首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The typical spectra of gamma-ray bursts (GRBs) are discussed in the context of the compactness problem for GRB sources and how it is resolved in the popular fireball model. In particular, observational (model-independent) constraints on the collimation of the gamma-rays and the dependence of the collimation angle on the photon energy are considered. The fact that the threshold for the creation of e ? e + pairs depends on the angle between the momenta of the annihilating photons in the GRB source provides an alternative solution to the compactness problem. A new approach to explaining GRBs, taking into account the angular dependence for pair creation, is proposed, and the main features of a scenario describing a GRB source with a total (photon) energy smaller or of the order of 1049 erg are laid out. Thus, we are dealing with an alternative to an ultra-relativistic fireball, if it turns out (as follows from observations) that all “long” GRBs are associated with normal (not peculiar) core-collapse supernovae. The effects of radiation pressure and the formation of jets as a consequence of even a small amount of anisotropy in the total radiation field in a (compact) GRB source are examined in this alternative model. Possible energy-release mechanisms acting in regions smaller or of the order of 108 cm in size (a compact model for a GRB) are discussed. New observational evidence for such compact energy release in the burst source is considered.  相似文献   

2.
We present the results of observations obtained using the MASTER robotic telescope in 2005–2006, including the earliest observations of the optical emission of the gamma-ray bursts GRB 050824 and GRB 060926. Together with later observations, these data yield the brightness-variation law t ?0.55±0.05 for GRB 050824. An optical flare was detected in GRB 060926—a brightness enhancement that repeated the behavior observed in the X-ray variations. The spectrum of GRB 060926 is found to be F E E ?β , where β = 1.0 ± 0.2. Limits on the optical brightnesses of 26 gamma-ray bursts have been derived, 9 of these for the first time. Data for more than 90% of the accessible sky down to 19 m were taken and reduced in real time during the survey. A database has been composed based on these data. Limits have been placed on the rate of optical flares that are not associated with detected gamma-ray bursts, and on the opening angle for the beams of gamma-ray bursts. Three new supernovae have been discovered: SN 2005bv (type Ia)—the first to be discovered on Russian territory, SN 2005ee—one of the most powerful type II supernovae known, and SN 2006ak (type Ia). We have obtained an image of SN 2006X during the growth stage and a light curve that fully describes the brightness maximum and exponential decay. A new method for searching for optical transients of gamma-ray bursts detected using triangulation from various spacecraft is proposed and tested.  相似文献   

3.
Interaction of a fast shock wave generated during a supernova explosion with a magnetized star-companion of the supernova precursor produces a current sheet. We consider an evolution of this current sheet and show that a singularity (shock) is formed in finite time within the ideal magnetohydrodynamics framework. Charged particles (electrons) are accelerated in the vicinity of the singularity, and their distribution function has a plateau up to the energies of the order of 104 mc 2. These fast particles radiate in the γ-range in the strong magnetic field of the current sheet (B ≃ 106 G). Radiation is concentrated within a narrow angle around the current sheet, Δθ ≃ 3 × 10−4, and its spectrum has the maximum at several hundreds of keV. Presented calculations confirm the model of cosmological GRBs proposed earlier by Istomin & Komberg.  相似文献   

4.
The interaction of a powerful cosmological gamma-ray burst (GRB) with a dense molecular cloud is modeled. Two-dimensional gas-dynamical flows were computed for various configurations of the cloud. In the spherically symmetrical case, the gas velocity does not exceed $ \sim 2 \times 10^3 \sqrt {E/1.6 \times 10^{53} } km/s$ km/s. If the GRB precursor has an anisotropic wind, a conical cavity can form in the nearby region of the molecular cloud. The propagation of the gamma-ray pulse in this cavity leads to the formation of a rapidly moving hot clump of matter, with the gas velocity reaching 1.8 × 104 km/s for gamma-ray energy of E = 1.6 × 1053 erg. In all the computations, the velocity of the moving material is much lower than the velocity of light, the volume of gas affected by the motion is small, and the influence of the gas motions on the light curve of the optical afterglow is insignificant.  相似文献   

