首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《International Geology Review》2012,54(13):1688-1704
The Yinshan Block, part of the Neoarchaean basement of the Western Block of the North China Craton, is composed of granite–greenstone and granulite–charnockite complexes. We report research on a suite of charnockites from the granulite–charnockite complex and characterize their geochemistry, zircon U–Pb geochronology, and Hf isotopic composition. The charnockites can be divided into intermediate (SiO2 = 59–63 wt.%) and silicic (SiO2 = 69–71 wt.%) groups. U–Pb zircon data yield protolith formation ages of 2524 ± 4 Ma, 2533 ± 15 Ma, followed by metamorphism at 2498 ± 3 Ma, 2490 ± 11 Ma, respectively, for these groups. Although the intermediate charnockites are characterized by higher Al2O3, TiO2, Fe2O3T, MnO, MgO, CaO, P2O5, K2O, Sr, and ΣREE content than the silicic charnockites, the ages and Hf isotopic composition of zircons and REE patterns of both intermediate and silicic charnockites are remarkably consistent, which indicates that they are genetically related. These charnockites are predominantly metaluminous to slightly peraluminous, calc-alkalic to calcic, and magnesian – characteristics generally related to a subduction setting. High-Sr + Ba granites with low K2O/Na2O characteristics, shown by these charnockites, imply a mixture of mafic and felsic magmas generated from an enriched mantle + lower crust. High MgO, Ni, Cr and Mg#, low K2O/Na2O, and metaluminous to slightly peraluminous natures imply that the source rocks most likely were amphibolites. Coeval calc-alkaline magmatism and high-T granulite-facies metamorphism under low-H2O activity in the area lead us to propose a model involving mid-ocean ridge subduction within a Neoarchaean convergent margin. The arc-related rocks accreted along the continent margin, and became a barrier when the lithospheric mantle ascended through the slab window. Melt derived from the decompressing mantle mixed with melt derived from the overlying, juvenile lower crust melt, which was warmed and metamorphosed by the ascending lithospheric mantle.  相似文献   

2.
In this work, we have reviewed a large compositional dataset (571 analyses) for natural and experimental glasses to understand the physico-chemical and compositional conditions of magmatic cordierite crystallization. Cordierite crystallizes in peraluminous liquids (A/CNK ≥1) at temperatures ≥750 °C, pressures ≤700 MPa, variable H2O activity (0.1–1.0) and relatively low fO2 conditions (≤NNO ? 0.5). In addition to A/CNK ratio ≥1, a required condition for cordierite crystallization is a Si + Al cation value of the rhyolite liquid of 4 p8O (i.e. calculated on the 8 oxygen anhydrous basis), which is consistent with low Fe3+ contents and the absence or low content of non-bridging oxygens (NBO). This geochemical condition is strongly supported by the rare, if not unique, structure of cordierite where the tetrahedral framework is composed almost exclusively of Si and Al cations the sum of which is equal to 4 p8O [i.e. (Mg,Fe)8/9Al16/9Si20/9O8], indicating that aluminium (and cordierite) saturation is limited by rhyolite liquids with Al = 4 ? Si. Indeed, synthetic or natural systems with Al > 4 ? Si always show metastable glass-in-glass separation or crystallization of refractory minerals such as corundum (Al16/3O8) and aluminosilicates (Al16/5Si8/5O8). Multivariate regression analyses of literature data for experimental glasses coexisting with magmatic cordierite produced two empirical equations to independently calculate the T (±13 °C; ME, maximum error = 29 °C) and P (±16 %; ME% = 27 %) conditions of cordierite saturation. The greatest influence on the two equations is exerted by H2Omelt and Al concentrations, respectively. Testing of these equations with other thermobarometric constraints (e.g. feldspar-liquid, GASP, Grt–Bt and Grt–Crd equilibria) and thermodynamic models (NCKFMASHTO and NCKFMASH systems) was successfully performed for Crd-bearing rhyolites and residual enclaves from San Vincenzo (Tuscany, Italy), Morococala Field (Bolivia) and El Hoyazo (Spain). The reliability of each calculated PT pair was graphically evaluated using the minimum and maximum PT–H2O relationships for peraluminous rhyolite liquids modified after the metaluminous relationships in this work. Both PT calculations and checking can be easily performed with the attached user-friendly spreadsheet (i.e. Crd-sat_TB).  相似文献   

3.
The western Kunlun orogen occupies a key position along the tectonic junction between the Pan-Asian and Tethyan domains, reflecting Proto- and Palaeo-Tethys subduction and terrane collision during early Palaeozoic to early Mesozoic time. We present the first detailed zircon U–Pb chronology, major and trace element, and Sr–Nd–O–Hf isotope geochemistry of the Qiukesu pluton and its microgranular enclaves from this multiple orogenic belt. SHRIMP zircon U–Pb dating shows that the Qiukesu pluton was emplaced in the early Silurian (ca. 435 Ma). It consists of weakly peraluminous high-K calc-alkaline monzogranite and syenogranite, with initial 87Sr/86Sr ratios of 0.7131–0.7229, ?Nd(T) of –4.1 to –5.7, δ18O of 8.0–10.8‰, and ?Hf(T) (in situ zircon) of –4.9. Elemental and isotopic data suggest that the granites formed by partial melting of lower-crustal granulitized metasedimentary-igneous Precambrian basement triggered by underplating of coeval mantle-derived enclave-forming intermediate magmas. Fractional crystallization of these purely crustal melts may explain the more felsic end-member granitic rocks, whereas such crustal melts plus additional input from coeval enclave-forming intermediate magma could account for the less felsic granites. The enclaves are intermediate (SiO2 57.6–62.2 wt.%) with high K2O (1.8–3.6 wt.%). They have initial 87Sr/86Sr ratios of 0.7132–0.7226, ?Nd(T) of –5.0 to –6.0, δ18O of 6.9–9.9‰, and ?Hf(T) (in situ zircon) of –8.1. We interpret the enclave magmas as having been derived by partial melting of subduction-modified mantle in the P–T transition zone between the spinel and spinel-garnet stability fields. Our new data suggest that subduction of the Proto-Tethyan oceanic crust was continuous to the early Silurian (ca. 435 Ma); the final closure of the Proto-Tethys occurred in the middle Silurian.  相似文献   

