uniaxial (+), α = 1.569(1) and β = 1.571(1). The mineral is pleochroic from colorless to pale pink on X and pink on Y, α < β. Aqualite is weakly fluorescent with a dull yellow color under ultraviolet light. The mineral is stable in 50% HCl and HNO3 at room temperature. Weight loss after ignition at 500°C is 9.8%. Aqualite is monoclinic, and the space group is R3. The unit-cell dimensions are a = 14.078(3) Å, c = 31.24(1) Å, V = 5362 Å3, and Z = 3. The strongest reflections in the X-ray powder pattern [d, Å (I)(hkl)] are: 4.39(100)(2005), 2.987(100)(315), 2.850(79)(404), 10.50(44)(003), 6.63(43)(104), 7.06(42)(110), 3.624(41)(027), and 11.43(39)(101). The chemical composition (electron microprobe, H2O determined with the Penfield method) is as follows (wt %): 2.91 Na2O, 1.93 K2O, 11.14 CaO, 1.75 SrO, 2.41 BaO, 0.56 FeO, 0.30 MnO, 0.17 La2O3, 0.54 Ce2O3, 0.36 Nd2O3, 0.34 Al2O3, 52.70 SiO2, 12.33 ZrO2, O.78 TiO2, 0.15 Nb2O5; 1.50 Cl, 9.93 H2O,-O=Cl2 0.34; where the total is 99.46. The empirical formula calculated on the basis of Si + Zr + Ti + Al + Nb = 29 apfu is as follows: [(H3O)7.94Na2.74K1.20Sr0.49Ba0.46Fe0.23Mn0.12]Σ13.18(Ca5.79REE0.19)Σ5.98 (Zr2.92Ti0.08)Σ3.0(Si25.57Ti0.21Al0.19Nb0.03)S26.0[O66.46(OH)5.54]Σ72.0 [(OH)2.77Cl1.23]Σ4.0. The simplified formula is (H3O)8(Na,K,Sr)5Ca6Zr3Si26O66(OH)9Cl. Aqualite differs from typical eudialyte by the extremely low contents of Na and Fe, with more than 50% Na being replaced with the (H3O)+ group. The presence of oxonium ions is confirmed by IR spectroscopic and X-ray single-crystal diffraction analysis. The mineral is compared with five structurally studied high-oxonium analogues from alkaline plutons of other regions. All of these minerals were formed at a relatively low temperature through the ion-exchange transformation of “protoeudialytes”; the successor minerals inherited the principal structural and compositional features of the precursor minerals. The name aqualite is derived from the Latin aqua in reference to its specific chemical composition. The type material of aqualite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

16.
Deerite, Fe 12 2+ Fe 6 3+ [Si12O40](OH)10, thus far known from ten localities in glaucophane schist terranes, was synthesized at water pressures of 20–25 kb and temperatures of 550–600 °C under the of the Ni/NiO buffer. The X-ray powder diagram, lattice constants and infrared spectrum of the synthetic phase are closely similar to those of the natural mineral. A solid solution series extends from this ferri-deerite end member to some 20 mole % of a hypothetical alumino-deerite, Fe 12 2+ Al 6 3+ [Si12O40](OH)10. The upper temperature breakdown of ferri-deerite to the assemblage ferrosilite +magnetite+quartz+water occurs at about 490 °C at 15 kb, and 610 °C at 25 kb fluid pressure for the of the Ni/NiO buffer. Extrapolation of these data to lower water pressures indicates that deerite can be a stable mineral only in very low-temperature, high-pressure environments.  相似文献   

17.