5.
A new model is put forward to explain the observed features of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs). It is shown that drift waves can be excited in the magnetosphere of a neutron star with a rotational period of P~0.1 s, surface magnetic field Bs~1012 G, and angle between the rotational axis and magnetic moment β<10°. These waves lead to the formation of radiation pulses with a period of Pdr~10 s. The rate of loss of rotational energy by such a star (~1037 erg/s) is sufficient to produce the observed increase in the period \((\dot P \sim 10^{ - 10} )\), the X-ray luminosities of AXPs and SGRs (~1034–1036 erg/s), and an injection of relativistic particles into the surrounding supernova remnant. A modulation of the constant component of the radiation with a period of P~0.1 s is predicted. In order for SGRs to produce gamma-ray bursts, an additional source of energy must be invoked. Radio pulsars with periods of Pobs>5 s can be described by the proposed model; in this case, their rotational periods are considerably less than Pobs and the observed pulses are due to the drift waves.  相似文献   

6.
A possible model for the pulsar PSR J1852+0040 associated with the supernova remnant Kes 79 and detected in place of a central compact object in this remnant is discussed. The main observational properties of the pulsar can be understood as consequences of its weak surface magnetic field (B s < 3 × 1011 G) and short rotational period (P ~ 0.1 s). Its X-ray emission is thermal, and is generated in a small region near the surface of the neutron star due to cooling of the surface as the surface accretes matter from a relict disk surrounding the pulsar. The radio emission is generated in the outer layers of the pulsar magnetosphere by the synchrotron (cyclotron) mechanism. The optical luminosity of J1852+0040 is estimated to be L opt < 1028 erg/s. If the spectral features in another central compact object, 1E 1207.4+5209, are interpreted as electron cyclotron lines, this provides evidence for a weak surface magnetic field for this neutron star as well (B < 6 × 1010 G). The hypothesis that all central compact objects have weak surface fields makes it possible to explain the number of detected central compact objects, the absence of pulsar-wind nebulae associated with these objects, and the fact that no pulsar has yet been detected at the position of SN 1987a. We suggest that, after the supernova remnant has dissipated, the central compact object becomes a weak X-ray source (XDINS), whose weak emission is also due to the weakness of its magnetic field.  相似文献   

7.
8.
Results of radio observations of the cosmic gamma-ray burst GRB 080319B at 8.45 GHz during the afterglow are reported. The observations were carried out on telescopes of the Zelenchukskaya and Svetloe Observatories of the Institute of Applied Astronomy, Russian Academy of Sciences. Two outbursts in the radio brightness were detected in the afterglow of GRB 080319B. A total of 148 radio observations were performed at 3.5, 6.2, and 13 cm. The observations were conducted in a mode with smooth scanning in elevation, which was also used to update the flux densities of the primary reference sources. The first powerful radio outburst was recorded on March 28, 2008, 6.86d after the gamma-ray burst, when the maximum flux density was F 8.45 GHz = 44 ± 12 mJy. Almost two months later, a second increase in the radio brightness was observed. The flux density monotonically increased from 19 mJy (59.55d) to 34mJy (59.79d) over 6.5 h; 1.17 d later, the flux density fell to 12mJy.At this last epoch, the radio flux demonstrated variability within 3σ on timescales of 9d−10d. The detected radio brightness increases are interpreted in terms of MHD interactions of a fast plasma outflow with a cloud of inhomogeneous surrounding medium. This interaction is accompanied by restructuring of the relativistic plasma outflow; the analysis of this process has been carried out.  相似文献   

9.
The close neutron-star binary system comprised of the radio pulsars PSR J0737-3039 A,B is discussed. An analysis of the observational data indicates that the wind from pulsar A, which is more powerful than the wind from pulsar B, strongly distorts the magnetosphere of pulsar B. A shock separating the relativistic wind from pulsar A and the corotating magnetosphere of pulsar B should form inside the light cylinder of pulsar B. A weakly diverging “tail” of magnetic field is also formed, which stores a magnetic energy on the order of 1030 erg. This energy could be liberated over a short time on the order of 0.1 s as a result of reconnection of the magnetic-force lines in this “tail,” leading to an outburst of electromagnetic radiation with energies near 100 keV, with an observed flux at the Earth of 4 × 10?11 erg cm?2 s?2. Such outbursts would occur sporadically, as in the case of magnetic substorms in the Earth’s magnetosphere.  相似文献   