4.
Epidote-bearing porphyritic dikes (whole rock analysis: SiO2?=?55–65 wt. %, MgO <2.1 wt. %, K2O <2.5 wt. %, Al2O3 >17 wt. %, Na2O + K2O?=?5.7–9.4 wt. %) situated in the continental margin zone, the Middle Urals, Russian Federation have been dated using SHRIMP U-Pb zircon techniques and give a Middle Devonian age of 388?±?2 Ma and 389?±?6 Ma. The porphyries contain phenocrysts of magmatic epidote (Ps?=?17–25 %), Ca- and Mn-rich (CaO >9 wt. %; MnO >6 wt. %) almandine garnet, Al-rich (Al2O3?=?12–16 wt. %) amphibole, titanite, plagioclase, biotite, muscovite, apatite, and quartz. 60 to 70 % groundmass of the porphyritic dikes consists of fine-grained albite, quartz, and K-feldspar. A variety of thermobarometric estimations, plus comparison with published experimental data indicate that the phenocryst assemblage was stable between 5 and 11 kbar and 690 to 800 °C. Oxygen fugacity was close to or greater than logfo2 = Ni-NiO + 1. Later stage formation of the quartz-feldspar groundmass took place at hypabyssal conditions, corresponding to 1 to 2 kbar and 660 to 690 °C. The porphyritic dikes are metaluminous to slightly peraluminous (ACNK?=?0.7–1.17). They are enriched in REE and depleted Nb and Ti. They show features typical of subduction-related magmas. Chemical composition and isotopic ratios of 86Sr/87Sri?=?0.709–0.720 suggest that both mantle- and deep crustal-derived materials were involved in their petrogenesis.  相似文献   

5.
A new LA-ICP-MS crystallization age of 370?±?8 Ma is presented for monzogranite from the Achala batholith, the largest Devonian igneous body in the Sierras Pampeanas, confirming previous U-Pb zircon ages and indicating emplacement within a relatively short episode. Granitic rocks from the central area of the batholith display restricted high SiO2 contents (69.8–74.5 wt.%). Major element plots show ferroan and alkaline-calcic to calc-alkaline compositions with an A-type signature. High concentrations of the high field-strength elements such as Y, Nb, Ga, Ta, U, Th, and flat REE patterns with significant negative Eu anomalies, are also typical of A-type granites. The aluminium saturation index (1.10–1.37) indicates aluminous parent magmas which are further characterised by high FeO/MgO ratios (2.6–3.3) and F contents of igneous biotites (0.9–1.5 wt%), as well as relatively high AlIV (2.39–2.58 a.p.f.u.) in biotites and the occurrence of primary muscovite. Petrogenetic modelling supports a source enriched in plagioclase and progressive fractional crystallization of feldspar. The central area of the batholith displays small-scale bodies composed predominantly of biotite (80 %), muscovite (10 %) and apatite (10 %), yielding rock compositions with 2.3–5.4 wt. % P2O5, and 6–7 wt.% F, together with anomalous contents of U (88–1,866 ppm), Zr (1081–2,581 ppm), Nb (257–1,395 ppm) and ΣREE (1,443–4,492 ppm). Previous studies rule out an origin of these bodies as metasedimentary xenoliths and they have been interpreted as cumulates from the granitic magma. An alternative flow segregation process is discussed here.  相似文献   

