首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We sampled nekton (fishes and decapod crustaceans) in submerged aquatic vegetation (SAV) (Potanogeton nodosus, Najas guadalupensis), in emergent marsh vegetation (Sagittaria spp. andScirpus americanus), and over unvegetated bottom associated with three islands in the Atchafalaya River Delta, Louisiana. The purpose of our study was to quantify nekton densities in these major aquatic habitat types and to document the relative importance of these areas to numerically dominant aquatic organisms. We collected a total of 33 species of fishes and 7 species of crustaceans in 298 1-m2 throw trap samples taken over three seasons: summer (July and August 1994), fall (September and October 1994), and spring (May and June 1995). Fishes numerically accounted for >65% of the total organisms collected. Vegetated areas generally supported much higher nekton densities than unvegetated sites, although bay anchoviesAnchoa mitchilli were more abundant over unvegetated bottom than in most vegetated habitat types. Among vegetation types, most species showed no apparent preference between SAV and marsh. However, inland silversidesMenidia beryllina and freshwater gobiesGobionellus shufeldti were most abundant inScirpus marsh in summer, and blue crabsCallinectes sapidus were most abundant in SAV (Potamogeton) in spring. Several species (sheepshead minnowCyprinodon variegatus, rainwater killifishLucania parva, and blue crab) apparently selected the vegetated backmarsh of islands (opposite of riverside) over stream-sideScirpus marsh. Freshwater gobies, in contrast, were most abundant in streamsideScirpus marsh. Densities of juvenile blue crabs were high (up to 17 m−2) in vegetated delta habitat types and comparable to values reported from more saline regions of Gulf Coast estuaries. Shallow vegetated habitat types of the Atchafalaya River Delta and other tidal freshwater systems of the Gulf Coast may be important nursery areas for blue crabs and other estuarine species.  相似文献   

2.
It is often presumed that salt marshes provide a predation refuge for small fishes, but predation risks have rarely been compared in intertidal and subtidal habitats, making the importance of salt marshes as a predation refuge speculative. We measured relative survival of tethered mummichog (Fundulus heteroclitus) in four habitats in a salt marsh?Ctidal creek system: unvegetated and vegetated intertidal areas and the subtidal creek at high and low tide. At high tide, mummichog in the intertidal zone had significantly higher survival than in the subtidal creek in June through August. Survival rates in unvegetated and vegetated intertidal habitats were not significantly different, suggesting that higher intertidal survival was due to less abundant predators compared with the creek, rather than predators being less effective in vegetation. The lower predation risk experienced by mummichog in the intertidal marsh suggests that access to intertidal habitats will be important for production of small estuarine fishes.  相似文献   

3.
We sampled epiphytic and benthic macriinvertebrates in 20 beds of submersed vegetation throughout the Hudson River estuary to assess the importance of plant beds in providing habitat for macroinvertebrates and to determine which characteristics of plant beds affected the density and composition of macroinvertebrates. Macroinvertebrate densities in plant beds were 4–5 times higher, on average, than densities in unvegetated sediments in the Hudson. The macroinvertebrate community in plant beds was dominated by chironomid midges, oligochaete worms, hydroids, gastropods, and amphipods. Many species of macroinvertebrates were found chiefly on submersed plants, showing that plant beds are important in supporting biodiversity in the Hudson. Macroinvertebrates were most numerous in beds with high plant biomass and in the interiors of beds, whereas neither bed size nor position along the length of the estuary affected macroinvertebrate density. Community composition varied strongly with position along the river (freshwater versus brackish), habitat (epiphytic versus benthic), and position within the bed (edge versus interior). Plant biomass also influenced macroinvertebrate community composition, but bed area had relatively little influence.  相似文献   