10.
The rate of gamma-ray bursts (GRBs) in the Galaxy is estimated assuming that these events result from the formation of rapidly rotating Kerr black holes during the core collapse of massive, helium, Wolf-Rayet secondary components in very close binary systems. This process brings about rapid rotation of the cores of such Wolf-Rayet stars, inevitably resulting in the formation of Kerr black holes during type Ib,c supernovae. The current rate of formation of Kerr black holes (GRBs) in the Galaxy is about 3×10?5/year. Collimation of the gamma-ray radiation into a small solid angle (about 0.1–0.01 sr) brings this rate into consistency with the observed rate of GRBs, estimated to be 10?6–10?7/year. Possible immediate progenitors of GRBs are massive X-ray binaries with X-ray luminosities of 1038–1040 erg/s. Due to the short lifetimes of the progenitors and the very high brightnesses of GRBs, the GRB rate can provide information about the history of star formation in the Universe on the Hubble time scale. A model in which the star-formation rate is determined by the conditions for ionization of the interstellar gas, whose density and volume are determined by supernovae, yields a Galactic star-formation history that can be viewed as representing the history of star formation in the Universe. The theoretical history of star formation is in satisfactory agreement with the history reconstructed from observations. The theoretical model for the history of star formation in the Galaxy can also be used to assess the influence of dust on optical observations of supernovae and GRBs in galaxies of various ages.  相似文献   

11.
Long gamma-ray burst GRB 151027A was observed by all three detectors onboard the Swift spacecraft, and many more, including MAXI, Konus-Wind and Fermi GBM/LAT instruments. This revealed a complex structure of the prompt and afterglow emission, consisting of a double-peak gammaray prompt with a quiescent period and a HRF/SXF within the X-ray afterglow, together with multiple BB components seen within the time-resolved spectral analysis. These features, within the fireshell model, are interpreted as the manifestation of the same physical process viewed at different angles with respect to the HN ejecta. Here we present the time-resolved and time-integrated spectral analysis used to determine the energy of the e?e+ plasma Etot and the baryon load B. These quantities describe the dynamics of the fireshell up to the transparency point. We proceed with the light-curve simulation from which CBM density values and its inhomogeneities are deduced. We also investigate the properties of GRB 140206A, whose prompt emission exhibits a similar structure.  相似文献   

12.
Three-dimensional numerical hydrodynamical modeling of a radiative wind and accretion disk in a close binary system with a compact object is carried out, using the massive X-ray binary LMC X-3 as an example. This system contains a precessing disk, and may have relativistic jets. These computations show that an accretion disk with a radius of about 0.20 (in units of the component separation) forms from the radiative wind from the donor when the action of the wind on the central source is taken into account, when the accretion rate is equal to the observed value (about 3.0 × 10?8 M /year, which corresponds to the case when the donor overflows its Roche lobe by nearly 1%). It is assumed that the speed of the donor wind at infinity is about 2200 km/s. The disk that forms is geometrically thick and nearly cylindrical in shape, with a low-density tunnel at its center extending from the accretor through the disk along the rotational axis. We have also modeled a flare in the disk due to short-term variations in the supply of material through the Lagrange point L1, whose brightnesses and durations are able to explain flares in cataclysmic variables and X-ray binaries. The accretion disk is not formed when the donor underfills its Roche lobe by 0.5%, which corresponds to an accretion rate onto the compact object of 2.0 × 10?9 M /year. In place of a disk, an accretion envelope with a radius of about 0.03 forms, within which gas moves along very steep spiral trajectories before falling onto the compact object. As in the accretion-disk case, a tunnel forms along the rotational axis of the accretion envelope; a shock forms behind the accretor, where flares occur in a compact region a small distance from the accretor at a rate of about six flares per orbital period, with amplitudes of about 10 m or more. The flare durations are two to four minutes, and the energies of individual particles at the flare maximum are about 100–150 keV. These flares appear to be analogous to the flares observed in gamma-ray and X-ray burst sources. We accordingly propose a model in which these phenomena are associated with massive, close X-ray binary systems with component-mass ratios exceeding unity, in which the donor does not fill its Roche lobe. Although no accretion disk forms around the compact object, an accretion region develops near the accretor, where the gamma-ray and X-ray flares occur.  相似文献   