6.
A mafic sill-like intrusion, ~5?×?30 m, exposed along the eastern shoreline of Kahoolawe Island, Hawaii, represents tholeiitic magma emplaced as diabase among caldera-filling lavas. It differentiated from ~7.8 wt.% MgO to yield low-MgO (2.9 wt.%) vesicular segregation veins. We examined the intrusion for whole-rock and mineral compositions for comparison to Kahoolawe caldera-fill lavas (some also diabasic), to the Uwekahuna laccolith (Kilauea), and to gabbros, diabases, and segregations and oozes of other tholeiitic shield volcanoes (e.g., Mauna Loa and Kilauea lava lakes). We also evaluate this extreme differentiation in terms of MELTS modeling, using parameters appropriate for Hawaiian crystallization environments. Kahoolawe intrusion diabase samples have major and trace element abundances and plagioclase, pyroxene, and olivine compositions in agreement with those in gabbros and diabases of other volcanoes. However, the intrusion samples are at the low-MgO end of the large MgO range formed by the collective comparative samples, as many of those have between 8 and 20 wt.% MgO. The intrusion’s segregation vein has SiO2 53.4 wt.%, TiO2 3.2 wt.%, FeO 13.5 wt.%, Zr 350 ppm, and La 16 ppm. It plots in compositional fields formed by other Hawaiian segregations and oozes that have MgO <5 wt.%—fields that show large variances, such as factor of ~2 differences for incompatible element abundances accompanying SiO2 from ~49 to 59 wt.%. Our MELTS modeling assesses the Kahoolawe intrusion as differentiating from ~8 wt.% MgO parent magma beginning along oxygen buffers equivalent to FMQ and FMQ-2, having magmatic H2O of 0.15 and 0.7 wt.% (plus traces of CO2 and S), and under 100 and 500 bars pressure. Within these parameters, MELTS calculates that <3 wt.% MgO occurs at ~1,086 to 1,060 °C after ~48 to 63 % crystallization, whereby the lesser crystallization percentages and lower temperatures equate to higher magmatic H2O, leading to high SiO2, ~56–58 wt.%. To contrast, greater crystallization is calculated for lower H2O, for which it achieves less SiO2, <55 wt.%. While MELTS reliably predicts SiO2 approaching 58 wt.% for differentiation beyond <4 wt.% MgO, and shows that Kahoolawe intrusion’s segregations and those of Kilauea and Mauna Loa are all reasonably accommodated by the modeled parameters and SiO2 differentiation curves, MELTS fails where it predicts that Fe enrichment is more robust under FMQ than FMQ-2 buffers. That failure not withstanding, MELTS differentiation from liquidus temperatures ~1,205–1,185 °C (depending on the various parameters) gradually increases fO2 (up to ~0.4 log units, as normalized to FMQ) until magnetite crystallizes at ~1,090–1,085 °C, which reduces absolute fO2 ~1 to 1.5 log units. The modeled Kahoolawe intrusion, then, exemplifies how tholeiitic magma differentiation can produce extreme SiO2 and incompatible element compositions, and how Hawaiian segregations from shallow intrusions and lava lakes can be generally modeled under compositional and physical parameters appropriate for Hawaiian tholeiitic magmatism.  相似文献   

7.
ABSTRACT

The Pliocene–Quaternary volcanics in NE Turkey are mainly hornblende–phyric trachyandesites having a narrow range of SiO2 from 61.88 to 63.00 wt.% and exhibiting adakitic signatures with their Na2O (3.67–4.27 wt.%), Al2O3 (16.19–16.80 wt.%), Y (14.1–16.5 ppm) contents and K2O/Na2O (0.87–1.12), Sr/Y (44.24–54.90), and La/Yb (36.80–43.88) ratios. Plagioclases as the main mineral phases show a wide range of compositions, and weak normal and reverse zoning. Hornblendes are generally edenite and pargasite (Mg#: 0.39–0.74). Clinopyroxenes are augite (Mg#: 0.58–0.76). Biotites have Mg# ranging from 0.45 to 0.66. The textural and compositional variations indicate disequilibrium crystallization possibly arising from magma mixing. The U–Pb zircon dating of the adakitic volcanics yielded 3.4–1.9 Ma. The studied rocks display moderate light rare earth element /heavy rare earth element ratios and enrichment in the lithophile element and depletion in high field strength element, implying that the parental magmas were derived from mantle sources previously enriched by slab-derived fluids and/or subducted sediments. The crystallization temperature and pressure estimations based on the clinopyroxene thermobarometry range from 1144 to 1186°C and from 3.92 to 7.97 kbar, respectively. Hornblende thermobarometry, oxygen fugacity, and hygrometer calculations yielded results as 908–993°C at a pressure of 2.87–5.22 kbar, water content of 4.4–8.4 wt.%, and relative oxygen fugacity (ΔNNO log units) of ?0.6 to 0.9, respectively. Biotite thermobarometry suggests relatively higher oxygen fugacity conditions (10–13.33 to 10–17.60) at temperatures of 676–819°C and at pressures from 1.15 to 1.76 kbar. In the light of the obtained data and modelling, it can be concluded that the magmas of the adakitic volcanics were derived from enriched mantle source through relatively higher partial melting and experienced magma mixing with melts at the crustal level. Additionally, the fractional crystallization and assimilation-fractional crystallization processes may have played an important role during the evolution of the studied volcanics.  相似文献   

8.
We conducted melting experiments on a low MgO (3.29 wt.%) basaltic andesite (54.63 wt.% SiO2) from Westdahl volcano, Alaska, at XH2O = 0.7–1 and fO2 ~ Ni–NiO, at pressures = 0.1–180 MPa and temperatures = 900–1,200 °C. We examine the evolution of the melt along a liquid line of descent during equilibrium crystallization at high H2O and fO2 conditions, starting from a high FeOt/MgO, low MgO basaltic andesite. Ti-magnetite formed on the liquidus regardless of XH2O, followed by clinopyroxene, plagioclase, amphibole, and orthopyroxene. We observe slight but significant differences in the phase stability curves between the XH2O = 1 and 0.7 experiments. Early crystallization of Ti-magnetite and suppression of plagioclase at higher pressures and temperatures resulted in strongly decreasing melt FeOt/MgO with increasing SiO2, consistent with a “calc-alkaline” compositional trend, in agreement with prior phase equilibria studies on basalt at similar H2O and fO2. Our study helps quantify the impact of small amounts of CO2 and high fO2 on the evolution of melts formed during crystallization of a low MgO basaltic andesite magma stored at mid- to shallow crustal conditions. Like the prior studies, we conclude that H2O strongly influences melt evolution trends, through stabilization of Ti-magnetite on the liquidus and suppression of plagioclase at high P–T conditions.  相似文献   