Summary Chemical compositions of orthopyroxene and clinopyroxene from the Jinchuan ultramafic intrusion have been obtained by electron microprobe analysis. The Mg number (MgO/(MgO + FeO)) for both pyroxenes falls within narrow ranges, 82–87 for clinopyroxene and 81–85.5 for orthopyroxene, suggesting limited magma differentiation in regard to the present igneous body. The Al2O3 content ranges from 2.44 wt.% to 4.43 wt.% and increases with decreasing Mg of the pyroxenes, i.e., with the more evolved magma. This is attributed to the relatively greater effects of Al2O3, TiO2, Cr2O3 and Fe2O3 than that of SiO2 on pyroxene crystallization.Negative linear relationships between Ti4+ and Si4+, and Al3+ and Si4+ characterize the pyroxenes. In clinopyroxene, regression of Si4+ versus Al3+ results in a straight line with a slope of –1.012, indicating that the decrease of Si4+ in the crystal structure is matched by an increase only in tetrahedral Al3+; octahedral Al3+ has remained relatively constant. The negative linear relationship between Ti4+ and Si4+ in clinopyroxene reflects either a greater tendency of Ti4+ to occupy octahedral sites than Al3+, or that replacement of Al3+ for Si4+ demands a more efficient charge balance. The scatter in plots of Ti4+ versus Si4+ for orthopyroxene indicates that charge balance is not as critical as structure symmetry.The crystallization temperature of pyroxene is calculated to be 1108–1229°C usingWood andBanno's (1973) two pyroxene thermometer, and is within 40°C of that calculated fromWells's (1977) thermometer. The distribution coefficient (Kd) for Mg2+ and Fe2+ between clinopyroxene and orthopyroxene is estimated to be 0.86, which is higher than that of the other intrusions and lower than that of mantle nodules, but still falls within their Kd-1/T trend. This suggests that the Kd value of pyroxene is controlled mainly by temperature.
Mineralchemie der Pyroxene der Jinchuan-Intrusion, China
Zusammenfassung Die chemische Zusammensetzung von Orthopyroxenen und Klinopyroxenen aus der ultramafischen Jinchuan Intrusion wurden mit der Mikrosonde bestimmt. Die Mg-Zahl (MgO/(MgO + FeO)) beider Pyroxene liegt innerhalb enger Grenzen, 82–87 für Klinopyroxen und 81–85.5 für Orthopyroxen. Dies weist auf beschränkte magmatische Differentiation der Intrusion hin. Der Al2O3-Gehalt liegt zwischen 2.44 Gew.%. und 4.43 Gew.%. und nimmt mit der abnehmenden Mg-Zahl der Pyroxene ab, d.h. mit dem mehr entwickelten Magma. Dies wird damit erklärt, daß Al2O3, TiO2, Cr2O3 und Fe2O3 einen größeren Einfluß auf die Kristallisation der Pyroxene ausüben als SiO2.Die Pyroxene werden durch negative lineare Beziehungen zwischen Ti4+ und Si4+, sowie Al3+ und Si4+ charakterisiert. In Klinopyroxenen resultiert die Regression von Si4+ gegen Al3+ in einer geraden Linie mit einer Neigung von –1.012. Dies weist darauf hin, daß die Abnahme der Si4+ Gehalte in die Kristallstruktur durch Zunahme von ausschliesslich tetraedrischem Al3+ kompensiert wird; oktaedrisches Al3+ ist relativ konstant geblieben. Die negative lineare Beziehung zwischen Ti4+ und Si4+ in Klinopyroxenen geht entweder auf eine stärkere Tendenz des Ti4O2, oktaedrische Plätze zu besetzen zurück, oder darauf daß ein Ersatz von Al3+ für Si4+ einen effizienteren Ladungsausgleich verlangt. Die unregelmäßige Verteilung der Plots von Ti4+ gegen Si4+ in Orthopyroxenen läßt erkennen, daß Ladungsausgleich hier nicht so kritisch ist wie die Symmetrie der Struktur.Die Kristallisationstemperatur der Pyroxene wurde mit dem Zwei Pyroxenthermometer nachWood undBanno (1973) mit 1108–1229°C bestimmt. Diese Werte liegen innerhalb von 40°C des vonWells (1977) berechneten. Der Verteilungskoeffizient (Kd) für Mg2+ und Fe2+ zwischen Klinopyroxen und Orthopyroxen wird auf 0.86 berechnet; das ist höher als der aus anderen Intrusionen und niedriger als der von Mantelxenolithen, fällt aber immer noch innerhalb des Kd-1/T Trends derselben. Dies legt den Gedanken nahe, daß der Kd Wert der Pyroxene hauptsächlich durch Temperatur bestimmt wird.