4.
We compared distribution and abundance by habitat for age-0, young-of-the-year (YOY) winter flounder,Pseudopleuronectes americanus, in three estuaries (Hammonasset River, Navesink River, and Great Bay-Little Egg Harbor) in the northeastern United States to better define essential fish habitat (EFH). Two replicates of five representative habitats were sampled in most estuaries: eelgrass (Zostera marina), unvegetated areas adjacent to eelgrass, macroalgae, (primarilyUlva lactuca), unvegetated areas adjacent to macroalgae, and tidal marsh creeks. Fish were sampled every two weeks, May through October 1995 and 1996, with a beam-trawl (1-m width, 3-mm mesh net). Abundance of YOY winter flounder was highest in the Navesink River estuary and similar between years, but was significantly lower and differed between years in the Great Bay-Little Egg Harbor and Hammonasset River estuaries. Annual temperature differences appear to influence estuary use by YOY. In the years and estuaries studied, where habitat-related differences in abundance were significant, YOY were found in higher densities in unvegetated areas adjacent to eelgrass. The exception was in the Hammonasset River in 1995 when densities were higher in eelgrass. We conclude that the type of habitat most important to YOY winter flounder varies among estuaries and as a result, care should be taken in defining EFH, based only on limited spatial and temporal sampling.  相似文献   

5.
Bay scallop (Argopecten irradians) populations existed in Chesapeake Bay until 1933, when they declined dramatically due to a loss of seagrass habitat. Since then, there have been no documented populations within the Bay. However, some anecdotal observations of live bay scallops within the lower Bay suggest that restoration of the bay scallop is feasible. We therefore tested whether translocated adults of the southern bay scallop, Argopecten irradians concentricus, could survive during the reproductive season in vegetated and unvegetated habitats of the Lynnhaven River sub-estuary of lower Chesapeake Bay in the absence of predation. Manipulative field experiments evaluated survival of translocated, caged adult scallops in eelgrass Zostera marina, macroalgae Gracilaria spp., oyster shell, and rubble plots at three locations. After a 3-week experimental period, scallop survival was high in vegetated habitats, ranging from 98% in their preferred habitat, Z. marina, to 90% in Gracilaria spp. Survival in Z. marina was significantly higher than that in rubble (76%) and oyster shell (78%). These findings indicate that reproductive individuals can survive in vegetated habitats of lower Chesapeake Bay when protected from predators and that establishment of bay scallop populations within Chesapeake Bay may be viable.  相似文献   

6.
We compared nekton use ofVallisneria americana Michx. (submerged aquatic vegetation, SAV) with marsh shoreline vegetation and subtidal nonvegetated bottom (SNB) using a 1-m2 drop sampler in the oligohaline area of Barataria Bay, Louisiana. Mean densities of most abundant species were significantly different among six habitat types. Harris mud crabRhithropanopeus harrisii, Ohio shrimpMacrobrachium ohione, blue crabCallinectes sapidus, daggerblade, grass shrimpPalaemonetes pugio, white shrimpLitopenaeus setiferus (fall), rainwater, killifishLucania parva, naked gobyGobiosoma bosc, code gobyGobiosoma robustum (fall), speckled worm eelMyrophis punctatus (fall), and gulf pipefishSyngnathus scovelli (spring), were much more abundant, and species richness also was greater, inVallisneria than over SNB.Vallisneria supported densities of most species that were similar to those in marsh vegetation, although naked goby and gulf pipefish were more abundant inVallisneria, and speckled worm eel and saltmarsh topminnowFundulus jenkinsi were more abundant in marsh. Within theVallisneria bed, densities of Harris mud crab, rainwater killifish, and speckled worm eel were higher at sites near the marsh (SAV Inside Edge) than at sites more distant from the marsh (SAV Outside Edge), and Ohio shrimp (fall) densities were higher in the interior of the bed than along the edges. The mean size of blue crab was larger in marsh thanVallisneria and large inVallisneria than SNB. White shrimp did not differ in size among habitat types.Vallisneria beds may provide an important nursery habitat for young blue crab and white shrimp that use oligohaline estuarine areas. These SAV beds can provide an alternative structural habitat to emergent vegetation during periods of low water, becauseVallisneria occurs in the subtidal and generally persists throughout the year on the Gulf coast. Species whose young thrive in low-salinity waters and also depend on structure would benefit most fromVallisneria habitat in estuaries.  相似文献   

7.
Gillnet surveys from 1990 to 1992 and from 1996 to 1999 indicated a two-fold decrease in native striped bass (Morone saxatilis) populations and a concomitant two-fold increase in hybrid striped bass (Morone saxatilis × M. americana) in the Cape Fear River estuary, North Carolina. Gut content analysis indicated high diet overlap, and tagrecapture data suggested that hybrid striped bass participate in spawning migrations. These data provide circumstantial evidence that hybrid striped bass compete with striped bass for food and that they may compete for mates or habitat on the spawning grounds. Increasing abundance of adult hybrid striped bass in this system elevates the likelihood of hybrid introgression. We recommend that stocking of hybrid striped bass be terminated to preserve native striped bass populations.  相似文献   