9.
This study focuses on the production of convergent margin calc-alkaline andesites by crystallization–differentiation of basaltic magmas in the lower to middle crust. Previous experimental studies show that dry, reduced, subalkaline basalts differentiate to tholeiitic (high Fe/Mg) daughter liquids, but the influences of H2O and oxidation on differentiation are less well established. Accordingly, we performed crystallization experiments at controlled oxidized fO2 (Re–ReO2 ≈ ΔNi–NiO + 2) on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic magmas erupted in the Cascades near Mount Rainier, Washington. The basalt was synthesized with 2 wt% H2O and run at 900, 700, and 400 MPa and 1,200 to 950 °C. A broadly clinopyroxenitic crystallization interval dominates near the liquidus at 900 and 700 MPa, consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, Fe–Ti-oxide replaces spinel, olivine dissolves, and finally amphibole appears, producing gabbroic and then amphibole gabbroic crystallization stages. Enhanced plagioclase stability at lower pressure narrows the clinopyroxenitic interval and brings the gabbroic interval toward the liquidus. Liquids at 900 MPa track along Miyashiro’s (Am J Sci 274(4):321–355, 1974) tholeiitic versus calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline at silica contents ≥56 wt%. This difference is chiefly due to higher temperature appearance of magnetite (versus spinel) at lower pressures. Although the evolved liquids are similar in many respects to common calc-alkaline andesites, the 900 and 700 MPa liquids differ in having low CaO concentrations due to early and abundant crystallization of augite, with the result that those liquids become peraluminous (ASI: molar Al/(Na + K + 2Ca) > 1) at ≥61 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer in Geophys Res Lett 33(21):L21308, 2006). The lower-pressure liquids (400 MPa) have this same trait, but to a lesser extent due to more abundant near-liquidus plagioclase crystallization. A compilation of >6,500 analyses of igneous rocks from the Cascades and the Sierra Nevada batholith, representative of convergent margin (arc) magmas, shows that ASI increases continuously and linearly with SiO2 from basalts to rhyolites or granites and that arc magmas are not commonly peraluminous until SiO2 exceeds 69 wt%. These relations are consistent with plagioclase accompanying mafic silicates over nearly all the range of crystallization (or remelting). The scarcity of natural peraluminous andesites shows that progressive crystallization–differentiation of primitive basalts in the deep crust, producing early clinopyroxenitic cumulates and evolved liquids, does not dominate the creation of intermediate arc magmas or of the continental crust. Instead, mid- to upper-crustal differentiation and/or open-system processes are critical to the production of intermediate arc magmas. Primary among the open-system processes may be extraction of highly evolved (granitic, rhyolitic) liquids at advanced degrees of basalt solidification (or incipient partial melting of predecessor gabbroic intrusions) and mixing of such liquids into replenishing basalts. Furthermore, if the andesitic-composition continents derived from basaltic sources, the arc ASI–SiO2 relation shows that the mafic component returned to the mantle was gabbroic in composition, not pyroxenitic.  相似文献   

10.
Differentiation of mantle-derived, hydrous, basaltic magmas is a fundamental process to produce evolved intermediate to SiO2-rich magmas that form the bulk of the middle to shallow continental and island arc crust. This study reports the results of fractional crystallization experiments conducted in a piston cylinder apparatus at 0.7 GPa for hydrous, calc-alkaline to arc tholeiitic magmas. Fractional crystallization was approached by synthesis of starting materials representing the liquid composition of the previous, higher temperature experiment. Temperatures ranged from near-liquidus at 1,170 °C to near-solidus conditions at 700 °C. H2O contents varied from 3.0 to more than 10 wt%. The liquid line of descent covers the entire compositional range from olivine–tholeiite (1,170 °C) to high-silica rhyolite (700 °C) and evolves from metaluminous to peraluminous compositions. The following crystallization sequence has been established: olivine → clinopyroxene → plagioclase, spinel → orthopyroxene, amphibole, titanomagnetite → apatite → quartz, biotite. Anorthite-rich plagioclase and spinel are responsible for a marked increase in SiO2-content (from 51 to 53 wt%) at 1,040 °C. At lower temperatures, fractionation of amphibole, plagioclase and Fe–Ti oxide over a temperature interval of 280 °C drives the SiO2 content continuously from 53 to 78 wt%. Largest crystallization steps were recorded around 1,040 °C and at 700 °C. About 40 % of ultramafic plutonic rocks have to crystallize to generate basaltic–andesitic liquids, and an additional 40 % of amphibole–gabbroic cumulate to produce granitic melts. Andesitic liquids with a liquidus temperature of 1,010 °C only crystallize 50 % over an 280 °C wide range to 730 °C implying that such liquids form mobile crystal mushes (<50 % crystals) in long-lived magmatic systems in the middle crust, allowing for extensive fractionation, assimilation and hybridization with periodic replenishment of more mafic magmas from deeper magma reservoirs.  相似文献   

