首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Nuevo Entredicho deposit contains the richest concentration of mercury in the Almadén district, locally grading as much as 45% Hg. This ore deposit is hosted within an alkaline, conically shaped diatreme, about 150 m in diameter, which was subsequently filled with phreatomagmatic breccias. The diatreme cuts an Ordovician to Silurian clastic sedimentary rock sequence that is intercalated with basaltic sills. Structural analysis reveals a complex tectonic history with three main phases of Hercynian deformation. Mineralisation occurs as cinnabar replacements in volcanic tuffs and breccias and as recrystallised veins in tensions cracks associated with pyrophyllite and hydrothermal pyrite, which is strongly enriched in Cu, Pb and Hg. Lead isotopes in pyrite are characterised by high 207Pb/204Pb ratios (15.70-15.75), suggesting a contribution of ancient upper continental crust remobilised by Silurian-Devonian volcanism, with no mantle involvement. Sulphur isotopes of epigenetic cinnabar and pyrite range from +10.3 to +10.8‰ and from +10.6 to +11.9‰ respectively, suggesting a uniform sulphur source or a constant mixing ratio in the ore fluids. These isotopic compositions differ from those measured in the syngenetic deposits of the Almadén district; they suggest a higher temperature of ore formation of about 300 °C, and a genesis related to a distinct hydrothermal flow path at the Nuevo Entredicho deposit. Deposition of anomalously high-grade mercury ore at Nuevo Entredicho is related to a combination of (1) an abundance of black shale that provided sulphur and increasingly reducing conditions with high sulphide/sulphate ratios, (2) explosive Silurian-Devonian mafic magmatism that provided an initial source of mercury, (3) tectonic activity that lead to structurally favourable sites for ore deposition, and (4) replacement of secondary, carbonate-rich volcanic rocks.  相似文献   

2.
北山地区照壁山金矿床地质特征及成因   总被引:2,自引:1,他引:2  
照壁山金矿床是北山地区中部金矿集中区最具代表性的金矿床之一,金矿化主要在黑云母花岗岩株内或沿其与志留系公婆泉群火山-沉积岩的接触带产出,黑云母40Ar-39Ar同位素年龄为296±5 Ma.金矿体主要由含金石英脉,网脉和细脉浸染状块体组成,金属矿物主要有黄铁矿、方铅矿、闪锌矿、黄铜矿、自然金和银金矿,脉石矿物为石英和绢云母.围岩蚀变自含金矿脉(体)向外,分别为硅化、绢云母化和绿泥石化;另外,沿岩体与火山-沉积岩接触带常可观察到黄铁绢英岩化.微量元素和硫、氧、氢及铅同位素数据表明:黑云母花岗岩是同碰撞造山期深源岩浆与地壳物质相互作用的结果,成(岩)矿物质主要来自壳幔混合源,含矿热液是岩浆热流体与大气降水混合的产物.海西期花岗质岩浆活动不仅为金矿床的形成提供了物质和热力来源,而且是成矿热液对流循环的"发动机",成矿体系温、压降低是导致金沉淀与富集的重要控制因素.  相似文献   

3.
文章首次对蒙甘新相邻(北山)地区各类金、铜和铜—镍矿床(点)地质特征、成因类型和空间分布特点进行了系统总结,论证了金、铜和铜—镍成矿作用与古生代岩浆活动的关系,对区域地壳演化过程中金、铜和铜—镍成矿的动力学机制进行了深入讨论。研究结果表明,该区的金矿床(点)大体可划分为变质岩型、火山岩型、斑岩型和深成侵入岩型;铜矿床(点)有斑岩型、夕卡岩型和铜—镍硫化物型。金和铜矿床(点)大都沿古板块汇聚带分布,与海西期火成岩具密切的时空分布关系,它们是古板块对接碰撞期和碰撞期后大规模构造—岩浆活动的产物。  相似文献   

4.
墨江金矿成矿流体的形成演化机制   总被引:9,自引:0,他引:9  
毕献武  胡瑞忠 《地质论评》1997,43(4):381-387
笔者利用矿物流体包裹体、稳定同位素、微量元素和稀土元素地球化学等手段,研究了墨江金矿成矿流体的地球化学特征,成矿物质来源和形成演化机制。研究结果表明,墨江金矿为中低温热液金矿床,成矿流体属于中性-弱碱性的钠质溶液,其中的水为大气降和岩浆水混合成因,矿化剂主要来源于深部,金主要来源于海西期超基性岩和志留系金厂组浅变质岩。  相似文献   