8.
A two-year trawling and gill-netting study of vegetated and unvegetated bottoms near Parson’s Island, Maryland and near the mouth of the York River, Virginia was carried out to assess the nursery function of submerged vegetation for populations of fishes and decapod crustaceans in the Chesapeake Bay. Results revealed that vegetated bottoms supported substantially larger numbers of decapods, but not fishes, than unvegetated substrates. The lower Bay grassbed was an important nursery area for juvenile blue crabs, although neither of the grassbeds functioned as a nursery for commercially or recreationally valuable fishes. Our results suggest that: (1) further decreases in lower Bay Seagrass biomass would result in reduced numbers of adult blue crabs, but should not substantially affect populations of valuable fish species; (2) additional decreases in Upper Bay submerged vegetation should not produce dramatic change in the population sizes of either adult blue crabs or fishes.  相似文献   

9.
This study investigated macroinvertebrate community composition in seagrass beds at a range of spatial scales, with an emphasis on the transition between vegetated and unvegetated sediment. At four intertidal sites in three New Zealand estuaries (Whangamata, Wharekawa, and Whangapoua Harbours), a large continuous bed of seagrass (Zostera capricorni) was selected with adjacent unvegetated sediment. Macroinvertebrate community composition and biomass, as well as sediment characteristics, were determined at sampling locations 1 and 50 m inside seagrass beds, and 1, 10, and 50 m outside seagrass beds. Analysis of univariate measures of community composition (total abundance, number of species, and diversity) and total biomass indicated significant differences among sites and sampling locations, but contrary to many previous studies these measures were not higher inside than outside the seagrass beds. Multivariate analysis indicated that sites with high seagrass biomass supported a similar community composition. The remaining sampling locations were clustered by site, but there were also significant differences in community composition among sampling locations within a site. There were distinctive communities at the edge of seagrass beds at sites with high seagrass biomass, and evidence that the effects of seagrass beds may extend into the unvegetated sediment. At the low seagrass biomass site there was no evidence of any edge effects, although community composition differed inside and outside the bed. Differences in community composition were driven primarily by small changes in the relative abundance of the dominant taxa. At high seagrass biomass sites the absence of deep-burrowing polychaetes and low numbers of bivalves suggests that one possible mechanism underlying the observed variation in community composition was inhibition by the dense root-rhizome mat. The results of this study emphasize the need to consider the linkages between habitats in heterogeneous estuarine landscapes and how those linkages vary among sites, if the structure and functioning of macroinvertebrate communities in seagrass habitats are to be understood.  相似文献   

10.
Three gear types were used to collect finfish species from several tributaries of the South Creek estuary near Aurora, North Carolina, to ascertain whether a man-initiated marsh and creek system resembled adjacent natural areas in finfish species composition and abundance. Project Area II was the man-initiated area constructed in 1983 as up-front mitigation by North Carolina Phosphate Corporation prior to its anticipated mining in the headwaters of nearby natural wetlands. Two creeks served as controls throughout the study: Drinkwater Creek and Jacks Creek. Otter trawls were used monthly from July 1984 through December 1988. Wegener rings were used in April, July, and October from 1984 through 1987. An experimental gill net was used monthly from June 1984 through 1985. A total of 48 finfish species was captured during the study; only 14 species (29.2%) were common among gear types. The species collected were mud sunfish, blueback herring, alewife American shad, striped anchovy, bay anchovy, inland silverside, American eel, silver perch, Atlantic menhaden, crevalle jack, common carp, spotted seatrout, weakfish, sheepshead minnow, gizzard shad, ladyfish, chain pickerel, banded killifish, mummichog, striped killifish, rainwater killifish, mosquitofish, naked goby, green goby, white catfish, brown bull-head, pinfish, longnose gar, green sunfish, pumpkinseed, bluegill, redear sunfish, spot, Atlantic croaker, largemouth bass, white perch, striped bass, striped mullet, white mullet, golden shiner, summer flounder, southern flounder, yellow perch, bluefish, Atlantic needlefish, hogchoker, andTilapia species. Abundance of finfish species was a function of gear type. Bay anchovy and spot represented about 85% of all fish in trawl samples. The remainder was comprised of 27 other species. In Wegener rings, five species—bay anchovy, menhaden, rainwater killifish, spot, and inland silverside—each represented over 10% of all fish collected. Croaker and striped mullet each comprised more than 5% of all fish collected in Wegener rings, but were present in substantial numbers only in 1985. Based on trawl samples, the total number of finfish collected from Project Area II during the period 1984–1988 was statistically similar to those collected from the control creeks; Wegener ring data analysis indicated significantly greater catches in Project Area II compared to the control creeks. Bay anchovy catches were not significantly different among the three creeks by either trawl or Wegener ring. The same result was true for Atlantic menhaden and southern flounder. The abundance of spot in trawl samples from Project Area II was significantly greater than for the control creeks; abundance in ring samples from Project Area II was statistically similar to Jacks Creek, but significantly higher than Drinkwater Creek. The number of Atlantic croaker in Project Area II trawl samples was significantly lower than for the cotnrol creeks. Wegener rings did not sample croaker effectively.  相似文献   