11.
Major and trace elements and water contents were analyzed in 16 peridotite xenoliths embedded by the Cenozoic basalts in Pingnan (southeastern Guangxi Province), to constrain the chemical composition and evolution of the lithospheric mantle located in the central part of the South China Block (SCB). The peridotites are mainly moderately refractory harzburgites and lherzolites (Mg#-Ol?=?90.3–91.7) and minor fertile lherzolites (Mg#-Ol?=?88.9–89.9). Clinopyroxenes in the peridotites show LREE-depleted pattern, and commonly exhibit negative anomalies in Nb and Ti, suggesting the peridotites probably represent residues after 1–10% of partial melting without significant mantle metasomatism. Water contents range from 146 to 237 ppm wt. H2O in clinopyroxene, and from 65 to 112 ppm wt. H2O, in orthopyroxene but are below detection limit (2 ppm wt. H2O) in olivine. Calculated bulk water contents, based on the mineral modes and partition coefficient, range from 14 to 83 ppm wt. H2O (average 59 ppm wt. H2O). There is a correlation between melting indices (such as Mg#-Ol, Ybn in clinopyroxene) and water contents in clinopyroxene and orthopyroxene, but no correlation is observed between the whole-rock water contents and the redox state (Fe3+/∑Fe ratios in spinel), suggesting that water contents in the peridotites are mainly controlled by the degree of partial melting rather than by oxygen fugacity. The lithospheric mantle beneath the interior of the SCB may not be compositionally stratified; fertile and moderately refractory mantle coexist at the similar depths. Geochemical data and water contents of the studied peridotites are similar to the proposed MORB source and indicate that the ancient refractory lithospheric mantle was irregularly eroded or reacted by the upwelling asthenosphere, and eventually replaced by juvenile fertile accreted mantle through the cooling of the asthenosphere.  相似文献   

12.
Dacites dominate the large-volume, explosive eruptions in magmatic arcs, and compositionally similar granodiorites and tonalites constitute the bulk of convergent margin batholiths. Shallow, pre-eruptive storage conditions are well known for many dacitic arc magmas through melt inclusions, Fe–Ti oxides, and experiments, but their potential origins deeper in the crust are not well determined. Accordingly, we report experimental results identifying the P–T–H2O conditions under which hydrous dacitic liquid may segregate from hornblende (hbl)-gabbroic sources either during crystallization–differentiation or partial melting. Two compositions were investigated: (1) MSH–Yn?1 dacite (SiO2: 65 wt%) from Mount St. Helens’ voluminous Yn tephra and (2) MSH–Yn?1?+?10% cpx to force saturation with cpx and map a portion of the cpx?+?melt?=?hbl peritectic reaction boundary. H2O-undersaturated (3, 6, and 9 wt% H2O) piston cylinder experiments were conducted at pressures, temperatures, and fO2 appropriate for the middle to lower arc crust (400, 700, and 900 MPa, 825–1100?°C, and the Re–ReO2 buffer?≈?Ni–NiO?+?2). Results for MSH–Yn?1 indicate near-liquidus equilibrium with a cpx-free hbl-gabbro residue (hbl, plg, magnetite, ± opx, and ilmeno-hematite) with 6–7 wt% dissolved H2O, 925?°C, and 700–900 MPa. Opx disappears down-temperature consistent with the reaction opx?+?melt?=?hbl. Cpx-added phase relations are similar in that once ~10% cpx crystallizes, multiple saturation is attained with cpx, hbl, and plg, +/? opx, at 6–7 wt% dissolved H2O, 940?°C, and 700–900 MPa. Plg–hbl–cpx saturated liquids diverge from plg–hbl–opx saturated liquids, consistent with the MSH–Yn?1 dacite marking a liquid composition along a peritectic distributary reaction boundary where hbl appears down-temperature as opx?+?cpx are consumed. The abundance of saturating phases along this distributary peritectic (liquid?+?hbl?+?opx?+?cpx?+?plg?+?oxides) reduces the variance, so liquids are restricted to dacite–granodiorite–tonalite compositions. Higher-K dacites than the Yn would also saturate with biotite, further limiting their compositional diversity. Theoretical evaluation of the energetics of peritectic melting of pargasitic amphiboles indicates that melting and crystallization of amphibole occur abruptly, proximal to amphibole’s high-temperature stability limit, which causes the system to dwell thermally under the conditions that produce dacitic compositions. This process may account for the compositional homogeneity of dacites, granodiorites, and tonalites in arc settings, but their relative mobility compared to rhyolitic/granitic liquids likely accounts for their greater abundance.  相似文献   

13.
Crystallization experiments of basaltic andesite mafic endmember from the 24 ka Lower Pollara eruption (Salina, Aeolian Islands, Italy) were investigated at 200 MPa, 950–1100 °C, in the H2O activity (aH2O) range ~0.3 to 1, and at two ranges of oxygen fugacity (fO2) between ~FMQ to FMQ+1 and ~FMQ+2 to FMQ+3.3 (log bars, FMQ is fayalite-magnetite-quartz). Comparison of the produced phase assemblages and phase compositions with the natural sample reveals that the storage conditions were ~1050 °C, ~2.8 wt% H2O in the melt (aH2O ~0.5), and relatively oxidizing (~FMQ+2.5). The composition of plagioclase in the groundmass indicates a period of cooling to ≤950 °C. The overall differentiation trends of the Salina volcanics can be explained by fractional crystallization close to H2O saturated conditions (~5 wt% H2O in the melt at 200 MPa) and most likely by accumulation of plagioclase, i.e., in basaltic andesites, and by various degree of mixing–mingling between the corresponding differentiates. The slightly elevated K2O contents of the most mafic basaltic andesites that can be found in the lowermost unit of the Lower Pollara pyroclastics reveal earlier processes of moderately hydrous fractional crystallization at higher temperature (>~1050 °C). Fractional crystallization with decreasing influence of H2O causes a moderate decrease of MgO and a significant increase of K2O relative to SiO2 in the residual liquids. It is exemplarily shown that the crystallization of SiO2-rich phases at high temperature and low aH2O of only moderately K2O-rich calc-alkaline basalts can produce shoshonitic and high potassic rocks similar to those of Stromboli and Volcano. This suggests that the observed transition from calc-alkaline to shoshonitic and high potassic volcanism at the Aeolian Arc over time can be initiated by a general increase of magmatic temperatures and a decrease of aH2O in response to the extensional tectonics and related increase of heat flow and declining influence of slab-derived fluids.  相似文献   