5.
尹家坪金矿位于西秦岭褶皱系南秦岭印支褶皱带北缘,矿体赋存于海西—印支期侵入的闪长岩岩体及围岩接触部位。文章分析了尹家坪金矿体产出的地质特征及矿床成因,认为地层岩性及火山喷发、断裂构造、岩浆岩作用三位一体控制着尹家坪金矿金的富集与成矿,特别是F2断裂破碎带是成矿的关键构造条件;金成矿物质主要来自海西中-晚期闪长岩,源自地壳深部,热液来源有岩浆热液、大气降水。尹家坪金矿为浅层中低温热液活动形成的构造蚀变岩型金矿床。  相似文献   

6.
新疆东准噶尔地区金矿床类型、地质特征   总被引:2,自引:1,他引:1  
东准噶尔地区构造上位于哈萨克斯坦-准噶尔板块之巴尔喀什-准噶尔微板块北缘古生代陆缘活动带, 晚古生代是该区构造变形、岩浆活动和成矿作用的主要阶段。区内金矿可分为3个主要类型: 产于晚古生代凝灰岩、杂砂岩、浊积岩中的金矿, 产于海西期中酸性(偏碱性)侵入岩及其接触带中金矿, 产于晚古生代火山岩系中的金矿, 典型的代表性矿床分别为双泉金矿、黄羊山西金矿、双峰山金矿。三类金矿在赋矿围岩、控矿构造、矿床(体)规模/品位、围岩蚀变、金属矿物组合、成矿元素组合等多个方面均存在差异, 其原因是三者成矿作用过程中主要控矿因素、成矿机理的不同。  相似文献   

7.
秦岭沉积岩容矿金矿类型控矿条件与找矿方向   总被引:2,自引:2,他引:0  
秦岭地区沉岩包括扬子地台北缘志留纪裂陷沉积到晚古生代被动大陆边缘断陷-拗陷盆地沉积和二叠纪裂陷沉积。现有勘查资料表明秦岭地区沉积岩容矿金矿大多集中在泥盆系和三叠系,少量分布在志留系,石炭系和二叠系。  相似文献   

8.
The Haoyaoerhudong gold deposit in the northern margin of the North China Craton (NCC) is a large tonnage lower-grade deposit with a reserve of about 148 tons of gold. Gold mineralization is characterized by pyrite and pyrrhotite films and thin veins on the schistosity plane of the Proterozoic black shales. The orebodies, strictly controlled by a near EW-trending shear zone, are stratabound within carbonaceous phyllite and andalusite-garnet schist of the Bilute Formation. Hydrogen and oxygen isotopic data show that the ore-forming fluid was derived from a magmatic source and mixed with meteoric water. Sulfur and carbon isotope data indicate that most of the sulfur and carbon came from the black shale strata. Well-defined biotite Ar-Ar plateau age and inverse isochron age show that the deposit formed at ca. 270Ma, which suggests a probable link between Hercynian magmatism and gold mineralization. Studies on regional geology, ore geology, isotope geochemistry, and ore-forming age substantiate a complex evolutionary history of the deposit. The Proterozoic black shales rich in gold, sulfur, and organic matter, which were deposited in the Proterozoic continental margin rifts, comprised the source bed for gold mineralization. EW-ENE-structures, products of Palaeozoic orogenic process, provided pathways and mineralization space for ore-forming fluids. Hercynian tectono-magmatism and subsequent hydrothermal events remobilized gold and drove the ore-forming fluids to dilatational fracture zones. Related to postcollisional magmatic hydrothermal events, the Haoyaoerhudong gold deposit is considered as a special type of orogenic gold deposit formed in the compression–extension transition stage.  相似文献   

9.
甘肃北山南金山—狼娃山金成矿带成矿作用特征   总被引:1,自引:0,他引:1  
通过对南金山—狼娃山金成矿带金矿床成矿地质背景、矿床特征、成矿标志及控矿因素等诸方面分析认为,该成矿带金成矿作用集中在海西中晚期,具明显的区域性成矿特征,金矿集中分布在下石炭统扫子山组、白山组火山岩和海西期中酸性(石英闪长岩、花岗闪长岩)侵入岩体内外接触带中。金成矿受含矿建造、岩浆活动和构造控制,据其成矿和分布特点划分了矿床预测类型(矿床式),建立了区域找矿模型。  相似文献   

10.
刘海田 《地质与资源》1999,8(4):209-216
河北省赤城县黄土梁金矿产于水泉沟-大南山碱性杂岩体内接触带,矿床受钾化正长岩及断裂构造双重控制.矿床具矿化带宽、规模大、贫硫化物、蚀变单一、矿石类型简单、埋藏浅、易采选等特点,是一处与海西期-燕山早期岩浆活动有关的热液矿床.  相似文献   