With 6 Figures  相似文献   

18.
Boulders of the assemblage ruby—sapphire corundum, chromianmuscovite, margarite, tourmaline (chromian chlorite, Zn—Mnchromite and Mn—Ti magnetite) occur in glacial moraineand rivers of north Westland, South Island of New Zealand. Thelocation, Cr-rich composition of the boulders and the presenceof rare serpentinite rinds indicate that they are derived fromultramafic rocks (Pounamu Ultramafics) that occur within AlpineSchist of the Southern Alps. The largest sample is progressivelyzoned outwards from a corundum—margarite core, throughan intermediate zone of Cr-muscovite, to an outer zone of Cr-chloritethat is in contact with serpentinite. Most finds consist oferosion-resistant corundum-rich cores. In the corundum, Cr2O3content ranges from 0.5 to 13%, with red coloration becomingmore intense with increasing Cr. In addition to the dominantCr3+ Al3+ substitution, those of (Fe, V)3+ Cr3+ and (Ti4++Fe2+) 2Cr3+ result in spectacular colour zoning from colourlessto deep ruby red-carmine and pale blue to dark blue—violet.Corundum has grown by replacement of the micaceous matrix thatconsists of chromian muscovite (0.10–4.10% Cr2O3) andchromian margarite (0.46–1.20% Cr2O3). Both micas containa significant paragonite component (up to 21.5% in muscoviteand up to 40.8% in margarite). Late phase muscovite is Ba richwith up to 4.77% BaO, and margarite has up to 0.66% SrO. Tourmalineoccurs as veins, vein outgrowths and larger poikilitic crystalsthat replace the mica matrix. Chromium content ranges between0.82 and 3.6% Cr2O3. High bulk rock Al (up to 78% Al2O3), K,Ca, Cr and Na, and low Si (14.5–23.1% SiO2), suggest thatthe corundum—Cr-silicate rocks are the products of extrememetasomatic alteration of quartzofeldspathic schist enclavesin serpentinite. Isocon analysis indicates that conversion ofthe schist to the micaceous matrix of the corundum rocks involvesconservation of Ca, Al, K, volatiles and Sr, a mass loss of59% and a volume reduction of 69% consequent on removal of 70–80%Si and all other elements (most >80%), with enrichment ofbetween 900 and 1800% Cr. The formation of corundum from themica matrix involved a further mass—volume reduction anddecrements in Si, Ca, K, volatiles and Sr from reaction sites.Concentric mineral zonation in single rock samples and zoning—replacementin minerals, e.g. Cr in corundum and chromite, Ti, Fe2+ in corundum,Ba in muscovite, Sr in margarite, and Mn and Zn in chromiteand magnetite, imply element redistribution during metasomatism.Experimental reaction between quartzofeldspathic schist andserpentinite at 450C and 2 kbar produced reaction sequencescontaining newly formed Ca-plagioclase—phlogopitic micachloriteand muscovite—chlorite that in terms of composition areanalogous with the observed (corundum—margarite)—muscovite—chloritezonation. The temperature of metamorphism of garnet zone rocks(45020C) that contain the corundum—Cr-silicate rocksis well below that of the breakdown of muscovite and margariteto form corundum and indicates the importance of fluid composition,particularly the cation—hydrogen variables aCa2+/H+, aK+/H+and aS1O2. Introduction of boron into the schist (from serpentinite),and boron released from the breakdown of original tourmalinein the schist, resulted in tourmaline veining and reaction ofthe mica matrix to form tourmaline that invoved both a massand volume increase and addition of Fe, Mg together with B. KEY WORDS: corundum—Cr-silicate rocks; metasomatism; New Zealand; Southern Alps *Corresponding author.  相似文献   

19.