14.
The study focuses on clinopyroxene from mantle xenolith-bearing East Serbian basanites and suggests that dissolution of mantle orthopyroxene played an important role in at least some stages of the crystallization of these alkaline magmas. Five compositional types of clinopyroxene are distinguished, some of them having different textural forms: megacrysts (Type-A), green/colourless-cored phenocrysts (Type-B), overgrowths and sieve-textured cores (Type-C), rims and matrix clinopyroxene (Type-D), and clinopyroxene from the reaction rims around orthopyroxene xenocrysts (Type-E). Type-A is high-Al diopside that probably crystallized at near-liquidus conditions either directly from the host basanite or from compositionally similar magmas in previous magmatic episodes. Type-B cores show high VIAl/IVAl≥1 and low Mg# of mostly <75 and are interpreted as typical xenocrysts. Type-C, D and E are interpreted as typical cognate clinopyroxene. Type-D has Mg#<78, Al2O3?=?6–13?wt.%, TiO2?=?1.5–4.5?wt.%, and Na2O?=?0.4–0.8?wt.% and compositionally similar clinopyroxene is calculated by MELTS as a phase in equilibrium with the last 30?% of melt starting from the average host lava composition. Type-C has Mg#?=?72–89, Al2O3?=?4.5–9.5?wt.%, TiO2?=?1–2.5?wt.%, Na2O?=?0.35–1?wt.% and Cr2O3?=?0.1–1.5?wt.%. This clinopyroxene has some compositional similarities to Type-E occurring exclusively around mantle orthopyroxene. Cr/Al vs Al/Ti and Cr/Al vs Na/Ti plots revealed that Type-C clinopyroxene can crystallize from a mixture of the host basanite magma and 2–20?wt.% mantle orthopyroxene. Sieve-textured Type-C crystals show characteristics of experimentally produced skeletal clinopyroxene formed by orthopyroxene dissolution suggesting that crystallization of Type-C was both texturally and compositionally controlled by orthopyroxene breakdown. According to FeO/MgOcpx/melt modelling the first clinopyroxene precipitating from the host basanite was Type-A (T?~?1250?°C, p?~?1.5?GPa). Dissolution of orthopyroxene produced decreasing FeO/MgOmelt and crystallization of Type-E and sieve-textured Type-C clinopyroxene (0.3–0.8?GPa and 1200–1050?°C). The melt composition gradually shifted towards higher FeO/MgOmelt ratios precipitating more evolved Type-C and Type-D approaching near-solidus conditions (<0.3?GPa; ~950?°C).  相似文献   

15.
Amphibole is widely employed to calculate crystallization temperature and pressure, although its potential as a geobarometer has always been debated. Recently, Ridolfi et al. (Contrib Mineral Petrol 160:45–66, 2010) and Ridolfi and Renzulli (Contrib Mineral Petrol 163:877–895, 2012) have presented calibrations for calculating temperature, pressure, fO2, melt H2O, and melt major and minor oxide composition from amphibole with a large compositional range. Using their calibrations, we have (i) calculated crystallization conditions for amphibole from eleven published experimental studies to examine the problems and the potential of the new calibrations; and (ii) calculated crystallization conditions for amphibole from basaltic–andesitic pyroclasts erupted during the paroxysmal 2010 eruption of Mount Merapi in Java, Indonesia, to infer pre-eruptive conditions. Our comparison of experimental and calculated values shows that calculated crystallization temperatures are reasonable estimates. Calculated fO2 and melt SiO2 content yields potentially useful estimates at moderately reduced to moderately oxidized conditions and intermediate to felsic melt compositions. However, calculated crystallization pressure and melt H2O content are untenable estimates that largely reflect compositional variation in the crystallizing magmas and crystallization temperature and not the calculated parameters. Amphibole from Merapi’s pyroclasts yields calculated conditions of ~200–800 MPa, ~900–1,050 °C, ~NNO + 0.3–NNO + 1.1, ~3.7–7.2 wt% melt H2O, and ~58–71 wt% melt SiO2. We interpret the variations in calculated temperature, fO2, and melt SiO2 content as reasonable estimates, but conclude that the large calculated pressure variation for amphibole from Merapi and many other arc volcanoes is evidence for thorough mixing of mafic to felsic magmas and not necessarily evidence for crystallization over a large depth range. In contrast, bimodal pressure estimates obtained for other arc magmas reflect amphibole crystallization from mafic and more evolved magmas, respectively, and should not necessarily be taken as evidence for crystallization in two reservoirs at variable depth.  相似文献   