11.
The paper presents new geochronological and isotopic geochemical data on gold mineralization of the Kedrovskoe deposit. The deposit is located in the northeastern part of the Transbaikal metallogenic province, Russia’s largest. The Early Permian age (273 ± 4 Ma) of mineralization based on the results of Rb–Sr study of metasomatic rocks is correlated with the age of the final phases of Hercynian magmatism in the Baikal–Muya Foldbelt. The Sr, Nd, and Pb isotopic geochemical characteristics of mineralization show that the host rocks are involved in the formation of the latter. It has been established that ore lead was supplied to the hydrothermal system of the deposit mainly from a geochemical reservoir represented by the Neoproterozoic juvenile continental crust of the Baikal–Muya Foldbelt.  相似文献   

12.
从韧性剪切带的地质产状,含金性出发,探讨了韧性剪切带与金矿之间的关系,认为,老柞山金矿的韧性剪切带形成了金矿之前,韧性剪切变形作用不仅促进了Au元素的初始活化和富集,形成了矿源层,而且还为后期构造岩浆活动的叠加提供了有利空间,金矿床肥叠加于韧性切带之上的脆性断裂控制,属于韧性剪切带金矿。  相似文献   

13.
陈林沟金矿床矿体呈脉状赋存于近EW向断裂构造中,矿石类型以石英脉型矿石为主,蚀变岩型矿石为次;矿化从浅部向深部出现由金矿化向金银多金属矿化转变,矿体规模逐渐变大,矿化强度逐渐变强;成矿年龄约为130 Ma±,其形成与燕山期岩浆作用具有时空和成因联系,矿床成因类型为中低温岩浆热液型金矿床。  相似文献   

14.
The Golden Pride gold deposit (∼3 Moz) is located in the central part of the Nzega Greenstone Belt at the southern margin of the Lake Victoria Goldfields in Tanzania. It represents an inferred Late Archaean, orogenic gold deposit and is hosted in intensely deformed meta-sedimentary rocks in the hanging wall of the approximately E–W striking Golden Pride Shear Zone. The hanging-wall sequence also includes felsic (quartz porphyritic) to mafic (lamprophyric) intrusions, as well as banded iron formations. Hydrothermal alteration phases associated with mineralisation are dominated by sericite and chlorite. Two main ore types can be distinguished, chlorite and silica ore, both occupying dilational sites and structural intersections in the hanging wall of the main shear zone. Sulphide minerals in both ore types include pyrrhotite, arsenopyrite, pyrite and accessory sphalerite, galena, sulphosalts and Ni–Co–Bi sulphides. Gold and tellurides are late in the paragenetic sequence and associated with a secondary phase of pyrrhotite deposition. Sulphur isotope compositions range from −6 to 7 per mil and are interpreted to reflect contributions from two distinct sources to the mineralising fluids in the Golden Pride gold deposit. A redox change, potentially induced by the intrusion of mafic melts, together with structural elements in the hanging wall of the Golden Pride Shear Zone, are interpreted to be the main controls on gold mineralisation in this deposit.  相似文献   

15.
The Song Hien Rift basin is considered as one of the important regions for gold deposits in North East Vietnam. Host rocks of a number gold deposits in the Song Hien Rift basin are mainly in Lower Triassic sedimentary formations. However, there is the Hat Han gold deposit hosted in fined-grained mafic magmatic rocks with similar characteristics as gold deposit hosted in the Triassic sediments. Sulphur isotopic compositions of sulphide are similar to those in carbonaceous shale, suggesting that the sulphur was ‘borrowed’ from sedimentary rocks in filling the rift basin. Gold-bearing sulphides (pyrite and arsenopyrite) are the main form of Au presence in the ore. Gold in pyrite is present as Au+ 1, and a minor amount of as nanoparticles of native Au (Au0); whereas in arsenopyrite, gold is chemically bound as the octahedral complex AuAs2. Analysis of geology, as well as geochemical and isotopic studies show that the genesis of the Hat Han gold deposit is not related to the Cao Bang mafic magmatism; instead the latter only serves as (ore) host rock. The geochemical results presented above suggest that the gabbro host rock only supplies iron needed for sulphide formation. With regard to ore genesis, the Hat Han gold deposit in the Song Hien rift basin was generated in the similar way as sediment-hosted gold deposit. There are many similar typomorphic features between the Hat Han deposit and Carlin-like deposits in the Nanpanjang sedimentary basin in China.  相似文献   

16.
Reliable age estimation was obtained originally in this study for gold mineralization of the Malomyr deposit (the eastern part of the Mongolian–Okhotsk foldbelt), which is one of the most well-known deposits in the Russian Far East. The data obtained show that the age of hydrothermal process that resulted in the formation of the Malomyr deposit may be estimated as ~133–132 Ma. Data on magmatism of the same age within the considered region are absent. In the opinion of the authors, mobilization, redistribution of the ore material, and the formation of the Malomyr deposit were mostly controlled by dislocation processes accompanied by hydrothermal activity, which is supported by the results of structural studies.  相似文献   