11.
It is widely believed that successful colonization of ecosystems by non-native species will have catastrophic consequences for the recipient system. Within the Mobile–Tensaw Delta, AL, exotic Eurasian milfoil (Myriophyllum spicatum) has been reported to trigger degradation of ecosystem structure and function. We evaluated the impacts of structurally complex milfoil on food web structure and predator-prey interactions via comparisons with two native grasses, structurally simple wild celery (Vallisneria americana) and the more complex water stargrass (Heteranthera dubia). While significant differences were not detected in the faunal compositions of milfoil and stargrass habitats, significant differences between milfoil and wild celery were found. Laboratory experiments showed that rainwater killifish, a key contributor to these differences, preferred milfoil over wild celery, but did not occupy milfoil more than stargrass. Subsequent experiments indicated that survivorship was drastically lower in wild celery. Though many of the documented impacts of Eurasian milfoil have been cast as detrimental, shelter-seeking organisms may perceive milfoil in the same way as other complex native species.  相似文献   

12.
Many studies compare utilization of different marine habitats by fish and decapod crustaceans; few compare multiple vegetated habitats, especially using the same sampling equipment. Fish and invertebrates in seagrass, mangrove, saltmarsh, and nonvegetated habitats were sampled during May–August (Austral winter) and December–January (Austral summer) in the Barker Inlet-Port River estuary, South Australia. Sampling was undertaken using pop nets in all habitats and seine nets in seagrass and nonvegetated areas. A total of 7,895 fish and invertebrates spanning 3 classes, 9 orders, and at least 23 families were collected. Only one fish species,Atherinosoma microstoma, was collected in all 4 habitats, 11 species were found in 3 habitats (mangroves, seagrass, and nonvegetated), and 13 species were only caught in seagrass and nonvegetated habitats. Seagrass generally supported the highest numbers of fish and invertebrates and had the greatest species richness. Saltmarsh was at the other extreme with 29 individuals caught from two species. Mangroves and nonvegetated habitats generally had more fish, invertebrates, and species than saltmarsh, but less than seagrass. Analyses of abundances of individual species generally showed an interaction between habitat and month indicating that the same patterns were not found through time in all habitats. All habitats supported distinct assemlages although seagrass and nonvegetated assemblages were similar in some months. The generality of these patterns requires further investigation at other estuaries. Loss of vegetated habitats, particularly seagrass, could result in loss of species richness and abundance, especially for organisms that were not found in other habitats. Although low abundances were found in saltmarsh and mangroves, species may use these habitats for varying reasons, such as spawning, and such use should not be ignored.  相似文献   

13.
Oysters can create reefs that provide habitat for associated species resulting in elevated resident abundances, lower mortality rates, and increased growth and survivorship compared to other estuarine habitats. However, there is a need to quantify trophic relationships and transfer at created oyster reefs to provide a better understanding of their potential in creating suitable nekton habitat. Stable isotope analyses (δ13C and δ15N) were conducted to examine the organic matter sources and potential energy flow pathways at a created intertidal oyster (Crassostrea ariakensis; hereinafter, oyster) reef and adjacent salt marsh in the Yangtze River estuary, China. The δ13C values of most reef-associated species (22 of 37) were intermediate between those of suspended particle organic matter (POM) and benthic microalgae (BMI), indicating that both POM and BMI are the major organic matter sources at the created oyster reef. The sessile and motile macrofauna colonizing the reef make up the main prey of transient nekton (e.g., spotted sea bass, Asian paddle crab, and green mud crab), thus suggesting that the associated community was most important in supporting higher trophic levels as opposed to the direct dietary subsidy of oysters. The created oyster reef consistently supported higher trophic levels than the adjacent salt marsh habitat due to the dominance of secondary consumers. These results indicate that through the provision of habitat for associated species, created oyster reefs provide suitable habitat and support a higher average trophic level than adjacent salt marsh in the Yangtze River estuary.  相似文献   