16.
The sequence of crystallization in a biotite-granite from the Bohus batholith of Norway and Sweden, deduced from its texture, was magnetite, plagioclase, microcline, quartz, and finally biotite. Several sequences of crystallization were determined experimentally at 2 kb in the presence of varying only for H2O contents below 1.2% by weight. The rock was fused to a homogeneous glass, and each experiment included samples of finely crushed rock and glass. The samples were reacted in Ag-Pd capsules with measured H2O content in coldseal pressure vessels with NNO buffer. With excess H2O (more than 6.5%) the crystallization interval extends from 865° C to 705° C. In the H2O-deficient region, the solidus temperature remains unchanged as long as a trace of vapor is present, but the liquidus temperature increases as H2O content decreases; with 0.8 % H2O the liquidus temperature is 1125° C, the crystallization interval is 420° C, and a separate aqueous vapor phase is evolved only a few degrees above the solidus at 705° C. The biotite phase boundary increases slightly from 845° C with excess H2O to 875° C with 1% H2O, and it intersects the steep phase boundaries for quartz and feldspars; the sequence of crystallization changes at each intersection point. Similar diagrams at various pressures for related rock compositions involving muscovite, biotite and amphibole will provide grids useful in defining limits for the water content of granitic and dioritic magmas. Applications are considered for the Bohus batholith, other granitic rocks, and rhyolites. The Bohus magma could have been formed by crustal anatexis as a mobile assemblage of H2O-undersaturated liquid and residual crystals with initial total H2O content less than 1.2%, or it could have been derived by fractionation of a more basic parent with low H2O content from mantle or subduction zone, but it could not have been derived from a primary andesite generated from mantle peridotite. We consider it unlikely that the H2O content of large granitic magma bodies exceeds about 1.5% H2O; these magmas are H2O-undersaturated through most of their histories. Uprise and progressive crystallization of magma bodies produces H2O-saturation around margins and in the upper regions of magma chambers. H2O-saturated rhyolitic and dacitic magmas with phenocrysts can be tapped from the upper parts of the magma chambers.  相似文献   

17.
Biotite granites and muscovite-bearing granites are dominant rock types of the widespread granites in SE China. However, their petrogenesis has been enigmatic. A combined study of zircon U–Pb dating and Lu–Hf isotopes, whole-rock element geochemistry and Sr–Nd–O isotopes was performed for three late Mesozoic granitic plutons (Xinfengjie, Jiangbei and Dabu) in central Jiangxi province, SE China. All the plutons are composed of biotite granites and muscovite-bearing granites that have been poorly investigated previously. The new data not only allow us to assess their sources and magma evolution processes, but also helps us to better understand the genetic link to the large-scale polymetallic mineralization in SE China. LA-ICP-MS zircon U–Pb dating shows that three plutons were emplaced in the Late Jurassic (159–148 Ma) and that the muscovite-bearing granites are almost contemporaneous with the biotite granites. The biotite granites have SiO2 contents of 70.3–74.4 wt% and are weakly to strongly peraluminous with ASI from 1.00 to 1.26, and show a general decrease in ASI with increasing SiO2. They have relatively high zircon saturation temperatures (T Zr = 707–817 °C, most > 745 °C) and show a general decrease in T Zr with increasing SiO2. They have high initial 87Sr/86Sr ratios (0.7136 to 0.7166) and high δ18O values (9.1–12.8‰, most > 9.5‰) and clearly negative ε Nd (T) (? 9.5 to ? 11.8) and ε Hf (T) (in situ zircon) (? 13.1 to ? 13.5). The muscovite-bearing granites have high SiO2 contents (74.7–78.2 wt%). They are also weakly to strongly peraluminous with ASI of 1.04–1.18 but show a general increase in ASI with increasing SiO2. They have relatively low T Zr (671–764 °C, most < 745 °C) and also show a general decrease in T Zr with increasing SiO2. The muscovite-bearing granites have high Rb (up to 810 ppm) and high (K2O + Na2O)/CaO (up to 270), Rb/Sr (up to 42) and Rb/Ba (up to 30) as well as low K/Rb (< 150, down to 50), Zr/Hf (< 24, down to 11) and Nb/Ta (< 6, down to 2). They show similar Nd–O–Hf isotopic compositions to the biotite granites with ε Nd (T) of ? 8.7 to ? 12.0, δ18O of 8.7–13.0‰ (most > 9.5‰) and ε Hf (T) (in situ zircon) of ? 11.3 to ? 13.1. Geochemical data suggest the origin of the biotite granites and muscovite-bearing granites as follows: Partial melting of Precambrian metasedimentary rocks (mainly two-mica schist) in the lower crust at temperatures of ca. 820 °C generated the melts of the less felsic biotite granites. Such primary crustal melts underwent biotite-dominant fractionation crystallization, forming the felsic biotite granites. Progressive plagioclase-dominant fractionation crystallization from the evolved biotite granites produced the more felsic muscovite-bearing granites. Thus, the biotite granites belong to the S-type whereas the muscovite-bearing granites are highly fractionated S-type granites. We further suggest that during the formation of the muscovite-bearing granites the fractional crystallization was accompanied by fluid fractionation and most likely the addition of internally derived mineralizing fluids. That is why the large-scale polymetallic mineralization is closely related to the muscovite-bearing granites rather than biotite granites in SE China. This is important to further understand the source and origin of biotite granites and muscovite-bearing granites in SE China even worldwide.  相似文献   