关键金属矿产是国际上最近提出的资源概念,对战略性新兴产业的发展至关重要,但认知程度较低。洛扎岩浆-变质杂岩体位于喜马拉雅带东部,侵位于藏南拆离系内。在岩体东北侧,云母片岩被含电气石淡色花岗岩捕虏。云母片岩主要由金云母、绿泥石和少量黑云母组成。从全岩地球化学成分来看,云母片岩具有含量较高的Al2O3(13.38%~14.32%)、K2O(6.09%~9.66%)、FeO*(27.11%~30.09%)、MgO(15.25%~17.21%)、TiO2(0.09%~0.26%),富集关键金属Li(650×10-6~1 031×10-6)、Rb(1 649×10-6~2 773×10-6)、Cs(98×10-6~229×10-6)、Tl(5.7×10-6~12.1×10-6)、Ga(121×10-6  相似文献   

20.
Summary Baotite occurs in the Garaoulére orebody, at Pierreftte, France, as an accessory mineral, included in alstonite and celsian, and associated with sphalerite, galena, pyrite, siderite and calcite in hydrothermal veins crosscutting calcareous, rutile-bearing, siltstones. Microprobe analyses revealed high W03 concentrations (up to 6 wt.%) in baotite. The empirical formula of W-rich baotite is Ba3.959Ti4(Ti3.169W0.393Fe0.116Al0.073 Cr0.048Nb0.024)3.823 Si4.05O28Cl1.166. The excess of charges due to the presence of W6+ and Nb5+ is compensated by the introduction of M3+ (Fe, Al, Cr) into Ti-octahedra, by the appearance of Al in Si-tetrahedra (for W-poor baotite) and by the appearance of vacancies in Ti-octahedra (3Ti4 -> 2W6+ + and in Ba-sites (Ti4+ Ba2+ W6+, ). The unit-cell parameters of W-rich baotite are: a = 19.92(2), c = 5.930(8) Å. Niobium-rich baotites (Baiyun-Obo,Semenov et al., 1961; Karlstein,Nmec, 1987) are characterized by substitutions: Ti4+(VI), Si4+(IV)Nb5+(VI), Al3+(IV) and 2Ti4+, Ba2+ 2Nb5+, .
Wolfram führender Baotit von Pierrefitte, Pyrenäen, Frankreich
Zusammenfassung Baotit kommt in dem Garaoulére Erzkórper in Pierrefitte, Frankreich als ein akzessorisches Mineral in Einschlÿussen in Alstonit und Celsian vor. Er ist mit Zinkblende, Bleiglanz, Pyrit, Siderit und Calcit assoziiert. Diese Paragenese ist an hydrothermale Gänge gebunden, die kalkige rutil-führende Siltsteine durchsetzen. Mikrosondenanalysen zeigen hohe W03 Gehalte (bis zu 6 Gew.%) in Baotit. Die empirische Formel von wolfram-reichem Baotit ist: Ba3.959Ti4(Ti3.169W0.393Fe0.116Al0.073Cr0.048Nb0.024)3.823 Si4.05O28Cl1.66. Der durch die Anwesenheit von W6+ und Nb5+ erforderliche Ladungsausgleich ergibt sich durch das Eintreten von M3+ (Fe, Al; Cr) in Ti-Oktaeder, und von Al in Si-Tetraeder (für W-armen Baotit) und schließlich durch das Erscheinen von Leerstellen in Ti-Oktaedern (3Ti4+ 2W6+ + und in Ba-Stellen (Ti4+, Ba` W6+, Die Zellparameter von ldW-reichem Baotit sind: a = 19.92(2), c = 5.930(8) Å. Niob-reiche Baotite (Baiyun-Obo, Semenov et al., 1961; Karlstein, Nmec, 1987) sind durch Substitutionen charakterisiert: Ti4+(VI), Si4+(IV)Nb5+(VI), Al3+(IV) und 2Ti4+, Ba2+ 2Nb5+, .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号