17.
The sequence of rock and ore formation at the Yermakovsky beryllium deposit is established on the basis of geological relationships and Rb-Sr and U-Pb isotopic dating. The Rb-Sr age of amphibolitefacies regional metamorphism is determined for quartz-biotite-plagioclase schist (266 ± 18 Ma) and dolomitized limestone (271 ± 12 Ma) of the Zun-Morino Formation. The U-Pb zircon age of premineral gabbro is 332 ± 1 Ma. The Rb-Sr age of gabbro is somewhat younger (316 ± 8.3 Ma), probably owing to the effect of Hercynian metamorphism on sedimentary rocks of the Zun-Morino Formation and gabbroic intrusion that cuts through it. The U-Pb zircon age of gneissose granite of the Tsagan Complex at the Yermakovsky deposit is 316 ± 2 Ma, i.e., close to the age of metamorphism superimposed on gabbro rocks. The U-Pb zircon age of preore granitic dikes, estimated at 325 ± 3 and 333 ± 10 Ma, is close to the age of gabbro. The Ar/Ar age of amphibole from a granitic dike (302.5 ± 0.9 Ma) probably displays a later closure of this isotopic system or the effect of superimposed processes. The Rb-Sr age of alkali syenite intrusion is 227 ± 1.9 Ma. The U-Pb zircon age of alkali leucogranite stock pertaining to the Lesser Kunalei Complex is 226 ± 1 Ma, while the Rb-Sr age of beryllium ore is 225.9 ± 1.2 Ma. These data indicate that beryllium ore mineralization is closely related in space and time to igneous rocks of the Lesser Kunalei Complex dated at 224 ± 5 Ma and varying from gabbro to alkali granite in composition. Thus, the preore Hercynian magmatism at the Yermakovsky deposit took place ∼330 Ma ago and was completed by metamorphism dated at 271–266 Ma. The ore-forming magmatism and beryllium ore mineralization are dated at 224 ± 5 Ma. Postore magmatic activity is scarce and probably correlated with tectonic melange of host rocks.  相似文献   

18.
内蒙油房-二把伙地区位于华北地台北缘南兴安晚华力西期地槽褶皱带,中生代火山岩系发育,燕山期中酸性岩浆活动强烈,形成了一系列火山、潜火山热液型银多金属矿床.文章论述了二把火银矿、油房银多金属矿的矿床地质特征及其控矿因素、找矿标志,认为该区具有可观的找矿潜力,并提出了找矿方向.  相似文献   

19.
The Jinshan gold deposit is located in the Northeast Jiangxi province,South China,which related to the ductile shear zone.It contains two ore types,i.e.the alteration-type ore and the goldbearing quartz vein ore.Rb-Sr age dating is applied to both gold-bearing pyrite in the alteration-type ore and fluid inclusion in the gold-bearing quartz vein to make clear the time of the gold mineralization of the Jinshan deposit.Analytical results of this study yielded that the age of the alteration-type ore bodies is about 838±110Ma,with an initial 87Sr/86Sr value of 0.7045±0.0020.However,the age of the gold-bearing quartz vein-type ore is about 379±49Ma,and the initial 87Sr/86Sr is 0.7138±0.0011.Based on the age data from this work and many previous studies,the authors consider that the Jinshan gold deposit is a product of multi-staged mineralization,which may include the Jinninian,Caledonian,Hercynian,and Yanshanian Periods.Among them,the Jinninian Period and the Hercynian Period might be the two most important ore-forming periods for Jinshan deposit.The Jinninian Period is the main stage for the formation of alteration-type ore bodies,while the Hercynian Period is the major time for ore bodies of gold-bearing quartz vein type.The initial values of the 87Sr/86Sr from this study,as well as the previous isotope and trace element studies,indicate that the ore-forming materials mainly derived from the metamorphic wall rocks,and the ore-forming fluids mainly originated from the deep metamorphic water.  相似文献   

20.
张青  袁晓玲  张鹏 《安徽地质》2009,19(4):260-263,267
通过对矿石物质组分及其赋存状态研究,发现安徽铜陵新桥锰矿床的锰除主要赋存在菱锰矿中外,有约30%赋存在方解石和金属硫化物中,而且金属硫化物中含有大量金。认为方解石和金属硫化物中锰的大量存在是选矿过程中锰回收率低的主要原因;该矿床具有较高的金综合利用价值,对寻找金属硫化物富集带有重要的找矿意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号