18.
Zircon U–Pb ages and geochemical and isotopic data for Late Ordovician granites in the Baoshan Block reveal the early Palaeozoic tectonic evolution of the margin of East Gondwana. The granites are high-K, calc-alkaline, metaluminous to strongly peraluminous rocks with A/CNK values of 0.93–1.18, are enriched in SiO2, K2O, and Rb, and depleted in Nb, P, Ti, Eu, and heavy rare earth elements, which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed at ca. 445 Ma. High initial 87Sr/86Sr ratios of 0.719761–0.726754, negative ?Nd(t) values of –6.6 to –8.3, and two-stage model ages of 1.52–1.64 Ga suggest a crustal origin, with the magmas derived from the partial melting of ancient metagreywacke at high temperature. A synthesis of data for the early Palaeozoic igneous rocks in the Baoshan Block and adjacent Tengchong Block indicates two stages of flare-up of granitic and mafic magmatism caused by different tectonic settings along the East Gondwana margin. Late Cambrian to Early Ordovician granitic rocks (ca. 490 Ma) were produced when underplated mafic magmas induced crustal melting along the margin of East Gondwana related to the break-off of subducted Proto-Tethyan oceanic slab. In addition, the cession of the mafic magmatism between late Cambrian-Early Ordovician and Late Ordovician could have been caused by the collision of the Baoshan Block and outward micro-continent along the margin of East Gondwana and crust and lithosphere thickening. The Late Ordovician granites in the Baoshan Block were produced in an extensional setting resulting from the delamination of an already thickened crust and lithospheric mantle followed by the injection of synchronous mafic magma.  相似文献   

19.
ABSTRACT

The Xiaohaizi wehrlite intrusion in the early Permian Tarim Large Igneous Province, Northwest China, is characterized by unusual high-An (up to 86) plagioclases. It has been suggested that H2O may have exerted a major control on their formation, but this interpretation requires further direct evidence. Moreover, it remains unclear where the water came from. In order to unravel these questions, we present electron microprobe analyses of minerals and melt inclusions in clinopyroxene macrocrysts in the dikes crosscutting the Xiaohaizi wehrlite intrusion and in situ oxygen isotope data of zircons from the Xiaohaizi wehrlite. The homogenized melt inclusions have restricted SiO2 (45.5–48.7 wt.%) and Na2O + K2O (2.4–3.8 wt.%) contents, displaying sub-alkaline affinity. This is inconsistent with the alkaline characteristic of the parental magma of the clinopyroxenes, suggesting significant modification of melt inclusions by contamination of the host clinopyroxene due to overheating. Nevertheless, the Ca/Na ratios (2.9–4.7) of melt inclusions are the upper limit of the parental magma of the clinopyroxenes due to high CaO (21.5–23.0 wt.%) and very low Na2O (0.22–0.34 wt.%) contents in the host clinopyroxenes. Thermodynamic calculation suggests that under fixed P (2.7 kbar) and T (1000°C), and assumed H2O (~1.5 wt.%) conditions, the Ca/Na ratio of the parental magma cannot generate high-An plagioclase in the wehrlite. The results confirm that H2O exerts a major control. Zircon δ18O (VSMOW) values (2.99–3.71‰) are significantly lower than that of mantle-derived zircon (5.3 ± 0.6‰). Such low zircon δ18O values may be due to incorporation of large amounts of low-δ18O, hydrothermally altered oceanic crust. However, geochemical and Sr-Nd-Pb isotopic data do not support recycled oceanic crust in the mantle source of the Xiaohaizi intrusion. Alternatively this can be explained by incorporation of meteoritic water in the magma chamber. This will increase the H2O content of the liquid that finally crystallize high-An plagioclases.  相似文献   

20.
The paper presents the results of determinations of stable S and O isotopes of dissolved sulfates and O and H stable isotopes of waters from three ponds, that is, Marczakowe Do?y acid pond, Marczakowe Do?y fish pond and Podwi?niówka acid pit pond, located in the Holy Cross Mountains (south-central Poland). The δ34SV-CDT and δ18OV-SMOW of SO4 2? in waters of three ponds (n = 14) varied from ?16.2 to ?9.5 ‰ (mean of ?13.6 ‰) and from ?8.1 to ?3.2 ‰ (mean of ?4.8 ‰), respectively. The mean δ34S–SO4 2? values were closer to those of pyrite (mean of ?25.4 ‰) and efflorescent sulfate salts (mean of ?25.6 ‰), recorded previously in the Podwi?niówka quarry, than to sulfates derived from other anthropogenic or soil and bedrock sources. The SO4 2? ions formed by bacterially induced pyrite oxidation combined with bacterial (dissimilatory) dissolved sulfate reduction, and presumably with subordinate mineralization of carbon-bonded sulfur compounds, especially in both Marczakowe Do?y ponds. In addition, the comparison of δ18O–SO4 2? and δ18O–H2O values indicated that 75–100 % of sulfate oxygen was derived from water. Due to the largest size, the Podwi?niówka acid pit pond revealed distinct seasonal variations in both δ18O–H2O (?9.2 to ?1.6) and δD–H2O (?29.7 to ?71.3) values. The strong correlation coefficient (r 2 = 0.99) was noted between δ18O–H2O and δD–H2O values, which points to atmospheric precipitation as the only source of water. The sediments of both acid ponds display different mineral inventory: the Marczakowe Do?y acid pond sediment consists of schwertmannite and goethite, whereas Podwi?niówka acid pit pond sediment is composed of quartz, illite, chlorite and kaolinite with some admixture of jarosite reflecting a more acidic environment. Geochemical modeling of two acid ponds indicated that the saturation indices of schwertmannite and nanosized ε-Fe2O3 (Fe3+ oxide polymorph) were closest to thermodynamic equilibrium state with water, varying from ?1.44 to 3.05 and from ?3.42 to 6.04, respectively. This evidence matches well with the obtained mineralogical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号