14.
We quantified temporal and spatial variability in diets of 950 juvenile (age-0) striped bass in the Hudson River estuary. We used canonical correspondence analysis to assess the roles of temporal and spatial habitat variability in juvenile diet variation. We found that juvenile striped bass diets in the Hudson River were only modestly comparable to diets in other east coast estuaries. Among-year differences (51.4%) and spatial differences (41.9%) were substantially associated with juvenile striped bass diet. We found ontogeny (2.8%) and within-season variation (9.5%) to only weakly associate with diet variation. Our results indicate that an understanding of the temporal and spatial variation within the Hudson River estuary is vital in understanding variation in feeding by resident juvenile fish.  相似文献   

15.
Densities of juvenile and postlarval Farfantepenaeus aztecus, F. duorarum, and Litopenaeus setiferus were compared in vegetated fringing marsh and adjacent nonvegetated areas over a range of environmental conditions in Mobile Bay, Alabama. Densities of all three species were significantly greater in vegetated than nonvegetated areas, with 82% of all penaeids found in vegetated areas. Among vegetated sites, significantly lower densities were found in oligohaline areas, whereas mesohaline areas had the highest densities. Significant positive correlations were found between density and salinity for F. aztecus and F. duorarum but not for L. setiferus. Emergent vegetation is important habitat for F. aztecus and F. duorarum as reported from other locations, and our data support a similar conclusion for L. setiferus. Shoreline emergent marsh vegetation is particularly important in Mobile Bay as it represents the only extensive vegetated habitat readily available to F. aztecus, F. duorarum, and L. setiferus.  相似文献   

16.
The complexity of habitat structure created by aquatic vegetation is an important factor determining the diversity and composition of soft-sediment coastal communities. The introduction of estuarine organisms, such as oysters or other forms of aquaculture, that compete with existing forms of habitat structure, such as seagrass, may affect the availability of important habitat refugia and foraging resources for mobile estuarine fish and decapods. Fish and invertebrate communities were compared between adjacent patches of native seagrass (Zostera marina), nonnative cultured oyster (Crassostrea gigas), and unvegetated mudflat within a northeastern Pacific estuary. The composition of epibenthic meiofauna and small macrofaunal organisms, including known prey of fish and decapods, was significantly related to habitat type. Densities of these epifauna were significantly higher in structured habitat compared to unstructured mudflat. Benthic invertebrate densities were highest in seagrass. Since oyster aquaculture may provide a structural substitute for seagrass being associated with increased density and altered composition of fish and decapod prey resources relative to mudflat, it was hypothesized that this habitat might also alter habitat preferences of foraging fish and decapods. The species composition of fish and decapods was more strongly related to location within the estuary than to habitat, and fish and decapod species composition responded on a larger landscape scale than invertebrate assemblages. Fish and decapod species richness and the size of ecologically and commercially important species, such as Dungeness crab (Cancer magister), English sole (Parophrys vetulus), or lingcod (Ophiodon elongatus), were not significantly related to habitat type.  相似文献   