13.
The main stages in the creation of the Russian segment of the MASTER network of robotic telescopes is described. This network is designed for studies of the prompt optical emission of gammaray bursts (GRBs; optical emission synchronous with the gamma-ray radiation) and surveys of the sky aimed at discovering uncataloged objects and photometric studies for various programs. The first results obtained by the network, during its construction and immediately after its completion in December 2010, are presented. Eighty-nine alert pointings at GRBs (in most cases, being the first ground telescopes to point at the GRBs) were made from September 2006 through July 2011. The MASTER network holds first place in the world in terms of the total number of first pointings, and currently more than half of first pointings at GRBs by ground telescopes are made by the MASTER network. Photometric light curves of GRB 091020, GRB 091127, GRB 100901A, GRB 100906A, GRB 10925A, GRB 110106A, GRB 110422A, and GRB 110530A are presented. It is especially important that prompt emission was observed for GRB 100901A and GRB 100906A, and thar GRB 091127, GRB 110422A, and GRB 110106A were observed from the first seconds in two polarizations. Very-wide-field cameras carried out synchronous observations of the prompt emission of GRB 081102, GRB 081130B, GRB 090305B, GRB 090320B, GRB 090328, and GRB 090424. Discoveries of Type Ia supernovae are ongoing (among them the brightest supernova in 2009): 2008gy, 2009nr, 2010V, and others. In all, photometry of 387 supernovae has been carried out, 43 of which were either discovered or first observed with MASTER telescopes; more than half of these are Type Ia supernovae. Photometric studies of the open clusters NGC 7129 and NGC 7142 have been conducted, leading to the discovery of 38 variable stars. Sixty-nine optical transients have been discovered.  相似文献   

14.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

15.
We consider the evolution of close binaries in which the initial secondary component is a nondegenerate helium star with mass MHe = 0.4–60 M, while the initially more massive primary has evolved into a black hole, neutron star, or degenerate dwarf. The neutron star is assumed to originate as a result of the evolution of a helium star with a mass of 2.5 MMHe ≤ 10 M after the explosion of a type Ib,c supernova. If the axial rotation of the helium star before the explosion is rigid-body and synchronized with the orbital rotation, for Porb ≤ 0.16 day, the rotational energy of the young neutron star will exceed the energy of an ordinary supernova. If the magnetic field of the neutron star is sufficiently strong, the necessary conditions for a magnetic-rotational supernova are provided. The initial rotational period of a young neutron star originating in a system with an orbital period shorter than ~50 days is shorter than ~4 s, which, according to observations, is required for the appearance of a radio pulsar. A helium star whose mass exceeds ~10 M in a close binary with an orbital period shorter than one day and with the axial rotation of the helium presupernova synchronous with the orbital rotation evolves into a Kerr black hole, whose formation is likely to be accompanied by a gamma-ray burst with a duration longer than two seconds. In particular, we consider close binaries in which the second supernova results in the formation of a neutron star that remains in the binary. The theoretical distribution of orbital periods and eccentricities for such systems is consistent with that observed for radio pulsars in the Galactic disk in binaries with compact components and orbital eccentricities exceeding ~0.09, providing an explanation for the observed correlation between the orbital eccentricities and orbital periods for these systems.  相似文献   

16.
The emission measures EM in the directions of supernova remnants and pulsars are considered as functions of their ages t. The resulting plot has a well-defined lower boundary, which can be approximated by the expression EMmin∝1/t. The quantity EMmin increases with decreasing age t and does not level off or reach a maximum until t?500 yr. It is concluded that the bulk of the radiative energy that goes into ionizing and heating the interstellar gas is released at early stages of the supernova remnant’s evolution. We suggest that most of the kinetic energy of the supernova shell is converted into thermal energy and radiated at remnant ages t<100 yr, when the supernova shell, which is expanding at an enormous speed (about 104 km/s), overtakes the shell produced by the presupernova in the supergiant stage. We have estimated the ionization energy E?1051 erg, diameter L?60 pc, and electron density Ne?7 cm?3 of the HII regions around the supernovae (the supernova Strömgren zones). A list of objects that can be reliably identified as Strömgren zones of type II supernovae is presented. The plot of pulsar pulse broadening τ as a function of the pulsar age t also has a well-defined lower boundary, for which τ∝t?2 when t≥1000 yr. This suggests that turbulence develops during the first thousand years after the supernova outburst. It is also concluded that turbulence plays an important role in the formation and evolution of the Strömgren zones of type II supernovae.  相似文献   