17.
Interactions between pairs of numerically dominant species collected at inlet and creek shorezone and channel habitats within a high salinity estuary in northeastern South Carolina were examined using two-way contingency tables and binomial tests. Of the significant species interactions, over 71% were positive and these primarily occurred within shorezone habitats. The strongest positive interactions were between young-of-the-year spot (Leiostomus xanthurus) and blue crab (Callinectes sapidus) juveniles in both shorezone habitats, and between striped killifish (Fundulus majalis), white mullet (Mugil curema), and striped anchovies (Anchoa hepsetus) in the inlet shorezone habitat. One of the most positive species associations in channel habitats was between the bay anchovy (Anchoa mitchilli) and the Atlantic brief squid (Lolliguncula brevis). These positive relationships between species may be explained by one species enhancing the habitat for another, both species responding to similar environmental conditions, cooperative social interactions such as mixed schooling, or the attraction of predators to prey. Negative interactions were found between schools of Atlantic silversides (Menidia menidia) and striped killifish in the inlet shorezone and between schools of Atlantic silversides and bay anchovies in the creek shorezone. Schools of Atlantic silversides may either displace or compete with other common shorezone species. Positive and negative interactions suggest that relationships between some species pairs did not occur randomly within certain habitats and may have contributed to the organization of the estuarine nekton community. Differences in the strengths and direction of interactions of certain species pairs among habitats and seasons were probably related to the differences in the physical characteristics of those habitats and/or changes in the relative abundance of dominant species and life stages over time.  相似文献   

18.
Blue crabsCallinectes sapidus in lower Chesapeake Bay are subject to high rates of predation during the late summer of their first year of growth as they migrate out of vegetated nursery habitats. Predators, potentially contributing to this pattern, were identified in video-recorded field observations of tethered juvenile crabs (20–25 mm carapace width). Predators were also tested in large laboratory tanks containing similarly-sized untethered crabs as prey. Seven different predators attacked tethered crabs in the field. Only two predators, larger blue crabs and northern puffers,Sphoeroides maculatus, consistently succeeded in preying on crabs in both field and laboratory settings. These results confirm the importance of cannibalism on juvenile blue crabs and identify puffers as a potentially overlooked source of predation pressure.  相似文献   

19.
Juvenile fishes often face conditions that force them to experience fitness trade-offs (e.g., foregoing a rich food patch because of high risk of predation). In this study, three aspects of the environment of juvenile American shad: food availability, predation risk, and “thermal risk” (defined here as the probability of the onset of adverse temperatures; ≤9°C, the temperature at which feeding ceases), are evaluated empirically with data from the Hudson River estuary in New York State. The evaluations are then used in dynamic programming models to determine when juvenile American shad should switch habitat (upper versus middle versus lower estuary), and, in combination with a simple bioenergetic model, to determine growth trajectories for fish spawned at different times in the spawning season. Comparisons of simulations with real data suggest that scenarios in which predation risk is highest in the lower river produce the most realistic patterns of habitat use. High upriver food availability in June promotes use of the upriver habitat; however, by September most size classes of fish utilize the middle estuary, and by late October, fish move to the lower estuary (even in the face of higher predation risk), due to a combination of lower food resources and thermal risks in the upper and middle estuary.  相似文献   

20.
In recent decades, marshes naturally dominated bySpartina spp. have been replaced byPhragmites australis throughout the northeastern United States. We suggest that early in this invasion there was little effect on the fish fauna. As the invasion proceeds, the marsh surface habitat became more altered (i.e., elevated, flattened, reduced water-filled depressions, and reduced standing water), which resulted in a reduction of feeding, reproduction, and nursery function for fishes, especiallyFundulus spp. These potential changes in marsh habitat and function have resulted in numerous attempts to removePhragmites and restoreSpartina spp. To evaluate the response of marsh surface fishes toPhragmites treatment, we examined fish use in the brackish water reaches of Alloway Creek in the Delaware Bay estuary. ReferencePhragmites habitats were compared with referenceSpartina alterniflora-dominated habitats and sites treated (1996–1998) to removePhragmites to restore former vegetation (i.e., restored, now comprised of 100%Spartina). Fish were sampled with an array (n=9 at each site) of shallow pit traps (rectangular glass dishes, 27.5×17.5×3.7 cm). Small individuals (mean=17.5, 5–45 mm TL) dominated all pit trap collections. Fish abundance was highest at the restored (catch per unit effort [CPUE]=2.16) andSpartina (CPUE=0.81) sites with significantly lower values atPhragmites (CPUE=0.05) habitats. Samples were dominated by young-of-the-year mummichog,Fundulus heteroclitus (98% of total fish, n=631). The only other fish species collected was spotfin killifish,Fundulus luciae (2% of total catch, n=14), which was only present in restored andSpartina habitats. These observations suggest that the restored marsh is providing habitat (water-filled depressions on the marsh surface) for young-of-the-yearFundulus spp. These marshes are responding favorably to the restoration based on the much greater abundance of fish in restored versusPhragmites habitats and the overall similarity between restored andSpartina habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号