17.
The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ~ 10?1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ~ 10?3 G, and the density of relativistic electrons is n e ~ 10?3 cm?3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, 〈E H 〉 = 〈E e 〉 ~ 10?7–10?6 erg cm?3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.  相似文献   

18.
The paper considers the evolution of the supernova envelopes produced by Population III stars with masses ofM * ?? 25?C200M ?? located in non-rotating protogalaxies with masses of M ?? 107 M ?? at redshifts z = 12, with dark-matter density profiles in the form of modified isothermal spheres. The supernova explosion occurs in the ionization zone formed by a single parent star. The properties of the distribution of heavy elements (metals) produced by the parent star are investigated, as well as the efficiency with which they are mixed with the primordial gas in the supernova envelope. In supernovae with high energies (E ? 5 × 1052 erg), an appreciable fraction of the gas can be ejected from the protogalaxy, but nearly all the heavy elements remain in the protogalaxy. In explosions with lower energies (E ? 3 × 1052 erg), essentially no gas and heavy elements are lost from the protogalaxy: during the first one to threemillion years, the gas and heavy elements are actively carried from the central region of the protogalaxy (r ?? 0.1r v , where r v is the virial radius of the protogalaxy), but an appreciable fraction of the mass of metals subsequently returns when the hot cavity cools and the envelope collapses. Supernovae with high energies (E ? 5 × 1052 erg) are characterized by a very low efficiency of mixing of metals; their heavy elements are located in the small volume occupied by the disrupted envelope (in a volume comparable with that of the entire envelope), with most of the metals remaining inside the hot, rarified cavity of the envelope. At the same time, the efficiency of mixing of heavy elements in less energetic supernovae (E ? 3 × 1052 erg) is appreciably higher. This comes about due to the disruption of the hot cavity during the collapse of the supernova envelope. However, even in this case, a clear spatial separation of regions enriched and not enriched in metals is visible. During the collapse of the supernova envelope, the metallicity of the gas is appreciably higher in the central region ([Z] ?? ?1 to 0) than at the periphery ([Z] ?? ?2 to ?4) of the protogalaxy; most of the enriched gas has metallicities [Z] ?? ?3.5 to ?2.5. The masses of enriched fragments of the supernova envelope remain appreciably lower than the Jeans mass, except in regions at the center of the protogalaxy upon which the surrounding enriched gas is efficiently accreted. Consequently, the birth of stars with metallicities close to those characteristic of present-day Galactic stars is very probable in the central region of the protogalaxy.  相似文献   

19.
The kinetic equation for the distribution function of relativistic electrons is solved taking into account quasi-linear interactions with waves and radiative processes. Mean values of the pitch angles ψ are calculated. If the particles of the primary beam with Lorentz factors γb~106 are resonant, then the condition γbψb?1 is satisfied, the particle distribution is described by the function f (γ) ∝ γ?4, and the synchrotron radiation spectrum is characterized by the spectral index α=3/2. On the other hand, if a cyclotron resonance is associated with particles of the high-energy tail of the secondary plasma (γt~105), then γtψt?1, and the distribution function has two parts—f (γ) ∝ γ and f (γ) ∝ γ?2—which correspond to the spectral indices α1=+1 and α2=?0.5. This behavior is similar to that observed for the pulsar B0656+14. The predicted frequency of the maximum νm=7.5×1016 Hz coincides with the peak frequency for this pulsar. The model estimate for the total synchrotron luminosity of a typical radio pulsar with hard radiation L s =3×1033 erg/s is in agreement with observed values.  相似文献   

20.
Bolometric light curves for the afterglow resulting from the passage of a gamma-ray burst through a molecular cloud are computed. The profile and duration of the afterglow light curve depend strongly on the distribution of matter in the cloud, the degree of collimation of the gamma-ray radiation, and the observing conditions. The peak can be reached as soon as seven days (the gamma-ray burst is located at some distance from the center of a molecular cloud with small-scale density enhancements), or as long as one to three years (the gamma-ray burst is located at the center of a uniform molecular cloud) after the burst. The bolometric luminosity of the re-radiated signal can reach 6.5 × 1042 erg/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号